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1. Introduction

In [1,2], we have initiated the study of tropical probability spaces and their diagrams.
In [1], we endowed (commutative) diagrams of probability spaces with the intrinsic entropy
distance and, in [2], we defined tropical diagrams as points in the asymptotic cone of the
metric space. They are represented by certain sequences of diagrams of probability spaces.

We expect that tropical diagrams will be helpful in the study of information optimiza-
tion problems, such as the ones considered in [3–8], and we have indeed applied them to
derive a dimension-reduction result for the shape of the entropic cone in [9].

In this present article, we introduce the notion of conditioning on a space in a tropical
diagram and show that the operation is Lipschitz continuous with respect to the asymptotic
entropy distance.

It is a rather technical result, and we have, therefore, decided to treat it in this separate
article, but it is an important ingredient in the theory and, in particular, we need it for the
dimension-reduction result mentioned before.

Given a tuple of finite-valued random variables (Xi)n
i=1 and a random variable Y,

one may "condition" the collection (Xi) on Y. The result of this operation is a family of
n-tuples of random variables denoted (Xi∣Y)n

i=1 parameterized by those values of Y that
have positive probability. Each tuple of random variables in this family is defined on a
separate probability space.

When passing to the tropical setting, the situation is different in the sense that when
we condition a tropical diagram [X ] on a space [Y], the result is again a tropical diagram
[X ∣Y] rather than a family. After recalling some preliminaries in Section 2, we describe
the operation of conditioning and prove that the result depends in a Lipschitz way on the
original diagram in Section 3.

2. Preliminaries

Our main objects of study are commutative diagrams of probability spaces and their
tropical counterparts. In this section, we recall briefly the main definitions and results.

2.1. Probability Spaces and Their Diagrams
2.1.1. Probability Spaces

By a finite probability space, we mean a set with a probability measure that has finite
support. A reduction from one probability space to another is an equivalence class of
measure-preserving maps. Two maps are equivalent if they coincide on a set of full
measures. We call a point x in a probability space X = (X, p) an atom if it has positive
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weight, and we write x ∈ X to mean x is an atom in X (as opposed to x ∈ X for points in the
underlying set). For a probability space X, we denote by ∣X∣ the cardinality of the support
of the probability measure.

2.1.2. Indexing Categories

To record the combinatorial structure of commutative diagrams of probability spaces
and reductions, we use an object that we call an indexing category. By an indexing category,
we mean a finite category G such that for any pair of objects i, j ∈ G, there is at most one
morphism between them either way. In addition, we will assume it satisfies one additional
property that we will describe after introducing some terminology. For a pair of objects
i, j ∈ G such that there is a morphism γij ∶ i → j, object i will be called an ancestor of j and
object j will be called a descendant of i. The subcategory of all descendants of an object i ∈ G
is called an ideal generated by i and will be denoted ⌈i⌉, while we will call the subcategory
consisting of all ancestors of i together with all the morphisms in it a co-ideal generated by i
and denote it by ⌊i⌋. (The term filter is also used for a co-ideal in the literature about lattices).

The additional property that an indexing category has to satisfy is that for any pair
of objects i, j ∈ G, there exists a minimal common ancestor ı̂, and ı̂ is an ancestor for both i
and j and any other ancestor of them both is also an ancestor of ı̂; in other words, G is an
upper semi-lattice.

An equivalent formulation of the property above is the following: the intersection of
the co-ideals generated by two objects i, j ∈ G is also a co-ideal generated by some object
ı̂ ∈ G.

Any indexing category G is necessarily initial, which means that there exists an initial
object, that is an object i0 such that G = ⌈i0⌉.

A fan in a category is a pair of morphisms with the same domain. A fan (i ← k → j) is
called minimal if for any other fan (i ← l → j) included in a commutative diagram

k
i j

l

,

the vertical arrow must be an isomorphism; in other words, k is a minimal common ancestor
of i and j.

For any pair of objects i, j in an indexing category G, there exists a unique minimal fan
(i ← ı̂ → j) in G.

