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Abstract: Entropy indices are commonly used to evaluate the heterogeneity of spatially arranged data
by exploiting various approaches capable of including spatial information. Unfortunately, in practical
studies, difficulties can arise regarding both the availability of computational tools for fast and easy
implementation of these indices and guidelines supporting the correct interpretation of the results.
The present work addresses such issues for the most known spatial entropy measures: the approach
based on area partitions, the one based on distances between observations, and the decomposable
spatial entropy. The newly released version of the R package SpatEntropy is introduced here and
we show how it properly supports researchers in real case studies. This work also answers practical
questions about the spatial distribution of nesting sites of an endangered species of gorillas in
Cameroon. Such data present computational challenges, as they are marked points in continuous
space over an irregularly shaped region, and covariates are available. Several aspects of the spatial
heterogeneity of the nesting sites are addressed, using both the original point data and a discretised
pixel dataset. We show how the diversity of the nesting habits is related to the environmental
covariates, while seemingly not affected by the interpoint distances. The issue of scale dependence
of the spatial measures is also discussed over these data. A motivating example shows the power
of the SpatEntropy package, which allows for the derivation of results in seconds or minutes with
minimum effort by users with basic programming abilities, confirming that spatial entropy indices
are proper measures of diversity.

Keywords: Batty’s entropy; biodiversity; distance-based entropy; gorilla nesting sites; Leibovici’s
entropy; multinomial data; O’Neill’s entropy; point data

1. Introduction

The interest in diversity measures spans a variety of fields of applications, such as
ecological and biodiversity studies [1]. Over the years, these studies have focused on
heterogeneity indices based on Shannon’s entropy [2]. The original version of Shannon’s
entropy only considers the probabilities (or their estimates) of the categories of the variable
under study. In many real cases, e.g., environmental applications, this can be a major
limitation since often, external factors (such as covariates and spatial effects) can affect the
occurrence of a specific category. The knowledge of structures, such as spatial dependence,
may help in understanding the distribution of categories across observations. The idea is
that a dataset with randomly scattered observations should have a higher entropy than one
with observations arranged according to a spatial structure since the spatial information
should decrease the surprise. Unfortunately, Shannon’s entropy fails to capture such
differences. These aspects are well known and widely discussed in the literature (see,
e.g., [3]). Following this idea, several proposals have been made for the inclusion of
information about the spatial structure of data in entropy measures for both discrete and
continuous space. Space may be considered, for instance, by building a meaningful partition
of the observation window into sub-areas and studying the evenness of the distribution of
the phenomenon of interest across areas [4]. This can be done with or without considering
a neighbourhood structure among areas, which introduces a system of distances and
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rankings [5]. Another proposal is based on the simultaneous consideration of couples or
sets of observations based on a chosen distance, commonly called co-occurrences, and on
studying the heterogeneity among such sets [6–8]. Each approach has specific properties,
with both advantages and drawbacks when applied in studies. In practical work, a main
obstacle to the usage of spatial entropy measures is the lack of a proper computational
tool that could be exploited by applied scientists, such as biologists and ecologists, to
feasibly obtain results and support the interpretation of the phenomenon under study.
There is a need to properly use and interpret the different measures as diversity indices for
spatial data. One further challenging aspect when dealing with spatial measures is scale
dependence. This has been widely discussed by several authors (see, e.g., [9,10]), is closely
related to the well-known modifiable areal unit problem (MAUP) [11], and especially affects
studies on areal and grid data, such as in urban spatial analysis, where different choices
of the spatial pattern can be adopted and the results are often compared among various
cities. As a consequence, spatial entropy results may vary according to scale measurements
and spatial patterns. Several authors have proposed incorporating the fractal dimension
approach into spatial entropy measurements to properly control the complexity of a given
pattern and ultimately achieve scale-free indices [9,12–14].

The present paper contributes to the field of entropy indices for spatial data in
three ways. The first contribution is the introduction of a newly released version of a
specific package of functions for the R software (version ≥ 4.0), named SpatEntropy. The
package significantly contributes to the use of diversity indices in applied studies since
no other R package covers the topic of spatial entropy measures. The package is free to
download and handles the heavy lifting, allowing easy accessibility and interpretation
of the results even for scientists with very basic programming abilities. In the present
paper, we provide the R code lines for reproducing all the main spatial entropy measures,
along with practical software details. Further details for the beginner user are given in
Appendix A, and the computational time for the main package functions is reported in
Table 6. A second contribution consists of providing a unified framework for the different
approaches to spatial entropy measures available in the literature. Indices are discussed
and compared, and interpretation guidelines are offered in order to help researchers make
the best choice for the specific case study. The third contribution of the paper is addressing a
computationally challenging dataset that contains the nesting sites of an endangered species
of gorillas in the Kagwene Gorilla Sanctuary in Cameroon [15]. This motivating dataset
consists of a point pattern in continuous space over an irregularly shaped observation
area, with several marks constituting additional information about the nesting sites, along
with both qualitative and quantitative environmental variables. The dataset stimulates a
lot of possible research directions with different levels of complexity: the researcher may
consider information on the nesting sites or the spatial covariates, space may need to be
discretised, and the observation area may need to be modified to a more regular shape
depending on the available computational tools. We address some of these challenges from
several perspectives, showing the different contributions of space and guiding the reader
in making choices and properly interpreting the corresponding results. Since in the present
application, the spatial pattern of the database under study is uniquely defined and fixed
by the institute that collected the data, when considering the original point data, the issue
of scale dependence is not relevant, whereas it should be accounted for when choosing the
grid resolution for space discretisation. Therefore, in order to highlight this crucial aspect,
an empirical sensitivity study assessing the effect of different choices for grid resolution on
spatial entropy is carried out and discussed in the present work.

The paper is organised as follows. The remainder of the present section gives the
necessary preliminary information: the data example is described, and the new release of
the SpatEntropy package is introduced. In Section 2, we offer some essential background
information and show how to implement and interpret Shannon’s entropy. Sections 3–5
present the three main approaches to spatial entropy measures: each section starts with a
theory, formally defining the indices, and contains a practical subsection with computations
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and another subsection with an interpretation of the results on the gorilla dataset. Where
applicable, an additional subsection discusses the consequences of the spatial scale. The
focus of this paper is on practical and computational aspects. For this reason, only the
essential theoretical information is given, and appropriate references for deepening the
theory are provided. An overall discussion is presented in Section 6, and the concluding
remarks are presented in Section 7. Appendix A contains a detailed guide for the reader on
the initial steps for practical work using R and the SpatEntropy package.

1.1. Data Presentation

The data considered in this work come from a study by the Wildlife Conservation
Society’s Takamanda-Mone Landscape Project (https://cameroon.wcs.org, accessed on
10 January 2023) on the nesting habits of gorillas in the Kagwene Gorilla Sanctuary, an
area in Cameroon. The dataset is a point pattern, i.e., a collection of points giving the
exact spatial locations of n = 647 nesting sites of gorilla groups observed in the area
of interest. The spatial location is given in the Universal Transverse Mercator (UTM)
coordinate system (Zone 32N) and expressed in metres. The observation area T, also
known as the observation window in standard point process terminology, is an irregular
polygon marking the boundary of the Kagwene Gorilla Sanctuary. Further details about
the data collection are reported in [15]. The dataset is very rich; our working example will
employ part of the available information.

Mark variables, i.e., additional information about the nesting sites, are attached to
the points. We only focus on the mark group, a binary variable with values ‘major’ and
‘minor’, identifying the size of the gorilla group that constructed the nesting site. Other
marks focusing on temporal aspects are provided with the data.

Spatial covariates are also available over the study region:

• Elevation of terrain, a continuous variable expressed in metres;
• Vegetation or cover type, a categorical variable with the values ‘Disturbed’ (highly

disturbed forest), ‘Grassland’ (savannah), ‘Primary’ (primary forest), and ‘Secondary’
(secondary forest);

• Waterdist, a continuous variable for the Euclidean distance from the nearest water
body expressed in metres.

The data and environmental covariates are shown in Figure 1. More details about the
data structure can be found in Section 1.3.

The data are publicly available as part of the spatstat package in the R software.

