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Abstract: Arrow contraction applied to a tropical diagram of probability spaces is a modification of
the diagram, replacing one of the morphisms with an isomorphism while preserving other parts of
the diagram. It is related to the rate regions introduced by Ahlswede and Körner. In a companion
article, we use arrow contraction to derive information about the shape of the entropic cone. Arrow
expansion is the inverse operation to the arrow contraction.
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1. Introduction

In [1], we have initiated the theory of tropical probability spaces for the systematic study
of information optimization problems in information theory and artificial intelligence,
such as those arising in robotics [2], neuroscience [3], artificial intelligence [4], variational
autoencoders [5], information decomposition [6], and causal inference [7]. In [8], we applied
the techniques to derive a dimension-reduction result for the entropic cone of four random
variables.

Two of the main tools used for the latter are what we call arrow contraction and arrow
expansion. They are formulated for tropical commutative diagrams of probability spaces.
Tropical diagrams are points in the asymptotic cone of the metric space of commutative
diagrams of probability spaces endowed with the asymptotic entropy distance. Arrows in
diagrams of probability spaces are (equivalence classes of) measure-preserving maps.

Arrow contraction and expansion take a commutative diagram of probability spaces
as input, modify it, but preserve important properties of the diagram. The precise results
are formulated as Theorems 3 and 4 in the main text. Their formulation requires language,
notation, and definitions that we review in Section 2.

However, to give an idea of the results in this paper, we now present two examples.
For basic terminology and notations used in these examples below, the reader unfamiliar
with them is referred either to Section 2 of the present article or in the introductory material
in the article [9].

1.1. Two Examples
1.1.1. Arrow Contraction and Expansion in a Two-Fan

Suppose we are given a fan Z = (X ← Z → Y), and we would like to complete it to a
diamond

Z◇ =
⎛
⎜⎜
⎝

Z
X Y

V

⎞
⎟⎟
⎠

(1)

such that the entropy of V, denoted by [V], equals the mutual information [X ∶ Y] between
X and Y, i.e., we would like to realize the mutual information between X and Y by a pair
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of reductions X → V and Y → V. This is not always possible, not even approximately. The
Gacs-Körner Theorem [10] describes when such exact realization of mutual information is
possible.

Arrow contraction instead produces another fan Z ′ = (X ← Z′ → V), such that the
reduction Z′ → X is an isomorphism and the relative entropy [X∣V] of X given V equals
[X∣Y]. By collapsing this reduction, we obtain as a diagram just the reduction X → V. If
necessary, we can keep the original spaces Z and Y in the modified diagram obtaining the
“broken diamond” diagram

Z
X Y

V

such that [V] = [X ∶ Y]. Of course, no special technique is necessary to achieve this result
since it is easy to find a reduction from a tropical space [X] to another tropical probability
space with the prespecified entropy, as long as the Shannon inequalities are not violated.

However, a similar operation becomes non-trivial and in fact impossible without
passing to the tropical limit, if instead of a single space X, there is a more complex sub-
diagram as in the example in the next subsection.

To explain how arrow expansion works, we start with the chain of reductions Z → X → V.
Can we extend it to a diamond, as in (1), so that [X ∶ Y∣V] = 0? This is again not possible, in
general. However, if we pass to tropical diagrams, then such an extension always exists.

1.1.2. One More Example of Arrow Expansion and Contraction

Consider a diagram presented in Figure 1. Such a diagram is called a Λ3-diagram. We
would like to find a reduction X → V so that [X ∣U] = [X ∣V]. It is not possible to achieve
this within the realm of diagrams of classical probability spaces. But once we pass to the
tropical limit, the reduction [X] → [V] can be found by contracting and then collapsing the
arrow [Z] → [X], as shown in Figure 1.

Figure 1. Arrow contraction and expansion in a Λ3-diagram. The fan ([X] ← [Z] → [U]) (shown
in red in the Figure) is admissible. Spaces [Z1], [Z2] and [Z] belong to the co-ideal ⌊U⌋. After the
operation the part of the diagram shown in blue in the Figure is left unmodified.

Arrow contraction is closely related to the Shannon channel coding theorem. This is
perhaps most obvious from the proof. Furthermore, arrow contraction has connections
with rate regions, as introduced by Ahlswede and Körner, see [11,12]. These results by
Ahlswede and Körner were applied by [13], resulting in a new non-Shannon information
inequality. Moreover, in [13], a new proof was given of the results; this new proof is similar
to the proof of the arrow contraction result in the present paper.

The main contribution of our work lies in the fact that we prove a much stronger
preservation of properties of the diagram under arrow contraction.

2. Preliminaries
2.1. Probability Spaces and Their Diagrams

Our main objects of study will be commutative diagrams of probability spaces. A finite
probability space X is a set with a probability measure on it, supported on a finite set. We
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denote by ∣X∣ the cardinality of the support of the measure. The statement x ∈ X means that
point x is an atom with positive weight in X. For details see [1,9,14].

Examples of commutative diagrams of probability spaces are shown in Figure 2. The
objects in such diagrams are finite probability spaces and morphisms are equivalence
classes of measure-preserving maps. Two such maps are considered to be equivalent if
they coincide on a set of full measurements. To record the combinatorial structure of a
commutative diagram, i.e., the arrangement of spaces and morphisms, we use indexing
categories, which are finite poset categories satisfying an additional property, which we
describe below.

Z

X Y

Z

X Y

U

T

U V W

X Y Z

1. A fan 2. A diamond diagram 3. Full diagram on 3 spaces

Figure 2. Examples of diagrams of probability spaces.

2.1.1. Indexing Categories

A poset category is a finite category such that there is at most one morphism between
any two objects either way.