2.1.3. Diagrams

We denote by Prob the category of finite probability spaces and reductions, i.e., the
equivalence classes of measure-preserving maps. For an indexing category G = {i; γij}, a
G-diagram is a functor X ∶ G → Prob. A reduction f from one G-diagram X = {Xi; χij}
to another Y = {Yi; υij} is a natural transformation between the functors. It amounts to
a collection of reductions fi ∶ Xi → Yi, such that the big diagram consisting of all spaces
Xi, Yi and all morphisms χij, υij and fi is commutative. The category of G-diagrams and
reductions will be denoted as Prob⟨G⟩. The construction of diagrams could be iterated;
thus, we can consider H-diagrams of G-diagrams and denote the corresponding category
Prob⟨G⟩⟨H⟩ = Prob⟨G, H⟩. Every H-diagram of a G-diagram can also be considered as
G-diagrams of H-diagrams; thus, there is a natural equivalence of categories Prob⟨G, H⟩ ≅
Prob⟨H, G⟩.

A G-diagram X will be called minimal if it maps minimal fans in G to minimal fans in
the target category. The subspace of all minimal G-diagrams will be denoted Prob⟨G⟩m.
In [1], we have shown that for any fan in Prob or in Prob⟨G⟩, its minimization exists and is
unique up to isomorphism.
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2.1.4. Tensor Product

The tensor product of two probability spaces X = (X, p) and Y = (Y, q) is their indepen-
dent product X⊗Y ∶= (X ×Y, p⊗ q) . For two G-diagrams X = {Xi; χij} and Y = {Yi; υij},
we define their tensor product to be X ⊗Y = {Xi ⊗Y ; χij × υij}.

2.1.5. Constant Diagrams

Given an indexing category G and a probability space, we can form a constant diagram
XG that has all spaces equal to X and all reductions equal to the identity isomorphism.
Sometimes, when such a constant diagram is included in a diagram with other G-diagrams
(such as, for example, a reduction X → XG), we will write simply X in place of XG.

2.1.6. Entropy

Evaluating entropy on every space in a G-diagram, we obtain a tuple of non-negative
numbers indexed by objects in G; thus, entropy gives a map

Ent∗ ∶ Prob⟨G⟩ → RG,

where the target space RG is a space of real-valued functions on the set of objects in G
endowed with the `1-norm. Entropy is a homomorphism in that it satisfies

Ent∗(X ⊗Y) = Ent∗(X) +Ent∗(Y).

2.1.7. Entropy Distance

Let G be an indexing category and K = (X ← Z → Y) be a fan of G-diagrams. We
define the entropy distance as

kd(K) ∶= ∥Ent∗Z −Ent∗X∥1 + ∥Ent∗Z −Ent∗Y∥1.

The intrinsic entropy distance between two G-diagrams is defined to be the infimal
entropy distance of all fans with terminal diagrams X and Y :

k(X ,Y) ∶= inf{kd(K) ∶ K = (X ← Z → Y)}.

The intrinsic entropy distance was introduced in [10,11] for probability spaces.
In [1], it is shown that the infimum is attained, that the optimal fan is minimal, that k

is a pseudo-distance, which vanishes if, and only if, X and Y are isomorphic, and that Ent∗
is a 1-Lipschitz linear functional with respect to k.

2.2. Diagrams of Sets, Distributions, and Empirical Reductions
2.2.1. Distributions on Sets

For a set S, we denote by ∆S the collection of all finitely-supported probability dis-
tributions on S. For a pair of distributions π1, π2 ∈ ∆S, we denote by ∥π1 −π2∥1 the total
variation distance between them.

For a map f ∶ S → S′ between two sets, we denote by f∗ ∶ ∆S → ∆S′ the induced affine
map (the map-preserving convex combinations).

For n ∈ N, we define the empirical map q ∶ Sn → ∆S by the assignment below. For
s̄ = (s1, . . . , sn) ∈ Sn and A ⊂ S, we define

q(s̄)(A) ∶= 1
n
⋅ ∣{k ∶ sk ∈ A}∣.