1.2. Introducing the New Release of SpatEntropy

The R package SpatEntropy was first released in 2018 with the aim of providing a
computational framework for the main existing spatial entropy measures. It provides an
original contribution to the R community, as there is currently no other package available
for such indices. Since it is meant for maximum diffusion among applied scientists, and
not only for statisticians or programming experts, it has been gradually improved to
become more user-friendly and fairly easy to approach. The initial version is presented
in [16]. Subsequently, there have been a number of updates, with relevant changes
and improvements.

The present work refers to the package version SpatEntropy 2.2-4, released in
November 2023 (https://CRAN.R-project.org/package=SpatEntropy). The package works
with both grid and point data. It supports both regular or irregularly shaped observation
areas of any size and based on any coordinate system. For discrete data arranged on grids
(raster/pixel data), cells are allowed to be rectangular. Point data may or may not be marked
by additional variables, which become the categories for the computation of the entropy
indices. Computational issues due to small areas in one of the entropy indices (see Section 3)
are now automatically dealt with. Functions for the various entropy measures are now
similar regarding input arguments and output structure. The output has been extended to
return the minimum and maximum values of each index for easy interpretation. Moreover,

https://cameroon.wcs.org
https://CRAN.R-project.org/package=SpatEntropy
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in the latest version, all functions automatically return useful plots for effective explanation
and dissemination of the results. The computational efficiency has been improved, and the
results are now available in seconds or minutes, even for large datasets. Table 6 in Section 6
reports the computational times for all entropy indices, measured on a 2019 Windows
Surface Pro 6 with an i7-8650U processor. The computational times are recorded using the R
package microbenchmark: each function is run 1000 times, and the means and interquartile
differences (IQDs) of the computational times are computed.
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Figure 1. Gorilla nesting sites and environmental covariates.

In the subsequent sections, we report in detail the main code for following the steps
in this paper. We give a general interpretation of the output of the main entropy indices,
but we do not give technical details about the produced objects in R, as we do not aim to
produce a purely software-oriented user manual. Each function has a detailed help page in
R, and further information can be found in [16].

1.3. Computations for the Motivating Example

In the following, we assume that the reader is able to start working with R and has
downloaded the SpatEntropy package (if not, please refer to Appendix A):

> library(SpatEntropy); library(spatstat).
The following command line

> gorillas
shows preliminary information about the data object: the number of observed points is
647, where each point represents a nesting site of a gorilla group; three mark variables
(group, season, date) have been collected, and the enclosing rectangle of the area is [580,440.4,
585,998.8] × [674,156.5, 678,732.2] m. The polygonal area of the sanctuary, enclosed within
the rectangle, has a size of |T| = 19.874 square kilometres.

For the entropy functions, we need to store a few different versions of the original
dataset. First, to save and plot a version of the dataset without the marks, you can write

> ungorillas = unmark(gorillas)
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> plot.ppp(ungorillas, pch = 16, main = "Gorilla nesting sites")
which produces a similar plot to that in the upper-left panel of Figure 1.

Second, a discretised version of the data over a pixel grid is needed. The chosen grid
resolution follows the grid resolution of the covariates (this choice is discussed later in this
paper). Covariates are available as 149 × 181 = 26,969 pixel images:

> elev = gorillas.extra$elevation
> water = gorillas.extra$waterdist
> veget = gorillas.extra$vegetation

They can be plotted with commands like
> plot(elev, col = terrain.colors(100))

which yields the plot in the upper-right panel of Figure 1. The soil elevation ranges from
around 1100 to around 2100 m, whereas the water distance ranges from 0 to 418 m. A
summary of the preliminary information is shown in Figure 2.
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Figure 2. Covariate information.

To discretise data, the following lines of command can be used
> discrgorillas = pixellate(ungorillas, W = gorillas$window,

dimyx = elev$dim)
> discrgorillas$v[discrgorillas$v >= 1] = 1

These create a binary variable X(discr) with the values ‘nest’and ‘no nest’ for each pixel.
The notation (discr) stands for discrete and is introduced to discern pixel grids from point
pattern data. Inside the polygonal border, there are n(discr)

1 = 549 pixels with at least one

nesting site, and n(discr)
0 = 20,513 pixels with no nesting sites. This grid approximation

leads to a reduction in the recorded nesting sites with respect to the original number of
n = 647 sites, as some pixels contain more than one nest. The consequences of the grid
choice are analysed throughout the paper, with a final discussion in Section 6. Inside
the polygonal boundary, the number of pixels is n(discr) = 549+ 20,513 = 21,062. A total
of 5907 pixels is classified as NA, i.e., not available missing data, as they lie outside the
polygonal border of the window. The functions of the SpatEntropy package are able to
discard the NA pixels without affecting the computations. A grayscale plot of the discrete
dataset is shown in the right panel of Figure 3.

minor

major

Figure 3. Point data with group marks (left) and unmarked grid data (right).
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The last version of the dataset only considers the mark group and is built as follows:
> gorillasgroup = gorillas
> marks(gorillasgroup) = marks(gorillas)[ , 1]
> plot.ppp(gorillasgroup, pch = 19, cols = 1:2)

where the last line produces the plot displayed in the left panel of Figure 3. Information
about the group’s absolute and relative frequencies is discussed in the next subsection.

2. The Basics of Entropy for Environmental Data

The first diversity measure based on entropy, which is popular in environmental
applications, was proposed by Shannon [2] and is thus commonly called Shannon’s entropy.
Given a categorical variable X with I possible outcomes (or categories), Shannon’s entropy
is defined as:

H(X) =
I

∑
i=1

p(xi) log
1

p(xi)
, (1)

where p(xi) for i = 1, . . . , I is the probability of occurrence of category i. The index
H(X) is non-negative and in the range of [0, log I] and expresses the average amount of
heterogeneity, or diversity, across observations of a variable X. When the probabilities are
(almost) equal, the entropy approaches its maximum, as it is hard to predict the category
of the next outcome, and its observation carries the maximum amount of surprise. When
one or a few categories are predominant, it is easier to guess the category of an unobserved
outcome, and the entropy decreases.

Shannon’s entropy can be computed over both grid and point data, provided that they
present at least two categories. The probabilities p(xi) are usually unknown and estimated
through the data relative frequency ni/n, i.e., the number of observations presenting
category i over the total number of observations. A discussion on the appropriateness of
such a choice for p(xi), as well as more sophisticated alternatives, can be found in [17]. The
data relative frequency is an appropriate choice when the goal of the study is to describe
the data, as is the case in the present work, rather than make predictions.

2.1. Computations on the Motivating Example

We first compute Shannon’s entropy on the point pattern, based on the mark group
(Figure 3, left panel). In the continuous space, the binary variable X(cont) is considered with
the two categories x(cont)

1 = ‘minor’ and x(cont)
0 = ‘major’. The function runs as

> shannon(gorillasgroup)
The output shows the absolute value for the entropy, i.e., H(X(cont)) = 0.69, then it displays
its range [0, log 2 = 0.69], and returns the relative entropy Hrel(X(cont)) = 0.995. A table
follows in the output containing details about the absolute and relative frequencies of each
category to help the researcher investigate the results, as carried out in the next subsection.
The output information is summarised in the left-hand side of Table 1.

Shannon’s entropy can be also computed for discrete data over the binary variable
X(discr) with the categories x(discr)

1 = ‘nest’ and x(discr)
0 = ‘no nest’:

> shannon(discrgorillas$v)
resulting in the same output structure as above. In this case, the entropy value is H(X(discr)) = 0.12,
with Hrel(X(discr)) = H(X(discr))/ log 2 = 0.17 (details given in the right-hand side of
Table 1).

Table 1. Absolute and relative frequencies and relative Shannon’s entropy for point and grid data

Point Data Grid Data

Category Abs. Freq. Prob. Shannon Category Abs. Freq. Prob. Shannon

Major 350 0.54 0.99 0 20,513 0.97 0.17Minor 297 0.46 1 549 0.03
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2.2. Interpretation of Results

For point data, Shannon’s relative entropy Hrel(X(cont)) = 0.995 approaches its
theoretical maximum, expressing a very high level of diversity of the gorilla group size.
The left-hand side of Table 1 shows that the probabilities of the two group sizes are similar:
p(x(cont)

0 ) = 0.54 and p(x(cont)
1 ) = 0.46; therefore, it is hard to predict whether a nesting site

is built by a minor or major group, and the information carried by observing the outcomes
is high. Unfortunately, such an entropy is invariant with respect to the spatial distribution
of the nesting sites.