For a pair of objects k, l in a poset category G = {i; γij}, such that there is a morphism
γkl in G, we call k an ancestor of l and l a descendant of k. The set of all ancestors of an
object k together with all the morphisms between them is itself a poset category and will
be called a co-ideal generated by k and denoted by ⌊k⌋. Co-ideals are also sometimes called
filters. Similarly, a poset category consisting of all descendants of k ∈ G and morphisms
between them will be called an ideal generated by k and denoted ⌈k⌉.

An indexing category G = {i; γij} used for indexing diagrams is a poset category
satisfying the following additional property: for any pair of objects i1, i2 ∈ G the the
intersection of co-ideals is also a co-ideal generated by some object i3 ∈ G,

⌊i1⌋ ∩ ⌊i2⌋ = ⌊i3⌋

In other words, for any pair of objects i1, i2 ∈ G there exists a least common ancestor i3, i.e.,
i3 is an ancestor to both i1 and i2 and any other common ancestor is also an ancestor of i3.
Any indexing category is initial, i.e., there is a (necessarily unique) initial object ı̂ in it, which
is the ancestor of any other object in G, in other words G = ⌈ı̂⌉.

A fan in a category is a pair of morphisms with the same domain. Such a diagram is
also called a span in some literature on Category Theory. A fan (i ← k → j) is called minimal,
if for any other fan (i ← l → j) included in a commutative diagram

k
i j

l

the vertical morphism (k → l) must be an isomorphism. Any indexing category also
satisfies the property that, for any pair of objects in it, there exists a unique minimal fan
with target objects of the given ones.

This terminology will also be applied to diagrams of probability spaces indexed by
G. Thus, given a space X in a G-diagram, we can talk about its ancestors, descendants,
co-ideal ⌊X⌋, and ideal ⌈X⌉. We use square brackets to denote tropical diagrams and spaces
in them. For the (co-)ideals in tropical diagrams, in order to unclutter notations, we will
write

⌊X⌋ ∶= ⌊[X]⌋ and ⌈X⌉ ∶= ⌈[X]⌉
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2.1.2. Diagrams

For an indexing category G = {i; γij} and a category Cat, a commutative G-diagram
X = {Xi; χij} is a functor X ∶ G → Cat. A diagram X is called minimal if it maps minimal
fans in G to minimal fans in Cat.

A constant G-diagram denoted XG is a diagram where all the objects equal to X, and
all morphisms are identities.

Important examples of indexing categories are a two-fan, a diamond category, a full
category Λn on n spaces, chains Cn. For detailed descriptions and more examples, the
reader is referred to the articles cited at the beginning of this section.

2.2. Tropical Diagrams
2.2.1. Intrinsic Entropy Distance

For a fixed indexing category G, the space of commutative G-diagrams will be denoted
by Prob⟨G⟩. Evaluating entropy on every space in a G diagram gives a map

Ent∗ ∶ Prob⟨G⟩ → RG

where the target space RG is the space of real-valued functions on objects of G. We endow
this space with the `1-norm. For a fan F = (X ← Z → Y) of G-diagrams we define the
entropy distance between its terminal objects by

kd(F) ∶= ∥Ent∗Z −Ent∗X∥1 + ∥Ent∗Z −Ent∗Y∥1

and the intrinsic entropy distance between two arbitrary G-diagrams by

k(X ,Y) ∶= inf{kd(F) ∶ F = (X ← Z → Y)}

This intrinsic version of the entropy distance was introduced in [15,16]. The triangle
inequality for k and various other properties are discussed in [1].

In the same article, a useful estimate for the intrinsic entropy distance called the Slicing
Lemma is also proven. The following corollary ([1], Corollary 3.10(1)) of the Slicing Lemma
will be used in the next section.

Proposition 1. Let G be an indexing category, X ,Y ∈ Prob⟨G⟩ and U ∈ Prob included in a pair
of two fans

X̃
X UG

Ỹ
UG Y

Then
k(X ,Y) ≤ ∫

U
k(X ∣u,Y∣u) dpU(u) + 2 ⋅ [[G]] ⋅Ent(U)

2.2.2. Tropical Diagrams

Points in the asymptotic cone of (Prob⟨G⟩, k) are called tropical G-diagrams and the
space of all tropical G-diagrams, denoted Prob[G], is endowed with the asymptotic entropy
distance. We explain this now in more detail, and a more extensive description can be found
in [14].

To describe points in Prob[G] we consider quasi-linear sequences X̄ ∶= (X(n) ∶ n ∈ N)
of G-diagrams. That is, we fix a “slowly growing” increasing function ϕ ∶ R≥0 → R
satisfying

t ⋅ ∫
∞

t

ϕ(t)
t2 dt ≤ Dϕ ⋅ ϕ(t)

for some constant Dϕ > 0 and any t > 1. We call a sequence X̄ ∶= (X(n) ∶ n ∈ N) ϕ-quasi-
linear if it satisfies the bound for all m, n ∈ N

κ(X(n +m),X(n) ⊗X(m)) ≤ C ⋅ ϕ(n +m)
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We have shown in [14] that the space Prob[G] does not depend on the choice of function ϕ
as long as it is not zero. The space of all such sequences is endowed with the asymptotic
entropy distance defined by

κ(X̄ , Ȳ) ∶= lim
n→∞

1
n

k (X(n),Y(n))

A tropical diagram [X ] is defined to be an equivalence class of such sequences, where
two sequences X̄ and Ȳ are equivalent if κ(X̄ , Ȳ) = 0. The space Prob[G] carries the
asymptotic entropy distance and has the structure of a R≥0-semi-module—one can take
linear combinations with non-negative coefficients of tropical diagrams. The linear entropy
functional Ent∗ ∶ Prob[G] → RG is defined by

Ent∗[X ] ∶= lim
n→∞

1
n
Ent∗X(n)

A detailed discussion about tropical diagrams can be found in [14]. In the cited article,
we show that the space Prob[G] is metrically complete and isometrically isomorphic to a
closed convex cone in some Banach space.