For a finite probability space X = (S, p), the empirical distribution on ∆X is the push-
forward τn ∶= q∗ p⊗n. Thus,

q ∶ Xn → (∆X, τn)
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is a reduction of finite probability spaces. The construction of empirical reduction is
functorial, which is for a reduction between two probability spaces f ∶ X → Y, the diagram
of the reductions

Xn Yn

(∆X, τn) (∆Y, τn)

f n

q q
f∗

commutes.

2.2.2. Distributions on Diagrams of Sets

Let Set denote the category of sets and surjective maps. For an indexing category
G, we denote by Set⟨G⟩ the category of G-diagrams in Set. The objects in Set⟨G⟩ are
commutative diagrams of sets indexed by G, and the spaces in such a diagram are sets,
where the arrows represent surjective maps, subject to commutativity relations.

For a diagram of sets S = {Si; σij}, we define the space of distributions on the diagram
S by

∆S ∶= {(πi) ∈ ∏
i

∆Si ∶ (σij)∗πi = πj}.

If S0 is the initial set of S, then there is an isomorphism of

∆S0
≅↔ ∆S (1)

∆S0 ∋ π0 ↦ {(σ0i)∗π0} ∈ ∆S
∆S0 ∋ π0 ↤ {πi} ∈ ∆S .

Given a G-diagram of sets S = {Si; σij} and an element π ∈ ∆S, we can construct
a G-diagram of probability spaces (S, π) ∶= {(Si, πi); σij}. Note that any diagram X of
probability spaces has this form.

2.3. Conditioning

Consider a G-diagram of probability spaces X = (S, π), where S is a diagram of sets
and π ∈ ∆S. Let X0 = (S0, π0) be the initial space in X and U ∶= Xi be another space in X .
Since S0 is initial, there is a map σ0,i ∶ S0 → Si. Fix an atom u ∈ U and define the conditioned
distribution π0(⋅∣u) on S0 as the distribution supported in σ−1

0,i (u) and for every s ∈ σ−1
0,i (u)

defined by

π0(s∣u) ∶= π0(s)
π0(σ−1

0,i (u))
.

Let π(⋅∣u) ∈ ∆S be the distribution corresponding to π0(⋅∣u) under the isomorphism
in (1). We define the conditioned G-diagram as X ∣u ∶= (S, π(⋅∣u)).

2.4. The Slicing Lemma

In [1], we prove the so-called Slicing Lemma that allows us to estimate the intrinsic en-
tropy distance between two diagrams in terms of distances between conditioned diagrams.
Among the corollaries of the Slicing Lemma is the following inequality.

Proposition 1. Let (X ← X̂ → UG) ∈ Prob⟨G, Λ2⟩ be a fan of G-diagrams of probability spaces
and Y ∈ Prob⟨G⟩ be another diagram. Then,

k(X ,Y) ≤ ∫
U

k(X ∣u,Y) dp(u) + 2[[G]] ⋅EntU.

The fan in the assumption of the proposition above can often be constructed in the
following manner. Suppose X is a G-diagram and U ∶= Xι is a space in it for some ι ∈ G.

We can construct a fan (X
f
← X̂

g
→ UG) ∈ Prob⟨G, Λ2⟩ by assigning X̂i to be the initial space
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of the (unique) minimal fan in X with terminal spaces Xi and U and fi and gi to be left and
right reductions in that fan for any i ∈ G.

2.5. Tropical Diagrams

A detailed discussion of the topics in this section can be found in [2].
The asymptotic entropy distance between two diagrams of the same combinatorial

type is defined by

κ(X ,Y) ∶= lim
1
n

k(X n,Yn).

A tropical G-diagram is an equivalence class of certain sequences of G-diagrams of
probability spaces. Below, we describe the type of sequences and the equivalence relation.

A function ϕ ∶ R ≥ 1→ R ≥ 0 is called an admissible function if ϕ is non-decreasing and
there is a constant Dϕ, such that for any t ≥ 1:

t ⋅ ∫
∞

t

ϕ(s)
s2 ds ≤ Dϕ ⋅ ϕ(t).