For grid data, the results are completely different: the relative entropy Hrel(X(discr)) = 0.17
is 17% of its theoretical maximum. Such an entropy is measured over the categories ‘nest’
and ‘no nest’. The value indicates that the heterogeneity (or diversity) of the system is
very low, i.e., that observing outcomes does not carry much information, as they will
very likely be 0-valued, i.e., ‘no nest’, pixels. Indeed, by looking at the frequencies on
the right-hand side of Table 1, the probability (estimated through the relative frequency)
p(x(discr)

0 ) = 0.97 is largely predominant. Note that such values depend on the grid choice

and finer grids would make the entropy tend to 0 because p(x(discr)
0 ) approaches 1; this

is shown in the next subsection. We must remark that Shannon’s entropy has nothing to
do with the spatial behaviour of the nesting sites; if we rearrange the pixels in a different
spatial configuration and compute Shannon’s entropy again, the result is the same, as it
only depends on p(x(discr)

1 ) and p(x(discr)
0 ).

The computation of Shannon’s entropy for the two data types shows that this measure
offers several possibilities over the same data, depending on the objectives of the study. As
a consequence, when drawing conclusions, one should be careful about the variable under
study and the correct interpretation of the results. In this example, if the aim is to detect
the nesting habits of gorillas over the area, paying attention to the spatial structure or the
effect of certain covariates on these habits, the usefulness of this index alone appears to be
very weak.

2.3. Comments on the Effect of the Grid Size

We run an empirical sensitivity study of Shannon’s entropy computed on the variable
X(discr) for the grid data. We consider different grid resolutions, ranging from 10× 10 to
500× 500 pixels. The results are reported in Figure 4.
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Figure 4. Effect of the grid resolution on the number of pixels with nests, their relative frequencies,
and Shannon’s relative entropy. The vertical red lines mark the chosen resolution for the application.

In the left panel, the variable number of nests (N. nests) on the y-axis counts the number
of pixels with at least one nest for each grid resolution. By increasing the resolution (x-axis),
the variable N. nests appears to converge to the black horizontal line corresponding to the
actual number of nests n = 647. This is confirmed by a well-known result in point process
studies, i.e., that the discretised process converges to the true one as the grid resolution
increases [18]. In general, the implication is that the finer the grid, the more reliable the
results, which is true in model-based approaches [19]. Unfortunately, the consequences
of the descriptive entropy are not that straightforward. The middle panel shows that the
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variable frequency of nests (Fr. nests), that is, the proportion of pixels with at least one nest
over the total number of pixels, tends to zero as the resolution increases. Indeed, as the grid
becomes finer, the number of pixels with a nest slowly increases, but the number of pixels
with no nests explodes, causing the relative frequencies of nests to become negligible. As
a consequence, Shannon’s entropy for the grid data, shown in the right panel in relative
terms, also degenerates to zero. A zero-valued entropy should be interpreted as a lack of
diversity, which in this case, means that one is sure not to observe gorilla nests over the area.
However, this value does not correspond to a real absence of gorilla nests and must be
avoided. As a suggestion, it is advisable to use the original point data whenever possible.
If not, a trade-off between the accuracy of the resolution and the reliability of the results
is needed. We propose choosing the grid resolution that corresponds to the resolution of
the available covariates. This choice is marked by the vertical red lines in all plots; it may
represent a good compromise, as the relative frequency does not degenerate to zero, and
the available covariate information can be matched to pixels and exploited in the following
spatial measures.

When Shannon’s entropy is computed over the gorilla point data, the scale-dependence
issue is not relevant, as points are assumed to be a-dimensional and represent the original data
resolution, while the observation window area is exogenously fixed by the administrative
boundaries of the gorilla sanctuary area. Therefore, there is no arbitrariness in the computation
of Shannon’s entropy on the gorilla point data. This is further discussed in Section 6.

3. Partition-Based Spatial Entropy

In order to include information about the spatial configuration of the nesting sites, we
need to modify Shannon’s entropy using one of the proposals available in the literature.

The first index involving space is Batty’s entropy [4,20], recently discussed in [21]. It
starts by considering a single phenomenon of interest F, in our example the occurrence
of a nesting site, and partitioning the observation window into G sub-areas of interest.
Typically, sub-areas are meaningful for the problem at hand, e.g., administrative boundaries
or patches defined by the values of a spatial covariate. It is possible to build a random
partition in any number of sub-areas; however, this is not desirable for interpretation, as all
conclusions are affected by the choice of the partition, which should be well grounded. The
idea is to evaluate the distribution of such a phenomenon over the sub-areas, taking into
account the size of the sub-area Tg, where ∑g Tg = T. The intensity of the phenomenon
over a sub-area is defined as λg = pg/Tg, where pg is the probability of observation over
area g, with ∑g pg = 1. Batty’s entropy can be computed as

HB(F) =
G

∑
g=1

pg log
1

λg
(2)

and is interpreted as follows: if the phenomenon is equally intense over the window, i.e., if
the intensities λg for g = 1, . . . , G are similar, Batty’s entropy is high, indicating maximum
spatial diversity; if the phenomenon is concentrated over one or a few sub-areas, Batty’s
entropy decreases. The index is in the range of [log Tg∗, log T], where g∗ indicates the
smallest sub-area. Note that computational issues may arise if the size of the sub-area is
smaller than 1 (negative logarithms). This can be addressed by rescaling the observation
area in order to have Tg > 1 for all g. When the original area is multiplied by a factor of
c > 1 so that each rescaled sub-area has a new size equal to Tg × c, Batty’s entropy can be
derived by computing the entropy on the rescaled area and then subtracting log c from the
resulting entropy value. After this transformation, interpretation proceeds in the same way,
referring to the size of the original area. Such rescaling is now automatically run in the
batty function of the SpatEntropy package.

A modification of Batty’s entropy introduced the idea of neighbourhood and distance
between sub-areas (see [21] for a discussion). It was initially proposed by Karlström
and Ceccato [5] and can also be called Batty’s LISA (Local Indices of Spatial Association)
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entropy [22]. This entropy discards the area size and introduces weights p̃g in the computation,
i.e., the probabilities of the neighbouring sub-areas, where the neighbourhood extent
must be fixed by the researcher. In this way, a sort of smoothing is obtained over the
observation area

HLISA(F) =
G

∑
g=1

pg log
1
p̃g

. (3)

This entropy is in the range of [0, log G], regardless of the area partition. Note that since the
size of the sub-area is discarded, no computational issues arise in the LISA version.

3.1. Computations on the Motivating Example

Batty’s entropy and its LISA variant are computed on the unmarked pattern, as they
are unable to account for different data categories. Separate measures conditional on each
category, i.e., ‘major’ and ‘minor’ group sizes, can be computed, but no joint result is
possible. In the present study, we focus on the overall pattern. The entropies can be run in
their basic version in SpatEntropy with:

> HB = batty(ungorillas)
> HL = battyLISA(ungorillas, neigh = 1)

If not specified, a random partition in G = 10 sub-areas is automatically performed by
the function: 10 points are randomly generated over the polygonal window and are used
as the centroids of the sub-areas; then, a Voronoi tessellation [23] is performed around
those points. Random partitions are mainly intended for practice using the function in R
or for situations with no alternatives, and disseminating the results is not recommended.
Nevertheless, note that the results still make some sense: if a dataset comprises randomly
scattered points over the area, any random partition should lead to the same conclusion of
high diversity.