For G = Ck a chain category, containing k objects {1, . . . , k} and unique morphism i → j
for every pair i ≥ j, we have shown in [14] that the space Prob[Ck] is isomorphic to the
following cone in (Rk, ∥ ⋅ ∥1)

Prob[Ck] ≅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

x1
⋮

xk

⎞
⎟
⎠
∶ 0 ≤ x1 ≤ ⋅ ⋅ ⋅ ≤ xk

⎫⎪⎪⎪⎬⎪⎪⎪⎭

The isomorphism is given by the entropy function. Thus, we can identify tropical prob-
ability spaces (elements in Prob[C1]) with non-negative numbers via entropy. We will
simply write [X] to mean the entropy of the space [X]. Along these lines, we also adopt the
notations [X∣Y], [X ∶ Y] and [X ∶ Y∣Z] for the conditional entropy and mutual information
for the tropical spaces included in some diagrams.

2.3. Asymptotic Equipartition Property for Diagrams
2.3.1. Homogeneous Diagrams

A G-diagram X is called homogeneous if the automorphism group Aut(X) acts tran-
sitively on every space in X . Homogeneous probability spaces are uniform. For more
complex indexing categories, this simple description is not sufficient.

2.3.2. Tropical Homogeneous Diagrams

The subcategory of all homogeneous G-diagrams will be denoted Prob⟨G⟩h and we
write Prob⟨G⟩h,m for the category of minimal homogeneous G-diagrams. These spaces are
invariant under the tensor product. Thus, they are metric Abelian monoids.

Passing to the tropical limit, we obtain spaces of tropical (minimal) homogeneous
diagrams that we denote Prob[G]h and Prob[G]h,m.

2.3.3. Asymptotic Equipartition Property

In [1] the following theorem is proven

Theorem 1. Suppose X ∈ Prob⟨G⟩ is a G-diagram of probability spaces for some fixed indexing
category G. Then, there exists a sequence H̄ = (Hn)∞n=0 of homogeneous G-diagrams such that

1
n

k(X n,Hn) ≤ C(∣X0∣, [[G]]) ⋅

¿
ÁÁÀ ln3 n

n
(2)

where C(∣X0∣, [[G]]) is a constant only depending on ∣X0∣ and [[G]].
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The approximating sequence of homogeneous diagrams is evidently quasi-linear with
the defect bounded by the admissible function

ϕ(t) ∶= 2C(∣X0∣, [[G]]) ⋅ t3/4 ≥ 2C(∣X0∣, [[G]]) ⋅ t1/2 ⋅ ln3/2 t

Thus, Theorem 1 above states that L(Prob⟨G⟩) ⊂ Prob[G]h. On the other hand, we have
shown in [14] that the space of linear sequences L(Prob⟨G⟩) is dense in Prob[G]. Combin-
ing the two statements, we obtain the following theorem.

Theorem 2. For any indexing category G, the space Prob[G]h is dense in Prob[G]. Similarly,
the space Prob[G]h,m is dense in Prob[G]m.

It is possible that the spaces Prob[G]h and Prob[G] coincide. At this time, we have
neither a proof nor a counterexample to this conjecture.

2.4. Conditioning in Tropical Diagrams

For a tropical G-diagram [X ] containing a space [U] we defined a conditioned diagram
[X ∣U]. It can be understood as the tropical limit of the sequence (X(n)∣un), where (X(n))
is the homogeneous approximation of [X ], U(n) is the space in X(n) that corresponds to
[U] under combinatorial isomorphism and un is any atom in U(n).

We have shown in [9] that operation of conditioning is Lipschitz-continuous with
respect to the asymptotic entropy distance.

3. Arrow Contraction
3.1. Arrow Collapse, Arrow Contraction, and Arrow Expansion
3.1.1. Prime Morphisms

A morphism γij ∶ i → j in an indexing category G = {i; γij} will be called prime if it
cannot be factored into a composition of two non-identity morphisms in G. A morphism in
a G-diagram indexed by a prime morphism in G will also be called prime.

3.1.2. Arrow Collapse

Suppose Z is a G-diagram such that for some pair i, j ∈ G, the prime morphism
ζij ∶ Zi → Zj is an isomorphism. Arrow collapse applied to Z results in a new diagram Z ′
obtained from Z by identifying Zi and Zj via the isomorphism ζij. The combinatorial type
of Z ′ is different from that of Z . The spaces Zi and Zj are replaced by a single space, and
the new space will inherit all the morphisms in Z with targets and domains Zi and Zj.

3.1.3. Arrow Contraction and Expansion

Arrow contraction and expansion are two operations on tropical G-diagrams. Roughly
speaking, arrow contraction applied to a tropical G-diagram [Z] results in another tropical
G-diagram [Z ′] such that one of the arrows becomes an isomorphism, while some parts
of the diagram are not modified. Arrow expansion is an inverse operation to arrow
contraction.

3.1.4. Admissible and Reduced Sub-Fans

An admissible fan in a G-diagram Z is a minimal fan X ← Z → U, such that Z is the
initial space of Z and any space in Z belongs either to the co-ideal ⌈X⌉ or ideal ⌊U⌋. For
example, in the left-most diagram of Figure 1, the fan X ← Z → U is admissible, while
X1 ← Z1 → U or X ← Z → Z2 are not.

An admissible fan X ← Z → U in a diagram will be called reduced if the morphism
Z → X is an isomorphism.