An example of an admissible function will be ϕ(t) = tα for α ∈ [0, 1).
A sequence X̄ = (X(n) ∶ n ∈ N0) of diagrams of probability spaces will be called

quasi-linear with the defect bounded by an admissible function ϕ if for some C > 0 and all
m, n ∈ N, it satisfies

κ(X(n +m),X(n) ⊗X(m)) ≤ C ⋅ ϕ(n +m).

For example for a diagram X , the sequence
Ð→X ∶= (X n ∶ n ∈ N0) is ϕ-quasi-linear for

ϕ ≡ 0 (and for any admissible ϕ). Sequences with zero defect are called linear, and the space
of all linear sequences in Prob⟨G⟩ is denoted by L(Prob⟨G⟩).

The asymptotic entropic distance between two ϕ-quasi-linear sequences X̄ = (X(n) ∶
n ∈ N0) and Ȳ = (Y(n) ∶ n ∈ N0) is defined to be

κ(X̄ , Ȳ) ∶= lim
n→∞

1
n

k(X(n),Y(n)),

and the sequences are called asymptotically equivalent if κ(X̄ , Ȳ) = 0. An equivalence class
of a sequence X̄ will be denoted as [X ], and the totality of all the classes as Prob[G]. We
have shown in [2] that the space of equivalence classes of ϕ-quasi-linear sequences does
not depend on the choice of a non-zero admissible function ϕ.

The sum of two such equivalence classes is defined to be the equivalence class of
the sequence obtained by tensor-multiplying representative sequences of the summands
term-wise. In addition, there is a doubly transitive action of R≥0 on Prob[G]. In [2], the
following theorem is proven.

Theorem 1. Let G be an indexing category. Then:

1. The space Prob[G] does not depend on the choice of a positive admissible function ϕ up to
isometry.

2. The space Prob[G] is metrically complete.

3. The map X ↦ Ð→X is a κ-κ-isometric embedding. The space of linear sequences, i.e., the image
of the map above, is dense in Prob[G].

4. There is a distance-preserving homomorphism from Prob[G] into a Banach space B, whose
image is a closed convex cone in B.

5. The entropy functional

Ent∗ ∶ Prob[G] → RG

[(X(n))n∈N0
] ↦ lim

n→∞
1
n
Ent∗X(n)
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is a well-defined 1-Lipschitz linear map.

2.6. Asymptotic Equipartition Property for Diagrams

Among all G-diagrams, there is a special class of maximally symmetric ones. We call
such diagrams homogeneous; see below for the definition. Homogeneous diagrams come in
very handy in many considerations, because their structure is easier to describe than that
of general diagrams. We show below that among the tropical diagrams, those that have
homogeneous representatives are dense. It means, in particular, that when considering
continuous functionals in the space of diagrams, it suffices to only study them in the space
of all homogeneous diagrams.

2.6.1. Homogeneous Diagrams

A G-diagram X is called homogeneous if the automorphism group Aut(X) acts transi-
tively on every space in X , by which we mean that the action is transitive on the support
of the probability measure. Homogeneous probability spaces are isomorphic to uniform
spaces. For more complex indexing categories, this simple description is not sufficient.

2.6.2. Tropical Homogeneous Diagrams

The subcategory of all homogeneous G-diagrams will be denoted Prob⟨G⟩h, and we
write Prob⟨G⟩h,m for the category of minimal homogeneous G-diagrams. These spaces are
invariant under the tensor product; thus, they are metric Abelian monoids, and the general
"tropicalization" described in [2] can be performed. Passing to the tropical limit, we obtain
spaces of tropical (minimal) homogeneous diagrams, which we denote by Prob[G]h and
Prob[G]h,m, respectively.

2.6.3. Asymptotic Equipartition Property

For an indexing category G, denote by [[G]] the number of objects in G. In [1], the
following theorem is proven.

Theorem 2. Suppose X ∈ Prob⟨G⟩ is a G-diagram of probability spaces for some fixed indexing
category G. Then, there exists a sequence H̄ = (Hn)∞n=0 of homogeneous G-diagrams, such that

1
n

k(X n,Hn) ≤ C(∣X0∣, [[G]]) ⋅

¿
ÁÁÀ ln3 n

n
, (2)

where C(∣X0∣, [[G]]) is a constant only depending on ∣X0∣ and [[G]].