In real studies, a more appropriate choice is to identify a partition into sub-areas with
a meaning for the phenomenon under study. For the gorilla nesting site data, it makes
sense to use the covariates as the bases of a partition, as shown in Figure 5. The categories
of the covariate vegetation can be employed: the window can be divided into four sub-areas
(‘Disturbed’, ‘Grassland’, ‘Primary’ and ‘Secondary’) to evaluate whether the intensity of
the nesting site construction varies across different vegetation categories, i.e., if the type
of vegetation affects the frequency of the nesting sites. Looking at the second panel in
Figure 5, it seems that gorillas have a strong preference for building nesting sites across the
vegetation type ‘Primary’. Now, let us build Batty’s entropy by typing

> HBveg = batty(ungorillas, partition = veget)
> HLveg = battyLISA(ungorillas, partition = veget, neigh = 1)

Let us now do the same with the covariates elevation and water; being continuous variables,
they have to be divided into classes in order to create tiles for the area partition; e.g., classes
may be defined by the distribution quartiles:

> HBelev = batty(ungorillas, partition = cut(elev,
breaks = quantile(elev$v, na.rm = T)))

The computation of Batty’s LISA entropy for elevation and both indices for water proceed
analogously (the code can be found in the Supplementary Materials). For the LISA entropies,
we fix neigh = 1 to include the probabilities of the nearest neighbour of each area; the
function default neighbourhood system includes the nearest four sub-areas, measured in
terms of Euclidean distances between centroids.
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Figure 5. Partition options for Batty’s entropy: random partition, vegetation categories, elevation
and water divided into distribution quartiles.

The computational times for both indices across all options are negligible (reported
in Table 6) and the results are delivered in less than 1 s. The function output shows the
absolute and relative values of the entropy and the object areas, with details about the
quantities of interest for the given area partition: the absolute and relative frequencies
(estimate for pg), the area size Tg, and the intensity λg. The function has the new argument
rescale, by default, set to TRUE, which automatically detects any Tg < 1, performs a
rescaling of the sizes of the areas, computes the entropy on the rescaled areas, and then
transforms it back to refer to the original data. A plot similar to the panels shown in Figure 5
is also part of the output and is a novelty of the latest package version to help deliver
results and assist in interpretation (when re-running the code, allow for differences in the
area partition of the left panel since it is randomly generated). The results for the different
partition options are reported in Table 2. For the random partition option, we also perform
an empirical sensitivity study with regard to the number of sub-areas and the randomness
of the generation. We choose several values for G = 2, 4, 6, 10, 15, 20, 30, 40, 50, 60, 80, 100,
and for each G, we produce 1000 random area partitions. Then, we compute Batty’s and
Batty’s LISA entropies for all generations. Figure 6 shows the mean value for each entropy
and each G, as well as the empirical 95% confidence intervals over the simulations.
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Figure 6. Relative Batty’s and Batty’s LISA entropies over 1000 random partitions for each number of
sub-areas: mean values and empirical 95% confidence intervals.

Table 2. Relative Batty’s and Batty’s LISA entropies with four partition options. * Mean value over
1000 simulations with G = 10 (see Figure 6 for details).

Entropy Random * Vegetation Elevation Water

Batty 0.96 0.97 0.98 0.94
LISA 0.62 0.48 0.85 0.95

3.2. Interpretation of Results

The value for Batty’s entropy measures the level of concentration (low values) or
dispersion (high values) of the gorilla nesting sites across sub-areas. Its LISA version
measures the same, with the simultaneous consideration of the nesting behaviour in the
neighbouring sub-areas.
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Table 2 summarises the entropy values for Batty’s and Batty LISA entropies in relative
terms for all partition options so that they can be compared across different values of G and,
if desired, to the other entropy measures. Table 3 focuses on the meaningful area partitions
based on the covariates and offers details about the quantities for each sub-area. Figure 6
analyses the entropy values across different random partitions. If we focus on the original
version of Batty’s entropy, we can see that its value over the three covariate-based partitions
is pretty stable and very high at 94% or more of the maximum entropy. A similar (mean)
value is reported for the random partition in 10 sub-areas in Table 2. If we investigate
the results of the simulation study reported in Figure 6, we can see that the entropy is
hardly sensitive to both the number G of sub-areas and the random generation of the
tessellation. Indeed, the mean values for Batty’s entropy start at 99% of the maximum for
G = 2 and slowly decrease to 93% for G = 100. The segments representing the empirical
confidence intervals at a 95% level are hardly visible, marking very little variability of the
index. Its robustness with respect to the number and randomness of the area partitions may
be considered an advantage of the measure. The very high values in relative terms indicate
that quite a large diversity of the nesting sites across sub-areas is observed, i.e., that gorillas
tend to build nests over all sub-areas without a preference. The similarity in the values
for the random partitions and the covariate-based partitions suggests that the covariates
play no role in the distribution of the gorilla nesting sites. This is in contrast to the visual
impression, especially the vegetation panel in Figure 5, where it is evident that gorillas have
a preference for the ’Primary’ vegetation type. This probably happens because within the
primary vegetation area, there are actually many small spots where the vegetation is of a
different type but nests still occur. Therefore, according to the vegetation partition, nesting
sites are spread across the different categories, whereas actually, it is likely that the tendency
of gorillas is to build nests across or close to primary vegetation areas. Batty’s entropy
cannot account for a preference to be close to one sub-area, but we can try to improve the
results with its LISA variant.

Table 3. Information about Batty’s entropy over the three covariate-based partitions: sub-area name,
absolute and relative frequencies of nests, area size, and intensity.

Vegetation-Based Partition

Sub-area Abs. freq. Prob. Size (km2) Intensity

Disturbed 89 0.14 8.72 1.58 × 10−8

Grassland 20 0.03 4.18 7.39× 10−9

Primary 517 0.80 6.29 1.27× 10−7

Secondary 21 0.03 6.43 5.05× 10−8

Elevation-Based Partition

Sub-area Abs. freq. Prob. Size (km2) Intensity

Low 58 0.09 4.97 1.80× 10−8

Med-low 141 0.22 4.97 4.39× 10−8

Med-high 110 0.17 4.97 3.42× 10−8

High 338 0.52 4.97 1.06× 10−7

Water Distance-Based Partition

Sub-area Abs. freq. Prob. Size (km2) Intensity

Adjacent 103 0.23 4.97 4.63× 10−8

Close 126 0.19 4.97 3.82× 10−8

Medium 155 0.24 4.97 4.83× 10−8

Far 223 0.34 4.97 6.84× 10−8

When a neighbourhood system among the sub-areas is considered, i.e., when the
nesting habits are analysed with the consideration of the habit in the closest sub-area,
the entropy decreases for all partition options, except for the one based on the covariate
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water. In other words, when we take the neighbouring nesting behaviours into account, a
tendency appears to concentrate nests into one or a few close sub-areas. As for the random
partition, which is not meaningful for the dissemination of the results, it is nevertheless
interesting to see in Figure 6 that the mean values are quite stable and slightly increase
when G increases, with the opposite behaviour with respect to Batty’s original entropy.
Unfortunately, the addition of a neighbourhood system largely increases the variability
of the results, especially for small Gs, so the conclusions are linked to higher uncertainty
and are less reliable. It is particularly interesting to focus on the partition based on the
vegetation covariate. The simultaneous consideration of the vegetation and probabilities of
one nearest sub-area heavily decreases the entropy value to HLISA rel(F) = 0.48 (Table 2).
Such a low entropy value suggests that gorillas tend to concentrate across or close to one
of the sub-areas, and we can check, by looking at Table 3, that the higher values concern
the sub-area ’Primary’. Therefore, knowing the vegetation type helps in predicting where
nesting sites will be constructed. A weaker neighbourhood effect can be seen for the
partition based on the covariate elevation, which decreases the entropy from 98% to 85% of
the maximum (Table 2), with higher probabilities linked to higher elevation levels (Table 3).
The water distance appears to have no effect on the distribution of nests, as can be seen
in the relative entropy being 95% of the maximum, as shown in Table 2, and the evenly
spread probabilities, as shown in Table 3.

In conclusion, we can say that following Batty’s approach, gorillas show a preference
for building nests close to primary vegetation areas and at higher altitude levels, while
apparently, they show no interest in building nests following the water courses (which are
probably sufficiently spread across the area). As for the performance of the indices, we can
see that Batty’s entropy is robust but not easily interpretable, whereas the LISA version
allows for more sensible conclusions but is linked to higher uncertainty. Increasing the
neighbourhood extent increases the LISA entropy for all partition options since the number
of neighbours approaches the total number of four sub-areas, and the spatial smoothing
becomes too rough for a useful interpretation.

4. Distance-Based Entropy Measures

A different approach to the inclusion of space in entropy measures is based on a
consideration of the distances between occurrences of the categories, as well as an evaluation
of the heterogeneity of couples/triples/sets of occurrences (named co-occurrences) at
the chosen distance. A comparative presentation of the approach can be found in [3,8].
Starting with a categorical variable X with I categories, the variable denoting the types of
co-occurrences is usually named Z. In the case of couples, the number of categories of Z is
I2, as all possible ordered matchings between categories within X are considered. Further
sets of m > 2 occurrences return a variable with Im categories and are not considered in
this work.