3.2. The Contraction Theorem

Our aim is to prove the following theorem.
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Theorem 3. Let ([X] ← [Z] → [U]) be an admissible fan in some tropical G-diagram [Z]. Then
for every ε > 0 there exists a G-diagram [Z ′] containing an admissible fan ([X′] ← [Z′] → [U′]),
corresponding to the original admissible fan through the combinatorial isomorphism, such that, with
the notations X = ⌈X⌉ and X ′ = ⌈X′⌉, the diagram [Z ′] satisfies

(i) κ([X ′∣U′], [X ∣U]) ≤ ε
(ii) κ(X ′,X) ≤ ε
(iii) [Z′∣X′] ≤ ε

It is not clear that constructing diagrams Z ′ as in the theorem above for a sequence
of values of parameter ε decreasing to 0, we can obtain a convergent sequence in Prob[G]
with the limiting diagram satisfying conclusions of the theorem with ε = 0. If Prob[G] were
a locally compact space, which is an open question at the moment. The convergence would
be guaranteed, and then ε in the theorem above could be replaced by 0.

The proof of Theorem 3 is based on the following proposition, which will be proven in
Section 5.

Proposition 2. Let (X0 ← Z0 → U) be an admissible fan in some homogeneous G-diagram of
probability spaces Z . Then there exists a G-diagram Z ′ containing the admissible fan (X′

0 ← Z′
0 →

U′) such that, with the notations X ∶= ⌈X0⌉ and X ′ ∶= ⌈X′
0⌉, it holds that

(1) X ∣u = X ′∣u′ for any u ∈ U and u′ ∈ U′.
(2) κ(X ,X ′) ≤ k(X ,X ′) ≤ 20 ⋅ [[G]]
(3) [Z′

0∣X′
0] ≤ 4 ln ln ∣X0∣

Proof of Theorem 3. First, we assume that [Z] is a homogeneous tropical diagram. It
means that it can be represented by a quasi-linear sequence (Z(n))n∈N0 of homogeneous
diagrams, with defect of the sequence bounded by the function ϕ(t) ∶= C ⋅ t3/4 for some
C ≥ 0. This means that for any m, n ∈ N

κ(Z(m) ⊗Z(n),Z(m + n)) ≤ ϕ(m + n)
κ(Zm(n),Z(m ⋅ n)) ≤ Dϕ ⋅m ⋅ ϕ(n)

where Dϕ is some constant depending on ϕ, see [14].
Fix a number n ∈ N and apply Proposition 2 to the homogeneous diagram Z(n), con-

taining the admissible fan X0(n) ← Z0(n) → U(n) and sub-diagram X(n) = ⌈X0(n)⌉. As a
result, we obtain a diagram Z ′′ containing the fan X′′

0 ← Z′′
0 → U′′ and the sub-diagram

X ′′ = ⌈X′′
0 ⌉, such that

X ′′∣u′′ = X(n)∣u for any u′′ ∈ U′′ and u ∈ U(n)
κ(X ′′,X(n)) ≤ 20[[G]]
[Z′′

0 ∣X′′
0 ] ≤ 4 ln ln ∣X0(n)∣ (3)

Recall that for a diagramA of probability spaces, we denote by
Ð→A the tropical diagram

represented by the linear sequence (Ak
∶ k ∈ N0). As an element of a closed convex cone

Prob[G], it can be scaled by an arbitrary non-negative real number; see, for instance,

Section 2.3.5 in [14]. For example, 1
n
Ð→A is represented by the sequence (A⌊ k

n ⌋ ∶ k ∈ N0).
Define the two tropical diagrams

[Z ′] ∶= 1
n
Ð→
Z ′′

[Z̃] ∶= 1
n
ÐÐÐ→
Z(n)
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Since X ′′∣u′′ does not depend on u′′ and X(n)∣u does not depend on u we have

[X ′∣U′] = (1/n) ⋅
ÐÐÐÐÐ→
(X ′′∣u′′) and [X̃ ∣Ũ] = (1/n) ⋅

ÐÐÐÐÐ→
(X(n)∣u). From (3), we obtain

[X ′∣U′] = [X̃ ∣Ũ]

κ([X ′], [X̃ ]) ≤ 20[[G]]
n

[Z′
0∣X′

0] ≤
4 ln ln ∣X0(n)∣

n
(4)

The distance between [Z̃] and [Z] can be bounded as follows

κ([Z̃], [Z]) = 1
n

κ(
ÐÐÐ→
Z(n), n ⋅ [Z]) = 1

n
lim

m→∞

1
m

κ(Zm(n),Z(m ⋅ n))

≤ 1
n

Dϕ ⋅ ϕ(n) (5)

This also implies

κ([X̃ ], [X ]) ≤ 1
n

Dϕ ⋅ ϕ(n) (6)

Since conditioning is a Lipschitz-continuous operation with Lipschitz constant 2, we also
have

κ([X̃ ∣Ũ], [X ∣U]) ≤ 2
n

Dϕ ⋅ ϕ(n) (7)

Combining the estimates in (4)–(7) we obtain

κ([X ′∣U′], [X ∣U]) ≤ 2Dϕ ⋅
ϕ(n)

n

κ([X ′], [X ]) ≤ 20[[G]]
n

+Dϕ
ϕ(n)

n

[Z′
0∣X′

0] ≤
4 ln ln ∣X0(n)∣

n
+ 2Dϕ

ϕ(n)
n

Please note that ∣X0(n)∣ grows at most exponentially (it is bounded by en([X0]+C) for
some C) and ϕ is a strictly sub-linear function. Thus, by choosing sufficiently large n
depending on the given ε > 0, we obtain [Z ′], satisfying conclusions of the theorem for
homogeneous [Z].