The approximating sequence of homogeneous diagrams is evidently quasi-linear with
the defect bounded by the admissible function

ϕ(t) ∶= 2C(∣X0∣, [[G]]) ⋅ t3/4 ≥ 2C(∣X0∣, [[G]]) ⋅ t1/2 ⋅ ln3/2 t.

Thus, Theorem 2 above states that L(Prob⟨G⟩) ⊂ Prob[G]h. On the other hand, we
have shown in [2] that the space of linear sequences L(Prob⟨G⟩) is dense in Prob[G].
Combining the two statements, we obtain the following theorem.

Theorem 3. For any indexing category G, the space Prob[G]h is dense in Prob[G]. Similarly,
the space Prob[G]h,m is dense in Prob[G]m.

3. Conditioning of Tropical Diagrams
3.1. Motivation

Let X ∈ Prob⟨G⟩ be a G-diagram of probability spaces containing probability space
U = Xi0 indexed by an object i0 ∈ G.
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Given an atom u ∈ U, we can define a conditioned diagram X ∣u. If the diagram X is
homogeneous, then the isomorphism class of X ∣u is independent of u, so that (X ∣u ∶ u ∈ U)
is a constant family. On the other hand, we have shown that the power of any diagram can
be approximated by homogeneous diagrams, thus suggesting that in the tropical setting
X ∣U should be a well-defined tropical diagram, rather than a family. Below, we give a
definition of the tropical conditioning operation and prove its consistency.

3.2. Classical-Tropical Conditioning

Here, we define the operation of conditioning of the classical diagram, such that the
result is a tropical diagram. Let X be a G-diagram of probability spaces and U be a space
in X . We define the conditioning map

[⋅ ∣⋅] ∶ Prob⟨G⟩ → Prob[G]

by conditioning X by u ∈ U and averaging the corresponding tropical diagrams:

[X ∣U] ∶= ∫
u∈U

ÐÐÐ→
(X ∣u) dpU(u),

where
ÐÐÐ→
(X ∣u) is the tropical diagram represented by a linear sequence generated by X ∣u; see

Section 2.5. Note that the integral on the right-hand side is just a finite convex combination
of tropical diagrams. Expanding all the definitions, we will obtain for [Y] ∶= [X ∣U], the
representative sequence

Y(n) = ⊗
u∈U

(X ∣u)⌊n⋅p(u)⌋.

3.3. Properties
3.3.1. Conditioning of Homogeneous Diagrams

If the diagram X is homogeneous, then for any atom u ∈ U, with a positive weight,

[X ∣U] ˇ=
ÐÐÐ→
(X ∣u).

3.3.2. Entropy

By definition, the conditioned entropy is

Ent∗(X ∣U) ∶= ∫
U
Ent∗(X ∣u) dpU(u).

Now that [X ∣U] is a tropical diagram, the expression Ent∗(X ∣U) can be interpreted
in two, a priori different, ways: by the formula above and as the entropy of the object
introduced in the previous subsection. Fortunately, the numeric value of it does not depend
on the interpretation since the entropy is a linear functional on Prob[G].

3.3.3. Additivity

If X and Y are two G-diagrams with U ∶= Xι, V ∶= Yι for some ι ∈ G, then

[(X ⊗Y)∣(U ⊗V)] = [X ∣U] + [Y∣V].

Proof.

[(X⊗Y)∣(U ⊗V)] = ∫
U⊗V

ÐÐÐÐÐÐÐÐÐ→
(X ⊗Y)∣(u, v) dp(u) dp(v)

= ∫
U⊗V

(
ÐÐ→
X ∣u +

Ð→
Y∣v) dp(u) dp(v) = ∫

U

ÐÐ→
X∣u dp(u) +∫

V

Ð→
Y∣v dp(v)

= [X ∣U] + [Y∣V]
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3.3.4. Homogeneity

It follows that for any diagram X , a space U in X and n ∈ N0 holds

[X n∣Un] = n ⋅ [X ∣U].