An index based on co-occurrences was first proposed by O’Neill and coauthors [6]. It
considers grid data and contiguous couples, i.e., all possible pixel couples within the grid
that share a border. The relative frequency of each couple of categories p(c)(zr) (where (c)
stands for contiguous) is computed for all types r = 1, . . . , I2. Then, O’Neill’s entropy is

HO(Z) =
I2

∑
r=1

p(c)(zr) log
1

p(c)(zr)
(4)

and is in the range of [0, log I2]. The maximum is reached when all possible couples of
categories within X are equally represented, linked to the maximum surprise in observing
a new couple. The main advantages of this measure with respect to Batty’s partition-based
approach are that the categories of the original variable are considered in the computations
and the interactions among different categories are studied via the heterogeneity of
the couples.
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O’Neill’s seminal proposal has generated other contiguity-based indices, such as
the relative contagion index [24], which is 1 − HOrel(Z), and Parresol and Edwards’
entropy [25], i.e., −HO(Z).

A stimulating extension of O’Neill’s entropy is due to Leibovici and coauthors [7,26].
It substitutes the notion of contiguity with that of distance by considering couples (or
further sets of co-occurrences) taking place within a chosen distance d, which can also apply
to point data. Leibovici’s entropy is

HL(Z) =
I2

∑
r=1

p(d)(zr) log
1

p(d)(zr)
(5)

and can potentially be computed for any distance within the observation window, according
to the researcher’s choice. The substitution of contiguity with distance also allows for the
computation of this measure on point data. The interpretation is similar to that of O’Neill’s
entropy, except for the notion of distance, and the range is the same.

It has been proven [3] that O’Neill’s and Leibovici’s entropies are special cases of
a quantity known in information theory as residual entropy [27]. Indeed, they must be
interpreted as measuring the residual amount of information brought by the observations
once the spatial information has been accounted for. In other words, they measure the level
of diversity in the data that is not due to the spatial structure. The distance-based entropies
are low when couples tend to be of the same type, which may happen because there is
mutual attraction or repulsion between the different categories and/or within each category
or because one of the categories is largely predominant so that couple heterogeneity is not
possible. A high value means that couples are very heterogeneous, which implies that all
categories are quite evenly present and there is no recognisable behaviour in the interaction
between points. This suggests an absence of spatial structure. If one prefers to focus on the
amount of spatial information rather than the residual diversity, contagion indices must
be used for the delivery of results: the relative contagion index by construction must be
interpreted in the opposite way.

4.1. Computations on the Motivating Example

To compute O’Neill’s entropy and its modified versions on the gorilla nesting site
data, we need to work on discrete data X(discr), i.e., the pixel grid with the values ‘nest’ and
‘no nest’. Therefore, the variable Z(discr) has I2 = 4 possible categories: ‘nest-nest’ (1-1),
‘nest-no nest’ (1-0), ‘no nest-nest’ (0-1), and ‘no nest-no nest’ (0-0). The entropy indices can
be obtained by typing:

> oneill(discrgorillas$v)
> contagion(discrgorillas$v)
> parredw(discrgorillas$v)

Thanks to efficient computations based on combinatorics, these functions require very little
time and return results almost instantly (see Table 6). The output consists of the entropy
value in absolute and relative terms in a table containing the couples’ relative frequencies
and a plot. All values are reported in Table 4, while the plot shows the discrete data, as in
the right panel in Figure 2.

Table 4. Absolute and relative frequencies of contiguous couples, O’Neill’s, contagion, and Parresol
and Edwards’ indices in relative terms.

Couple Abs. Freq. Prob. O’Neill Contagion Parr.Edwards

0-0 39,775 0.95

0.17 0.83 0.170-1 919 0.02
1-0 919 0.02
1-1 179 0.01
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Leibovici’s entropy allows for the introduction of the notion of distances between
pixels or points. Before computing this entropy, it might be interesting to explore the
distribution of distances between nesting sites, which are meaningful for the evaluation
of the interaction within and between categories. The most used distances are the nearest
neighbour distance, i.e., the distance between each point and its closest point, and the
pairwise distance, i.e., the distances between all possible pairs of points [23]. They can be
calculated via the spatstat functions nndist(ungorillas) and pairdist(ungorillas).
A box plot of the distribution of these distances is shown in the left panel of Figure 8. The
distance for computing Leibovici’s index may be chosen based on the aforementioned
distance distributions.

Assuming one is working based on the pairwise distance using the variable X(discr) with
the binary values ‘nest’ and ‘no nest’ for each pixel, Leibovici’s entropy can be obtained
by typing

> leibovici(discrgorillas$v,
cell.size = c(discrgorillas$xstep, discrgorillas$ystep),
ccdist = median(c(pairdist(ungorillas))))

This function requires about 5 min (see Table 6) because of the computational burden of all
Euclidean distances. With this large discrete dataset, a total of n(d) × (n(d) − 1) = 21,062 ×
21,061 distances must be calculated. For checking the progress of the function, the option
verbose = T can be added to the previous command lines. The function output is again
composed of absolute and relative entropies and a probability table for investigation of the
results, as shown in the right-hand side of Table 5. Moreover, a plot is produced, which
is reported in the right panel of Figure 7. The latter represents the data with an example
of the extent of the distance considered for building couples. The red star represents a
random point, and the radius of the red circle represents the spatial extent for counting the
co-occurrences. This may help in guiding scientists towards a suitable choice.

An alternative and much faster option consists of computing Leibovici’s index on the
data points by considering the categories of the two sizes of the variable group, i.e., the
variable X(cont). In this case, the function is

> leibovici(gorillasgroup, ccdist = 500)
(where the distance is in metres, the same unit as the observation area), which returns
results in less than 1 s (see Table 6), as it only needs to compute n× (n− 1) = 647× 646
pairwise distances. The function output is analogous, with details provided on the left-hand
side of Table 5, and the plot can be found in the left panel of Figure 7 with the same features
as in the discrete case.

* *

Figure 7. Example of distance for Leibovici’s entropy for point and grid data.
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Table 5. Absolute and relative frequencies and relative Leibovici’s entropy for point data with d = 500
and grid data with d = 1149 (the median of the pairwise distances).

Point Data Grid Data

Couple Abs. Freq. Prob. Leibovici Couple Abs. Freq. Prob. Leibovici

maj-maj 4334 0.28

0.99

0-0 18,262,284 0.95

0.18maj-min 3780 0.26 0-1 501,725 0.02
min-maj 3835 0.25 1-0 514,686 0.02
min-min 3404 0.22 1-1 22,427 <0.01

Table 6. Computational times for SpatEntropy functions: means and interquartile differences (IQDs)
for the computational times over 1000 runs in seconds (on a 2019 Windows Surface Pro 6 with an
i7-8650U processor).

Function Data Size Mean Time IQD

shannon 647 points 0.0017 [0.0015; 0.0018]
shannon 26,969 pixels 0.0617 [0.0441; 0.0654]
batty 647 points 0.6349 [0.4317; 0.7807]

battyLISA 647 points 0.7536 [0.4673; 0.9606]
oneill 26,969 pixels 0.9012 [0.6816; 1.0784]

contagion 26,969 pixels 0.8612 [0.6460; 1.0490]
parredw 26,969 pixels 0.8013 [0.6493; 0.9770]

leibovici 26,969 pixels 252.1926 [221.8776; 274.3218]
leibovici 647 points 0.8142 [0.6518; 0.8803]
altieri 26,969 pixels 566.3254 [418.8298; 761.0572]
altieri 647 points 0.9029 [0.8826; 0.9142]

4.2. Interpretation of the Results

O’Neill’s entropy, the contagion index, and Parresol and Edward’s entropy are closely
related and based on the relative frequencies of the different possible couples of contiguous
pixels. Table 4 reports the quantities and values of the indices.