To prove the theorem in full generality, observe that all the quantities on the right-hand
side of the inequalities are Lipschitz-continuous. Since Prob[G]h is dense in Prob[G] the
theorem extends to any [Z] by first approximating it with any precision by a homogeneous
configuration and applying the argument above.

3.3. The Expansion Theorem

The following theorem is complementary to Theorem 3. The expansion applied to a
diagram containing a reduced admissible fan produces a diagram with an admissible fan,
such that the contraction of it is the original diagram. Thus, arrow expansion is a right
inverse of the arrow contraction operation.

In general, contraction erases some information stored in the diagram, so there are
many right inverses. We prove the theorem below by providing a simple construction of
one such right inverse.

Theorem 4. Let ([X] ← [Z′] → [U′]) be a reduced admissible fan in some tropical G-diagram
[Z ′] and λ > 0. Let [X ] ∶= ⌈X⌉. Then there exists a G-diagram [Z] containing the copy of [X ], such
that the corresponding admissible fan ([X] ← [Z] → [U]) has [Z∣X] = λ and [X ∣U] = [X ∣U′].

Proof. Let [W] be a tropical probability space with entropy equal to λ. For any reduction
of tropical spaces [A] → [B], there are natural reductions
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([A] + [W]) → ([B] + [W])
([A] + [W]) → [W]

We construct the diagram [Z] by replacing every space [V] in the ideal ⌊U′⌋ with
[U] + [W]. Every morphism [V1] → [V2] within ⌊U′⌋ is replaced by

([V1] + [W]) → ([V2] + [W])

And any morphism from [V] in ⌊U′⌋ to a space [Y] in ⌈X⌉ is replaced by a composition

([V] + [W]) → [V] → [Y]

Clearly, the resulting diagram satisfies the conclusion of the theorem.

The rest of the article is devoted to the development of the necessary tools and the
proof of Proposition 2.

4. Local Estimate

In this section, we derive a bound, very similar to Fano’s inequality, on the intrinsic
entropic distance between two diagrams of probability spaces with the same underlying
diagram of sets. The bound will be in terms of the total variation distance between two
distributions corresponding to the diagrams of probability spaces. It will be used in the
next section to prove Proposition 2.

4.1. Distributions
4.1.1. Distributions on Sets

For a finite set S we denote by ∆S the collection of all probability distributions on S
and by ∥π1 −π2∥1 we denote the total variation distance between π1, π2 ∈ ∆S.

4.1.2. Distributions on Diagrams of Sets

Let Set denote the category of finite sets and surjective maps. For an indexing category
G, we denote by Set⟨G⟩ the category of G-diagrams in Set. That is, objects in Set⟨G⟩ are
commutative diagrams of sets indexed by the category G, the spaces in such a diagram are
finite sets, and arrows represent surjective maps, subject to commutativity relations.

For a diagram of sets S = {Si; σij} we define the space of distributions on the diagram S by

∆S ∶= {(πi) ∈ ∏
i

∆Si ∶ (σij)∗πi = πj}

where f∗ ∶ ∆S → ∆S′ is the affine map induced by a surjective map f ∶ S → S′. If S0 is the
initial space of S , then there is an isomorphism

∆S0
≅↔ ∆S

∆S0 ∋ π0 ↦ {(σ0i)∗π0} ∈ ∆S
∆S0 ∋ π0 ↤ {πi} ∈ ∆ (8)

Using the isomorphism (8) we define total variation distance between two distributions
π, π′ ∈ ∆S as

∥π −π′∥1 ∶= ∥π0 −π′
0∥1

Given a G-diagram of sets S = {Si; σij} and an element π ∈ ∆S we can construct a
G-diagram of probability spaces (S, π) ∶= {(Si, πi); σij}.

Below, we give the estimate of the entropy distance between two G-diagrams of prob-
ability spaces (S, π) and (S, π′) in terms of the total variation distance ∥π −π′∥ between
distributions.
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4.2. The Estimate

The upper bound on the entropy distance, which we derive below, has two summands.
One is linear in the total variation distance with the slope proportional to the log-cardinality
of S0. The second one is super-linear in the total variation distance, but it does not depend
on S. So, we have the following interesting observation: of course, the super-linear
summand always dominates the linear one locally. However, as the cardinality of S
becomes large, it is the linear summand that starts playing the main role. This will be the
case when we apply the bound in the next section.

For α ∈ [0, 1] consider a binary probability space with the weight of one of the atoms
equal to α

Bα ∶= ({◻,∎}; p(◻) = 1− α, p(∎) = α)

Proposition 3. For an indexing category G, consider a G-diagram of sets S = {Si, σij} ∈ Set⟨G⟩.
Let π, π′ ∈ ∆S be two probability distributions on S. Denote X ∶= (S, π), Y ∶= (S, π′) and
α ∶= 1

2∥π −π′∥1. Then
k(X ,Y) ≤ 2[[G]](α ⋅ ln ∣S0∣ +Ent(Bα))

Proof. To prove the local estimate, we decompose both π and π′ into a convex combination
of a common part π̂ and rests π+ and π′+. The coupling between the common parts gives
no contribution to the distance and the worst possible estimate on the other parts is still
enough to obtain the bound in the lemma, using Proposition 1.