3.4. Continuity and Lipschitz Property

Proposition 2. Let G be an indexing category, X ,Y ∈ Prob⟨G⟩ be two G diagrams, and U ∶= Xι

and V ∶= Yι be two spaces in X and Y , respectively, indexed by some ι ∈ G. Then,

κ([X ∣U], [Y∣V]) ≤ (2 ⋅ [[G]] + 1) ⋅k(X ,Y).

Using the homogeneity property of conditioning, Section 3.3.4, we can obtain the
following stronger inequality.

Corollary 1. In the setting of Proposition 2, the following holds:

κ([X ∣U], [Y∣V]) ≤ (2 ⋅ [[G]] + 1) ⋅ κ(X ,Y).

Before we prove Proposition 2, we will need some preparatory lemmas.

Lemma 1. LetA be a G-diagram of probability spaces and E be a space in it. Let q ∶ En → (∆E, τn)
be the empirical reduction. Then, for any n ∈ N and any ē, ē′ ∈, En

k(An∣ē,An∣ē′) ≤ n ⋅ ∥Ent∗(A)∥1 ⋅ ∥q(ē) −q(ē′)∥1.

Proof. To prove the lemma, we construct a coupling between An∣ē and An∣ē′ in the follow-
ing manner. Note that there exists a permutation σ ∈ Sn, such that

∣{i ∶ ei ≠ e′σi}∣ =
n
2
⋅ ∥q(ē) −q(ē′)∥1.

Let

I = {i ∶ ei = e′σi}
Ĩ = {i ∶ ei ≠ e′σi}.

Using that ∣ Ĩ∣ = n
2 ⋅ ∥q(ē) −q(ē′)∥1, we can estimate

k (An∣ē , An∣ē′) = k(
n
⊗
i=1

(A∣ei) ,
n
⊗
i=1

(A∣e′σi))

≤ ∑
i∈I

kd(A∣ei
=←→ A∣e′σi) + ∑

i∈ Ĩ
kd(A∣ei

⊗←→ A∣e′σi)

≤ n ⋅ ∥Ent∗(A)∥1 ⋅ ∥q(ē) −q(ē′)∥1,

where A =↔ B denotes the isomorphism coupling of two naturally isomorphic diagrams,

while A ⊗↔ B denotes the “independence” coupling.

Lemma 2. Let A be a G-diagram of probability spaces and E be a space in A. Then,

∫
En

k(An,An∣ē) dp(ē) ≤ 2n ⋅ [[G]] ⋅Ent(E) + O(n).
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Proof. First, we apply Proposition 1 slicing the first argument:

∫
En

k(An,An∣ē) dp(ē)

≤ ∫
En ∫En

k(An∣ē′,An∣ē) dp(ē′) dp(ē) + 2n ⋅ [[G]] ⋅Ent(E).

We will argue now that the double integral on the right-hand side grows sub-linearly with
n. We estimate the double integral by applying Lemma 1 to the integrand

∫
En ∫En

k(An∣ē′,An∣ē) dp(ē′) dp(ē)

≤ ∫
En ∫En

n ⋅ [[G]] ⋅ ∣Ent∗(A)∣1 ⋅ ∣q(ē) −q(ē′)∣1 dp(ē′) dp(ē)

= n ⋅ [[G]] ⋅ ∣Ent∗(A)∣1 ⋅ ∫
∆E
∫

∆E
∣π −π′∣1 dτn(π) dτn(π′) = O(n),

where the convergence to zero of the last double integral follows from Sanov’s theorem.

Corollary 2. Let A be a G-diagram and E a probability space included in A. Then,

κ(Ð→A , [A∣E]) ≤ 2[[G]] ⋅Ent(E).

Proof. Let n ∈ N. Then,

κ(Ð→A , [A∣E]) = 1
n

κ(
Ð→
An, [An∣En])

= 1
n

κ(
Ð→
An,∫

En

ÐÐ→
An∣ē dp(ē))

≤ 1
n ∫En

κ(
Ð→
An,

ÐÐ→
An∣ē) dp(ē)

= 1
n ∫En

κ(An,An∣ē) dp(ē)

≤ 2 ⋅ [[G]] ⋅Ent(E) + O(n0),

where we used Lemma 2 and the fact that κ ≤ k in the last line. We finish the proof by
taking the limit n →∞.