The resulting value for O’Neill’s entropy over the discrete gorilla data was very low,
with HO rel(Z(discr)) = 0.17. This tells us that contiguous couples tend to be homogeneous,
i.e., that there is little diversity in the type of couples of adjacent pixels that appear across
the area. As can be seen in Table 4, this is due to the large predominance of 0-valued (‘no
nest’) pixels, which produced a large predominance of couples of type (0-0) (grey pixels
in Figure 2). With such a minority of pixels with nests, we cannot reasonably conclude
whether gorillas tend to build nests close to other nesting sites (couples 1-1) or in isolated
areas (couples 1-0 and 0-1). The same reasoning underlies the values of the other two
entropy indices. The contagion indices indicate that the strength of the contagion, i.e., the
similarity between couples (as opposite of diversity), was equal to 83% of its theoretical
maximum. As for Parresol and Edwards’ entropy, the value in relative terms was the same
as O’Neill’s value and the interpretation also coincides. Therefore, despite the interesting
theoretical aspects of the indices, such as the consideration of the variable categories and
interpoint distances, their strength in delivering conclusions on the gorilla data does not
appear convincing because they are heavily affected by the imbalance in the original
distribution of X(discr).

Let us now focus on Leibovici’s entropy. The middle and right-side panels in Figure 8
show the variations in this entropy in relative terms by setting different distances. For
discrete data (in the middle panel), distances were chosen between contiguity (i.e., the
distance between two contiguous pixels’ centroids) and the maximum distance inside the
polygonal window. For point data (in the right panel), the deciles of the pairwise distance
distribution were considered.
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Figure 8. Relative Leibovici’s entropy for different distances.

The two panels returned different values, as they were computed on different datasets.
For grid data, the heterogeneity of a couple of categories, ‘nest’ and ‘no nest’, was
evaluated. The middle panel shows a very low relative entropy value (about 0.2). The
interpretation follows what has already been said for O’Neill’s entropy, except that the
more general concept of distance replaces that of contiguity: the large predominance of
couples of type 0-0 affected the results across all distances, as seen in the detailed values
in Table 5. Again, our comments cannot be very conclusive for the gorilla grid data with
distance-based measures.

The interpretation improved when moving the original point data. The right panel
shows Leibovici’s relative entropy for point data, evaluating the diversity of the group
size with the ‘minor’ and ‘major’categories. The high relative entropy (approaching
value 1) means that at the chosen distances, pairs of categories tended to be heterogeneous,
i.e., groups may be close to other groups of the same or different size with no evidence
for a preference, so that all couples were (nearly) equally represented and the diversity
of the system was high with respect to the group size of the nests (see the values in
Table 5). This suggests a random spatial structure of the group size, meaning that groups
tended not to cluster or repel each other based on their size. In both panels, it can be seen
that the relative index was quite stable, meaning that the conclusions were not affected
by the chosen distance. Should this be the case, it would be important to choose the
distance with care or explore and show results across different distances, as in the present
work. The easy implementation of such entropy indices in the SpatEntropy package
allows for the exploration of many possibilities in a reasonable time (see Table 6) and with
minimum effort.

4.3. Comments on the Effect of the Grid Size

In order to raise awareness about issues related to the choice of grid resolution,
we empirically address the scale-dependence problem for spatial measures using grid
data. We specifically examine O’Neill’s entropy, the relative contagion index, Parresol and
Edward’s entropy, and Leibovici’s entropy when applied to grid data. The same sensitivity
analysis employed in Section 2 is used here, with grid resolutions ranging from 10× 10 to
500× 500 pixels. Therefore, one may refer to the number and frequency of pixels displayed
in Figure 4. In Figure 9, we report the results for O’Neill’s relative entropy (also known as
the relative Parresol and Edwards’ entropy), the relative contagion index, and Leibovici’s
entropy with the second and the second-last distances chosen for the results in Figure 10,
i.e., d = 656 and d = 4946 metres. The vertical red lines indicate the grid resolution chosen
for the present study, i.e., the same resolution as the covariates.

The figure shows that all entropies exhibited the same behaviour, with the only
difference being the contagion index due to the fact that this index is computed as the
complement to 1 of O’Neill’s relative entropy. The interpretation is the same for all
measures: at very high grid resolutions, all entropies tended to zero (or 1) due to the
fact that the relative frequency of pixels with nests decreased significantly. The behaviour
of the distance-based entropies was very similar to that of Shannon’s entropy (in Figure 4),
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as already shown in [3]. The same holds for the decomposable entropy measure in
the following section. This study highlights that results are extremely sensitive to grid
resolution. If possible, the original point data should be considered, as well as the
corresponding entropies defined for point locations, i.e., on variable X(cont). This is possible
for Leibovici’s entropy, but one must remember that in this study, the two entropies were
computed on different variables, requiring separate conclusions. Some final comments on
this point are given in Section 6.
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Figure 9. Effect of the grid resolution on the relative O’Neill’s entropy (equal to the relative Parresol
and Edwards’ entropy), relative contagion index, and relative Leibovici’s entropy. The vertical red
lines indicate the chosen resolution for the application.
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Figure 10. Decomposable entropy for gorilla data.

5. A Decomposable Entropy Measure

Recently, a new approach to distance-based entropy has been introduced [8] and
widely used in several applications [3,16,21]. It is based on the differences in building the
variable Z and on the decomposition of Shannon’s entropy into spatial and non-spatial
components. The variable Z is built with unordered pairs, rather than ordered couples, of
categories within X. This might be more sensible, provided that occurrences do not have a
direction in space; speeds up computations, as the number of pairs is reduced and equal to
(I+1

2 ); and returns a Shannon’s entropy of Z, H(Z) with the same value, regardless of the
spatial arrangement of observations. A discussion about these aspects can be found in [3].

The non-spatial feature of H(Z) allows for the exploitation of a result in information
theory [27]. Shannon’s entropy of a variable, in our case Z, is known to be decomposable
into the entropy due to its relationship with another variable and a residual entropy term.
If the second variable is defined as W, representing space, with categories w1, . . . , wK
representing classes for all possible distances within the observation window, then the two
terms of the decomposition may be interpreted as spatial mutual information, denoted by
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MI(Z, W), i.e., the diversity due to the spatial structure of the observations, and the spatial
residual entropy, H(Z)W , measuring all other sources of heterogeneity.

H(Z) = MI(Z, W) + H(Z)W

=
K

∑
k=1

p(wk)[PI(Z|wk) + H(Z|wk)].
(6)

The terms p(wk) are the probabilities of each distance class, computed as the relative
frequencies of the number of pairs occurring within the distance range wk. PI(Z|wk) and
H(Z|wk) are local or partial terms, expressing entropy related to space and residual entropy
within each distance range wk, respectively. Therefore, all distances are simultaneously
considered in a decomposable measure, offering a global understanding while investigating
the role of the spatial structure in predicting outcomes within chosen distance ranges, with
the desired level of detail (chosen by fixing the number and extent of the distance classes).

The main advantage of the set of measures contained in (6) is its ability to adapt to
different case studies, relying on the possibility of exploring different options, aspects of
the same phenomenon, and exogenous choices, which may influence the results. In the
recent literature, this approach is also known as decomposable entropy (the main reference
can be found in [3]).

5.1. Computations on the Motivating Example

As for Leibovici’s entropy, the decomposable entropy function can be computed on
both grid and point data. In the SpatEntropy package, this function is named altieri,
after the family name of the authors who proposed it. The command lines for the two data
types are as follows:

> altieri(discrgorillas$v,
cell.size = c(discrgorillas$xstep, discrgorillas$ystep))

> altieri(gorillasgroup)
For discrete data, the function requires about 10 min on such a large dataset for the same
reasons as Leibovici’s entropy, which is linked to the computation of a large number of
pairwise distances and the construction of the distance classes. For point data, the results
are delivered in less than 1 s (see Table 6). A default partition for the distance classes is
proposed in the function: for grid data, the first distance class covers the 4 nearest pixels, the
second covers the 12 nearest pixels, and the third is the residual class for all the remaining
distances. This follows common spatial statistics outcomes [28]. For point data, the default
breaks are based on the deciles of the distribution of the nearest neighbour distances. These
distance breaks can be modified by specifying the argument distbreak in the function.