Let S0 be the initial set in the diagram S. We will need the following obvious rough
estimate of the entropy distance that holds for any π, π′ ∈ ∆S :

k(X ,Y) ≤ 2[[G]] ⋅ ln ∣S0∣ (9)

It can be obtained by taking a tensor product for the coupling between X and Y .
Our goal now is to write π and π′ as the convex combination of three other distribu-

tions π̂, π+ and π′+ as in

π = (1− α) ⋅ π̂ + α ⋅π+

π′ = (1− α) ⋅ π̂ + α ⋅π′+

with the smallest possible α ∈ [0, 1].
We could do it the following way. Let π0 and π′

0 be the distributions on S0 that
correspond to π and π′ under isomorphisms (8). Let α ∶= 1

2∥π −π′∥1. If α = 1 then the
proposition follows from the rough estimate (9), so from now on, we assume that α < 1.
Define three probability distributions π̂0, π+

0 and π′+
0 on S0 by setting for every x ∈ S0

π̂0(x) ∶= 1
1− α

min{π0(x), π′
0(x)}

π+
0 ∶= 1

α
(π0 − (1− α)π̂0)

π′+
0 ∶= 1

α
(π′

0 − (1− α)π̂0)

Denote by π̂, π+, π′+ ∈ ∆S the distributions corresponding to π̂0, π+
0 , π′+

0 ∈ ∆S0 under
isomorphism (8). Thus, we have

π = (1− α)π̂ + α ⋅π+

π′ = (1− α)π̂ + α ⋅π′+
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Now, we construct two fans of G-diagrams

X̃
X Bα

Ỹ
Bα Y

(10)

by setting

X̃i ∶= (Si ×Bα; π̃i(s,◻) = (1− α)π̂i(s), π̃i(s,∎) = α ⋅π+
i (s))

Ỹi ∶= (Si ×Bα; π̃′
i(s,◻) = (1− α)π̂i(s), π̃′

i(s,∎) = α ⋅π′+
i (s))

and

X̃ ∶= {X̃i; σij × id}
Ỹ ∶= {Ỹi; σij × id}

The reduction in the fans in (10) is given by coordinate projections. Note that the following
isomorphisms hold

X ∣◻ ≅ (S, π̂)
X ∣∎ ≅ (S, π+)
Y∣◻ ≅ (S, π̂) ≅ X ∣◻
Y∣∎ ≅ (S, π′+)

Now we apply Proposition 1 along with the rough estimate in (9) to obtain the desired
inequality

k(X ,Y) ≤ (1− α)k(X ∣◻,Y∣◻) + α ⋅k(X ∣∎,Y∣∎)
+∑

i
[Ent(Bα∣Xi) +Ent(Bα∣Yi)]

≤ 2[[G]](α ⋅ ln ∣S0∣ +Ent(Bα))

5. Proof of Proposition 2

In this section, we prove Proposition 2, which is shown below verbatim. The proof
consists of the construction in Section 5.1 and estimates in Propositions 5 and 6.

5.1. The Construction

In this section, we fix an indexing category G, a minimal G-diagram of probability
spaces Z with an admissible sub-fan X0 ← Z0 → U. We denote X ∶= ⌈X0⌉ and by H we
denote the combinatorial type of X = {Xi; χij}.

Instead of diagram Z , we consider an extended diagram, which is a two-fan of H-
diagrams

Y
X UHπ1

(11)

where Y = {Yi; υij} consists of those spaces in Z , which are initial spaces of two fans with
feet in U and in some space in X . That is for every i ∈ H the space Yi is defined to be
the initial space in the minimal fan Xi ← Yi → U in Z . It may happen that for some
pair of indices i1, i2 ∈ H the initial spaces of the fans with one feet U and the other Xi1
and Xi2 coincide in Z . In Y , however, they will be treated as separate spaces so that the
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combinatorial type of Y is H. Starting with the diagram in (11) one can recover Z by
collapsing all the isomorphism arrows. The initial space of Y will be denoted Y0.

We would like to construct a new fan X ′
π′1← Y ′ → VH, such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X ∣u = X ′∣v for any u ∈ U and v ∈ V
k(X ′,X) ≤ 20[[G]]
[Y′

0∣X′
0] ≤ 4 ln ln ∣X0∣

(12)

Once this goal is achieved, we collapse all the isomorphisms to obtain G-diagram
satisfying conditions in the conclusion of Proposition 2.

We start with a general description of the idea behind the construction, followed
by a detailed argument. To introduce the new space V we take its points to be N atoms
in u1, . . . , uN ∈ U. Ideally, we would like to choose the atoms in such a way that X0∣un
are disjoint and cover the whole of X0. It is not always possible to achieve this exactly.
However, when ∣X0∣ is large, N is taken slightly larger than e[X0∶U], and u1, . . . , uN are
chosen at random, then with high probability the spaces X0∣un will overlap only little and
will cover most of X0. The details of the construction follow.

We fix N ∈ N and construct several new diagrams. For each of the new diagrams, we
provide a verbal and formal description.

• The space UN . Points in it are independent samples of length N of points in U.
• The space VN = ({1, . . . , N},unif). A point n ∈ VN should be interpreted as a choice of

index in a sample ū ∈ UN .
• The H-diagram A, where

A = {Ai; αij}
Ai = ({(x, n, ū) ∶ x ∈ Xi∣un},unif )
αij = (χij, Id, Id)

A point (x, n, ū) in Ai corresponds to the choice of a sample ū ∈ UN , an independent
choice of a member of the sample un and a point x ∈ Xi∣un. Recall that the original
diagram Z was assumed to be homogeneous and, in particular, the distribution on
Xi∣un is uniform. Due to the assumption on homogeneity of Z , the space Xi∣u does not
depend on u ∈ U. Since VN is also equipped with the uniform distribution, it follows
that the distribution on Ai will also be uniform.

• The H-diagram B, where

B = {Bi; βij}

Bi = ({(x, ū) ∶ x ∈
N
⋃
n=1

Xi∣un}, pBi)

βij = (χij, Id)

A point (x, ū) ∈ Bi is the choice of a sample ū ∈ UN and a point x in one of the fibers
Xi∣un, n = 1, . . . , N. The distribution pBi on Bi is chosen so that the natural projection
Ai → Bi is the reduction of probability spaces. Given a sample ū, if the fibers Xi∣un
are not disjoint, then the distribution on Bi∣ū need not to be uniform. Below, we will
give an explicit description of pB and study the dependence of pB( ⋅ ∣ū) on the sample
ū ∈ UN .