Proof of Proposition 2. We start with a note on general terminology: a reduction f ∶ A → B

of probability spaces can also be considered as a fan F ∶= (A
=← A

f
→ B). Then, the entropy

distance of f is
kd( f ) ∶= kd(F) = Ent A −EntB.

If the reduction f is a part of a bigger diagram containing also space U, then the following
inequality holds:

∫
U

kd( f ∣u) dp(u) ≤ kd( f ).

Let K ∈ Prob⟨G, Λ2⟩

K = ( X Z Yf g ) ∈ Prob⟨G, Λ2⟩ = Prob⟨Λ2, G⟩

be an optimal coupling between X and Y . It can also be viewed as a G-diagram of two
fans, K = {Ki}i∈G, each of which is a minimal coupling between Xi and Yi. Among them is

the minimal fanW ∶= Kι = (U
fι←ÐW

gιÐ→ V).
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We use the triangle inequality to bound the distance κ([X ∣U], [Y∣V]) by four sum-
mands as follows:

κ([X ∣U], [Y∣V]) ≤κ([X ∣U], [Z∣U]) + κ([Z∣U], [Z∣W])+

κ([Z∣W], [Z∣V]) + κ([Z∣V], [Y∣V]).

We will estimate each of the four summands separately. The bound for the first one is
as follows:

κ([X ∣U], [Z∣U]) = κ(∫
U

ÐÐ→
X∣u dp(u),∫

U

Ð→
Z∣u dp(u))

≤ ∫
U

κ(
ÐÐ→
X∣u,

Ð→
Z∣u) dp(u) = ∫

U
κ(X ∣u, Z∣u) dp(u)

≤ ∫
U

k(X ∣u, Z∣u) dp(u) ≤ ∫
U

kd( f ∣u) dp(u)

≤ ∑
i∈G
∫

U
kd( fi∣u) dp(u) = ∑

i∈G
kd( fi) = kd( f ).

An analogous calculation shows that

κ([Z∣V], [Y∣V]) ≤ kd(g).

To bound the second summand, we will use Corollary 2:

κ([Z∣U], [Z∣W]) = κ(∫
U

Ð→
Z∣u dp(u),∫

W

ÐÐ→
Z∣w dp(w))

= κ(∫
U

Ð→
Z∣u dp(u),∫

U
∫

W∣u
ÐÐ→
Z∣w dp(w∣u) dp(u))

≤ ∫
U

κ(
Ð→
Z∣u,∫

W∣u
ÐÐ→
Z∣w dp(w∣u)) dp(u).

We will now use Corollary 2 with A = Z∣u and E = W∣u to estimate the integrand.
Then,

κ([Z∣U], [Z∣W]) = ∫
U

κ(
Ð→
Z∣u,∫

W∣u
ÐÐ→
Z∣w dp(w∣u)) dp(u)

≤ 2[[G]] ⋅ ∫
U
Ent(W∣u) dp(u)

≤ 2[[G]] ⋅Ent(W∣U) ≤ 2[[G]] ⋅ kd( f ).

Similarly,

κ([Z∣W], [Z∣V]) ≤ 2[[G]] ⋅ kd(g).

Combining the estimates, we obtain

κ([X ∣U], [Y∣V]) ≤ (2[[G]] + 1) ⋅ (kd ( f ) + kd(g)) = (2[[G]] + 1) ⋅k(X ,Y).

3.5. Tropical Conditioning

Let [X ] be a tropical G-diagram and [U] = [Xι] for some ι ∈ G. Choose a representative
(X(n))n∈N0

and denote u(n) ∶= Xι(n). We define now a conditioned diagram [X ∣U] by the
following limit:

[X ∣U] ∶= lim
n→∞

1
n
[X(n)∣U(n)].
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Proposition 1 guarantees that the limit exists and is independent of the choice of represen-
tative. For a fixed ι ∈ G, the conditioning is a linear Lipschitz map of

[ ⋅ ∣ ⋅ι ] ∶ Prob[G] → Prob[G].
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