This function’s output is not reported here, as the produced plot is sufficient for
interpretation purposes. First, the global values for Shannon’s entropy of Z, the mutual
information, and the residual entropy are given, and then the absolute and relative values
of the partial mutual information and residual entropy terms are provided for the chosen
classes. They are followed by information about the distance classes, such as the number of
pairs for each class and their relative weights in the computation. Tables are also provided,
showing the absolute and relative frequencies of all pairs for each distance class. We refer
the reader to [16] for technical details on the output. The newly released package version
automatically produces a bar plot, which shows the contribution of space in relative terms
(grey area) for each distance range, thereby significantly helping in the interpretation. This
bar plot is shown in Figure 10.

5.2. Interpretation of Results

Let us look at the bar plot for decomposable entropy in relative terms on the gorilla
data in Figure 10. The left panel refers to grid data, that is, pixels with the same resolution
as the spatial covariates, characterised by the presence (‘nest’) or absence (‘no nest’) of a
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nest. The right panel reports the results on point data, that is, locations of nests separated
by the size (‘major’ or ‘minor’) of the gorilla group.

The main advantage of using this approach to spatial entropy is the ability to explore
several definitions of distances among co-occurrences within a single analysis. In this
example, we consider the three distance classes defined by the default options. Decomposable
entropy allows disentangling the role of space at each distance (local partial information,
grey area in the bars) from the entropy due to other features (partial residual entropy, white
area in the bars). As a result, Figure 10 helps in visually understanding the behaviour
of data very quickly: the larger the grey area, the more the spatial structure helps in
understanding the diversity of data within a specific distance range, thereby reducing the
residual entropy. In particular, it can be seen that some role of space can be observed for
discrete data, i.e., pairs of pixels tend to be of the same type (mainly ‘no nest’-‘no nest’)
across the whole observation window. In other words, this indicates that gorilla nesting
habits have a non-negligible dependence on spatial structure; however, such interpretation
suffers from an imbalance in the distribution of pixels, as already discussed in Section 4.
In addition to the previous distance-based measures, we can see that spatial information
appears to be consistent across the three distance classes depicted in the picture. Conversely,
for point data, space is confirmed not to play any relevant role in the heterogeneity of
pairs characterised by locations of ‘minor’ or ‘major’ sizes of gorilla groups across all
distances. As a consequence, the residual entropies are set to very high values, suggesting
the randomness of gorillas’ nesting habits across the region based on their group size.
Similar to Leibovici’s entropy, the results are more conclusive and easily interpretable for
point data.

5.3. Comments on the Effect of the Grid Size

A sensitivity analysis was performed on the decomposable entropy, analogously to
that in Sections 2 and 4. As already explained, all entropy measures based on Z and applied
to grid data were affected by the grid resolution in the same way. The decomposable
entropy also tended to zero as the relative frequency of the pixels with nests decreased.
Therefore, the same conclusions can be drawn as in Section 4, and the study is not reported
here. Some final comments are given in Section 6.

6. Discussion

This section contains some points for discussion, as well as suggestions for further
work before we give our concluding comments in Section 7.

6.1. About the SpatEntropy Package

The SpatEntropy package allows for the implementation of all entropy measures
using intuitive and simple command lines in a short time. A summary of the computational
times for all measures is reported in Table 6.

The reported features refer to the application to the gorilla data, which can be considered
a large dataset. Indeed, the enclosing rectangle is a very fine grid of nearly 27,000 pixels and,
consequently, the number of pairwise distances across co-occurrences to compute becomes
huge. Despite this, the computational time required by the package remains reasonable,
thereby avoiding the undesirable need to aggregate data, thus losing information and reducing
image quality. The yielded results are easily interpretable and intuitive, thanks to the
novel production of output plots. These encourage the diffusion of the package and the
dissemination of the results while supporting interpretations for decision-making processes.

6.2. A Summary of Spatial Entropy Measures

Throughout this paper, we showed that each of the considered entropy measures may
be useful according to the context of the study at hand, each having various advantages
and drawbacks. We utilised an application to a real dataset on gorilla nesting sites to
highlight these features. In particular, the results on data from the original point pattern
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(focusing on the group mark, with outcomes ‘major’ or ‘minor’) and from a grid (obtained
by discretising the observation area into pixels with at least one ‘nest’ or ‘no nest’) were
provided to showcase the capabilities of entropy measures with both kinds of data. To
assist researchers in selecting from the available indices, Table 7 reports a summary of their
main characteristics and usage.

The decision to work with grids of pixels rather than point patterns depends on data
availability and/or the purposes of the study. In the gorilla dataset, the two types of data
have different research questions: the point data aim to investigate diversity in the spatial
locations of nests with respect to the size of the gorilla group, whereas in the grid, the
distribution of the presence of nests over the area is studied. Consequently, space can be
included in the entropy measure in several ways. If the goal of the research is to measure
diversity in the intensity of the phenomenon (the nests, in our motivating example) across
specific and well-defined sub-areas of interest, then Batty’s and Batty’s LISA entropies are
appropriate measures, controlling for sub-area dimensions or neighbourhood structures,
respectively. In the gorilla data example, Batty’s LISA entropy seems to be more informative,
i.e., the role of the neighbourhood appears to be relevant in predicting the nesting sub-area,
thus yielding lower entropy values compared to Batty’s and Shannon’s values. If the finest
location of the phenomenon, in terms of a point or pixel in a grid, is to be considered,
then suitable entropy measures would be those based on the concept of co-occurrence.
Under this framework, the most complete approach is decomposable entropy, as it enables
disentangling the role of space and the residual part from other components, the concept
of neighbourhood is generalised to a variable that expresses distance classes across the
entire possible range, and local entropies at each distance class can be investigated to
understand different aspects of the phenomenon. The results obtained from the gorilla
data show that the role of space can be detected on the grid across all distance classes,
i.e., the diversity in couples of ‘nest’/‘no nest’ pixels decreases when the neighbourhood is
accounted for. Conversely, when point data on the nesting location by ‘major’ or ‘minor’
sizes of gorilla groups are considered, the spatial configuration is negligible across all
distances, i.e., the entropy across the couples of ‘major’/‘minor’ groups mainly depends
on features and choices different from the spatial position over the area (falling into the
residual entropy component). Leibovici’s and O’Neills’s entropies are useful special cases of
decomposable entropy, which can be conveniently delivered for simplicity of interpretation,
especially when the researcher knows that a specific distance is particularly meaningful for
the phenomenon under study.

Table 7. Summary of main features and applicability of entropy measures. * The time may vary
according to the data size—see Table 6 for details.

Entropy Grid/Point Categ. Cov. Space Scale Dep. Time *

Shannon Both Yes No Not included Yes (grid) <1 s

Batty Both No Yes Area partition Yes (grid) <1 s

Batty LISA Both No Yes Area partition Yes (grid) <1 s

O’Neill Grid Yes No Contiguous couples Yes ≤1 s

Leibovici Both Yes No Dist-based sets Yes (grid) ≤ 5 min

Decomposable Both Yes No Dist-based sets Yes (grid) ≤ 10 min

6.3. Choice of Spatial Parameters

Batty’s and Batty’s LISA measures are affected by the choice of sub-areas and, for the
LISA variant, the choice of neighbourhood, and it may be hard to decide which is the best
option. Therefore, we recommend relying on a meaningful classification according to the
knowledge of the phenomenon, such as administrative boundaries or covariate values,
and/or checking and comparing the different options, which is very feasible thanks to the
small computational burden in the SpatEntropy package.
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When grid data were considered, we showed that the resolution affected the results
of all heterogeneity measures. As reported in Figures 4 and 9, entropies degenerated to
zero as the resolution increased. In many studies, a grid is provided as the original data
resolution. In these cases, identifying the contribution of this restricted definition of space
represents a relevant research question. When different choices for space can be adopted,
considering the highest available resolution is, in general, recommended, provided that the
relative frequencies of the categories do not become negligible. Indeed, in the application to
gorilla nesting sites, we showed that the chosen grid resolution represents a good trade-off,
as the entropy values remained considerable. When spatial covariates are available, as in
our motivating example, we recommend choosing the same resolution as the one provided
by the covariates, as this allows for exploiting and incorporating the additional information
into the analysis.

In the case of point data, generally, the observation window is fixed, as in the
application to gorilla nesting sites. In these situations, O’Neill’s, contagion, and Parresol and
Edwards’ entropies cannot be computed, and Leibovici’s entropy and the decomposable
entropy are recommended for evaluating the interactions within and between data categories.