These diagrams can be organized into a minimal diamond diagram of H-diagrams,
where reductions are obvious projections.
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A
B VN ⊗UN

UN

(13)

To describe the probability distribution on B, first we define several relevant quantities:

ρ ∶=
∣X0∣u∣
∣X0∣

= e−[X0∶U]

N(x, ū) ∶= ∣{n ∈ VN ∶ x ∈ X0∣un}∣

ν(x, ū) ∶= N(x, ū)
N

= pVN{n ∈ VN ∶ x ∈ X0∣un} (14)

Recall that the distribution pB is completely determined by the distribution pB0 on the
initial space of B via isomorphism (8). From homogeneity of Z it follows that distributions
on both A0 and A∣ū are uniform. Therefore

pB0(x∣ū) ∶= ν(x, ū)
ρ ⋅ ∣X0∣

(15)

The desired fan (X ′ ← Y ′ → VH) mentioned in the beginning of the section is obtained
from the top fan in the diagram in (13) by conditioning on ū ∈ UN . We will show later that
for an appropriate choice of N and for most choices of ū, the fan we obtain in this way has
the required properties.

First, we would like to make the following observations. Fix an arbitrary ū ∈ UN .
Then:

(1) The underlying set of the probability space B0∣ū = X0∣ū is X0.
(2) The diagrams

Y ′ū ∶= A∣ū
X ′ū ∶= B∣ū

are included in a two-fan of H-diagrams

Y ′ū
X ′ū VN

which is obtained by conditioning the top fan in the diagram in (13).
The very important observation is that diagrams X ′ū∣n and X ∣u are isomorphic for any
choice of n ∈ VN and u ∈ U. The isomorphism is the composition of the following
sequence of isomorphisms

X ′ū∣n → B∣(ū, n) → A∣(ū, n) → X ∣un → X∣u

where the first isomorphism follows from the definition of X ′ū, the second—from
minimality of the fan B ← A → VN , the third—from the definition of A and the
fourth—from the homogeneity of Z .

5.2. The Estimates

We now claim and prove that one could choose a number N and ū in UN such that

(1) k(X ′ū,X) ≤ 20[[H]].
(2) [Y′

ū,0∣X′
ū,0] ≤ 4 ln ln ∣X0∣, where Y′

ū,0 and X′
ū,0 are initial spaces in X ′ū and Y ′ū, respec-

tively.
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5.2.1. Total Variation and Entropic Distance Estimates

If we fix some x0 ∈ X0, then ν = ν(x0, ⋅ ) is a scaled binomially distributed random
variable with parameters N and ρ, which means that N ⋅ ν ∼ Bin(N, ρ).

First, we state the following bounds on the tails of a binomial distribution.

Lemma 1. Let ν be a scaled binomial random variable with parameters N and ρ, then

(i) for any t ∈ [0, 1] holds

P{∣ν − ρ∣ > ρ ⋅ t} ≤ 2 ⋅ e− 1
3 ⋅N⋅ρ⋅t

2

(ii) for any t ∈ [0, 2] holds

P{ν

ρ
ln

ν

ρ
> t} ≤ e−

1
12 ⋅N⋅ρ⋅t

2

The proof of Lemma 1 can be found at the end of this section.
Below we use the notation P ∶= pUN for the probability distribution on UN . For a

pair of complete diagrams C, C′ with the same underlying diagram of sets and with initial
spaces C0, C′

0, we will write α(C,C′) for the halved total variation distance between their
distributions

α(C,C′) ∶= 1
2
∥pC0 − pC′0

∥
1

Proposition 4. In the settings above, for t ∈ [0, 1], the following inequality holds

P{ū ∈ UN
∶ 2α(X ′ū,X) > t} ≤ 2∣X0∣ ⋅ e−

1
3 N⋅ρ⋅t2

Proof. Recall that by definition X ′ū = B∣ū. We use Equation (15) to expand the left-hand
side of the inequality as follows

P{ū ∈ UN
∶ 2α(B∣ū,X) > t} = P

⎧⎪⎪⎨⎪⎪⎩
ū ∈ UN

∶ ∑
x∈X0

∣ν(x, ū)
ρ ⋅ ∣X0∣

− 1
∣X0∣

∣ > t
⎫⎪⎪⎬⎪⎪⎭

= P
⎧⎪⎪⎨⎪⎪⎩

ū ∈ UN
∶ ∑

x∈X0

∣ν(x, ū) − ρ∣ > ρ ⋅ ∣X0∣ ⋅ t
⎫⎪⎪⎬⎪⎪⎭

≤ P{ū ∈ UN
∶ there exists x0 such that ∣ν(x0, ū) − ρ∣ > ρ ⋅ t}

≤ ∑
x∈X0

P{ū ∈ UN
∶ ∣ν(x, ū) − ρ∣ > ρ ⋅ t}

Since by homogeneity of the original diagram, all the summands are the same, we can fix
some x0 ∈ X0 and estimate further:

P{ū ∈ UN
∶ 2α(B∣ū,X) > t} ≤ ∣X0∣ ⋅P{ū ∈ UN

∶ ∣ν(x0, ū) − ρ∣ > ρ ⋅ t}

Applying Lemma 1(i), we obtain the required inequality.

In the propositions below we assume that ∣X0∣ is sufficiently large (larger than e20).