7. Conclusions

In this paper, some leading measures of spatial entropy have been outlined and applied
to a dataset about gorilla nesting sites in Cameroon, based on the newly released version
of the R package SpatEntropy. The entropy indices range from the simplest non-spatial
Shannon’s entropy to the flexible framework of decomposable entropies [3,8], which is the
most complete and properly grounded from a theoretical point of view.

We have conducted a detailed analysis of a stimulating and computationally challenging
dataset regarding the nesting habits of gorillas in a protected sanctuary area in Cameroon,
considering group size and some environmental covariates. The main conclusions are
drawn from the analysis of the point data. A study based on Batty’s LISA entropy shows
that the construction of the nesting sites is heavily influenced by the covariate vegetation,
with a preference for building nests over or very close to the vegetation type ‘Primary’.
A weaker effect of the soil elevation is also observed, with high altitudes appearing to be
favoured by gorillas. No relevant effect is associated with the distance to water courses,
probably because they are evenly distributed over the observation area. When focusing on
the interactions within and between the different group sizes, Leibovici’s entropy and the
decomposable entropy allow us to conclude that gorilla groups do not tend to cluster or
repel each other according to their group size. Minor and major group sizes are randomly
scattered over the area for all the considered distances, with no recognisable interaction.
Results have also been shown for the discretised data, but they are less clearly interpretable
and affected by the arbitrary choice for the grid resolution.

The contributions of this paper are application- and software-oriented. Its main
aim is to provide a practical guide to researchers, firstly, for computing spatial entropy
measures from the simplest ones to the more computationally complex indices based on
co-occurrences, and secondly, for supporting the choice of proper measures, suitable space
parameters, and correct interpretations of the results. In this regard, we would like to
remark that the challenging problem of diversity indices for spatial data benefits from
stimulating recent works that consider theoretical aspects. For instance, the use of data
relative frequencies as proper choices for estimating probabilities is discussed in [17], where
a model-based approach is taken to include covariates and spatial dependence in the
entropy measures. Other computational details regarding the indices illustrated in this
work, such as the choice of preserving order within couples, the consequences of extending
to larger sets of co-occurrences, or the choice of the distance breaks in the decomposable
measure, are discussed in [3]. Further aspects linked to the dependence of the indices on the
scale and resolution of the data can be found in [9,12–14]. Defining spatial entropy measures
satisfying the scale-free property represents a crucial task, especially when arbitrary choices
of the spatial scale or resolution of data can be adopted.
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Appendix A. A Guide to Getting Started with Practical Work

To start working with R and the SpatEntropy package, you should first follow the
steps below:

1. Download and install R, which is freely available at http://r-project.org (accessed on
25 September 2023).

2. (Optional, but recommended) Download the user-friendly interface named Rstudio,
also free in its base version, which is sufficient for most purposes and available at
http://posit.co (accessed on 25 September 2023).

3. Choose a local folder as your working directory, where everything you produce will
be saved.

4. Open Rstudio, which should automatically detect and link to the already installed R
software on your computer. Alternatively, open the original R graphic user interface
Rgui. Note that the following instructions for the drop-down menu assume that the
reader is using Rstudio.

5. (Optional, but recommended) Work on a script, a text-like file where you can save all
your functions and comments. To do so, click on File in the drop-down menu and
then select New file and R script. A new panel will open with a blank sheet. Save the
script in the local folder you have chosen as the working directory and then go to
the drop-down menu again and click on Session, Set working directory, and to source
file location. You should see a new line of code appearing in the console panel (the
bottom-left panel where R displays all outputs), which should be something like
> setwd("C:/......./folder")
which confirms you have correctly set your working directory.
The commands can be typed directly into the console panel, right after the prompt
symbol “>”, and then launched by pressing Enter on the keyboard. We suggest writing
the commands in the script box so that you can store and save them. In this last case,
to run a command, you should click on the Run button or press CTRL+Enter on the
keyboard (CTRL+R when using the original interface). If you want to add comments
to your script, just begin the line with the symbol #; everything you write on that line
will be ignored by R. The Rstudio software conveniently uses different colours for
functions and comments to help you go through your script.

https://www.mdpi.com/article/10.3390/e25121634/s1
https://www.mdpi.com/article/10.3390/e25121634/s1
http://r-project.org
http://posit.co
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6. Download the SpatEntropy package by first checking that your Internet connection
is active and then typing
> install.packages("SpatEntropy", "spatstat")
> library(SpatEntropy); library(spatstat)

If you have already installed the SpatEntropy package and need to update it to the
new release, you can type

> update.packages("SpatEntropy")
Now you are all set to begin using the SpatEntropy package. The next step is usually

data loading. Input data should be provided as matrices when they are discrete data on a
grid or as planar point patterns, i.e., ppp objects in R, when they are in continuous space (see
the spatstat package documentation [29]). Some environmental data examples can be
found in the SpatEntropy package, and many other examples are available in the spatstat
package. To learn how to build a point pattern object in R, please refer to the spatstat
package documentation or the practical guide [30]. In our example, the gorilla dataset
presented in Section 1.1 is available in R by simply typing

> data(gorillas)
Note that you can obtain details about how any function works in R by typing the name of
the function after the symbol ?, e.g., ?plot.ppp. To store and plot a version of the dataset
without the marks, you can write

> ungorillas = unmark(gorillas)
> plot.ppp(ungorillas, pch = 16, main = "Gorilla nesting sites")

As introduced above, we only consider the mark group in the gorillas dataset. To
obtain information about the group, you can type

> table(marks(gorillas)$group)
to return the distribution of the categories ‘minor’ and ‘major’. To create a pattern only
containing the mark of interest in our example, the group variable, the following commands
can be used:

> gorillasgroup = gorillas
> marks(gorillasgroup) = marks(gorillas)[ , 1]

A plot can be produced by typing
> plot.ppp(gorillasgroup, pch = 19, cols = 1:2)

The covariates are available in a second dataset, called gorillas.extra:
> gorillas.extra

is a list of pixel images, where the three covariate objects mentioned in Section 1.1 consist
of 149× 181 = 26,969 pixels over an enclosing rectangle of [580,440, 586,000] × [674,160,
678,730] metres. The variables can be stored as

> elev = gorillas.extra$elevation
> water = gorillas.extra$waterdist
> veget = gorillas.extra$vegetation
> veget$v[veget$v == "Colonising" | veget$v == "Transition"] = "Primary"
> veget$v = as.factor(as.character(veget$v))

with the vegetation covariate requiring a little extra work, as two categories with very few
pixels are merged with the main ones. The three covariates can be plotted, e.g., the elevation
variable, using the command

> plot(elev, col = terrain.colors(100))
By printing, e.g., summary(elev$v), covariate information is given and is summarised by
the following commands:

> boxplot(c(elev$v), main = "Elevation", ylab = "metres")
> boxplot(c(water$v), main = "Water distance", ylab = "metres")
> barplot(table(veget$v), main = "Vegetation", ylab = "pixels",

names.arg = c("Dist", "Grass", "Prim", "Sec"))
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Let us now focus on the observation area T. Since the three covariates consist of
149× 181 = 26,969 pixels and the area of each pixel is 30.71× 30.71 = 943 square metres
(see elev$xstep and elev$ystep), the enclosing rectangle is a size of 4576× 5558 square
metres. We note that the enclosing rectangle of the observation area of the gorillas object
is slightly different from that of the covariates in the gorillas.extra dataset. This often
happens during the data collection process. Therefore, it is a good idea to take the area
covariate and grid resolution as reference values. For some computations, data need to be
discretised and it is appropriate to use the same grid. To do so, one may type

> gorillas$window$xrange = elev$xrange
> gorillas$window$yrange = elev$yrange

The same should be done for all the created point patterns, i.e., ungorillas and
gorillasgroup. Note that such operations only affect the enclosing rectangle and not
the polygonal boundary of the observation area. The polygonal area of the sanctuary has a
size of |T| = 19.874 square kilometres, obtained (in square metres) using the command

> area.owin(gorillas$window)

The command
> plot(discrgorillas, col = gray(seq(0.9, 0.1, l = 2)), ribbon = F)

produces a plot of the discrete dataset, shown in the right panel of Figure 3.
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