Proposition 5. In the settings above and for any 10
ln ∣X0∣

≤ t ≤ 1 holds:

P{ū ∈ UN ∶ k(X ′ū,X) > t(2 ⋅ [[G]] ⋅ ln ∣X0∣)} ≤ 2∣X0∣ ⋅ e−
1
3 N⋅ρ⋅t2
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Proof. We will use local estimate, Proposition 3, to bound the entropy distance and then
apply Proposition 4. To simplify notations, we will write simply α for α(X ′ū,X) = α(B∣ū,X).

P{ū ∈ UN ∶ k(B∣ū,X) > (2 ⋅ [[G]] ⋅ ln ∣X0∣)t}
≤ P{ū ∈ UN ∶ 2 ⋅ [[G]](α ⋅ ln ∣X0∣ +Ent(Λα)) > (2 ⋅ [[G]] ⋅ ln ∣X0∣)t}
≤ P{ū ∈ UN ∶ α +Ent(Λα)/ ln ∣X0∣ > t}

Please note that in the chosen regime, t ≥ 10/ ln ∣X0∣, the first summand in the right-hand
side of the inequality is larger than the second, i.e., α ≥ Ent(Λα)/ ln ∣X0∣ and therefore we
can write

P{ū ∈ UN ∶ k(B∣ū,X) > (2 ⋅ [[G]] ⋅ ln ∣X0∣)t}
≤ P{ū ∈ UN ∶ 2α > t}

≤ 2∣X0∣ ⋅ e−
1
3 N⋅ρ⋅t2

5.2.2. The “Height” Estimate

Recall that for given N ∈ N and ū ∈ UN we have constructed a two-fan of H-diagrams

X ′ū ← Y ′ū → VH
N

We will now estimate the length of the arrow Y′
ū,0 → X′

ū,0.

Proposition 6. In the settings above and for t ∈ [0, 2]

P{ū ∈ UN
∶ [Y′

ū,0∣X′
ū,0] > ln(N ⋅ ρ) + t} ≤ ∣X0∣ ⋅ e−

1
12 N⋅ρ⋅t2

Proof. First, we observe that the fiber of the reduction Y′
ū,0 → X′

ū,0 over a point x ∈ X′
ū,0 is

a homogeneous probability space of cardinality equal to N(x, ū), therefore its entropy is
ln N(x, ū).

P{ū ∈ UN
∶ [Y′

ū,0∣X′
ū,0] > ln(N ⋅ ρ) + t}

P{ū ∈ UN
∶ ∫

X′ū,0

[Y′
ū,0∣x] dpX′ū,0

(x) > ln(N ⋅ ρ) + t}

= P
⎧⎪⎪⎨⎪⎪⎩

ū ∈ UN
∶ ∑

x∈X0

ν(x, ū)
ρ ⋅ ∣X0∣

ln (N ⋅ ν(x, ū)) > ln(N ⋅ ρ) + t
⎫⎪⎪⎬⎪⎪⎭

≤ P
⎧⎪⎪⎨⎪⎪⎩

ū ∈ UN
∶ ∑

x∈X0

ν(x, ū)
ρ ⋅ ∣X0∣

ln (ν(x, ū)
ρ

) > t
⎫⎪⎪⎬⎪⎪⎭

≤ ∣X0∣ ⋅P{ū ∈ UN
∶

ν(x0, ū)
ρ

ln (ν(x0, ū)
ρ

) > t}

≤ ∣X0∣ ⋅ e−
1

12 N⋅ρ⋅t2

The last inequality above follows from Lemma 1 (ii).

5.3. Proof of Proposition 2

Let X ′ū ← Y ′ū → VN be the fan constructed in Section 5.1. The construction is parame-
terized by number N and atom ū ∈ UN . Below, we will choose a particular value for N and
apply estimates in Propositions 5 and 6 with particular choice of parameter t to show that
there is ū ∈ UN , so that the fan satisfies the conclusions of Proposition 2.
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Let

N ∶= ln3 ∣X0∣ ⋅ ρ−1 = ln3 ∣X0∣ ⋅ e[X0∶U]

t ∶= 10
ln ∣X0∣

With these choices of N and t, Proposition 5 implies

P{ū ∈ UN
∶ k(X ′ū,X) > 20[[G]]} ≤ 1

4

while Proposition 6 gives

P{ū ∈ UN
∶ [Y′

ū,0∣X′
ū,0] > 4 ln ln ∣X0∣} ≤

1
4

Therefore, there is a choice of ū such that the fan

(X ′ ← Y ′ → V) ∶= (X ′ū,0 ← Y ′ū,0 → VN)

satisfies conditions in (12). As we have explained at the beginning of Section 5.1, by collaps-
ing isomorphism arrows, we obtain G-diagram Z ′ satisfying conclusions of Proposition 2.

5.4. Proof of Lemma 1

The Chernoff bound for the tail of a binomially distributed random variable X ∼
Bin(N, ρ) asserts that for any 0 ≤ δ ≤ 1 holds

P{X < (1− δ)N ⋅ ρ} ≤ e−
1
2 δ2 N⋅ρ

P{X > (1+ δ)N ⋅ ρ} ≤ e−
1
3 δ2 N⋅ρ

Applying the bound for the upper and lower tail for the binomially distributed random
variable N ⋅ ν, we obtain the inequality in (i).

The second assertion follows from the following estimate

P{ν

ρ
ln

ν

ρ
> t} ≤ P{ν

ρ
(ν

ρ
− 1) > t}

= P{ν > ρ ⋅ (
√

1+ 4t − 1
2

+ 1)}

For 0 ≤ t ≤ 2 we have
√

1+ 4t − 1 ≥ t, therefore

P{ν

ρ
ln

ν

ρ
> t} ≤ P{ν > ρ ⋅ ( t

2
+ 1)}

By the Chernoff bound, we have

P{ν

ρ
ln

ν

ρ
> t} ≤ e−

1
12 N⋅ρ⋅t2
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