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Abstract: A new utilization of entropy in the context of buckling is presented. The novel concept
of connecting the strain energy and entropy for a pin-ended strut is derived. The entropy of the
buckling mode is extracted through a surrogate model by decomposing the strain energy into entropy
and virtual temperature. This concept rationalizes the ranking of buckling modes based on their
strain energy under the assumption of given entropy. By assigning identical entropy to all buckling
modes, they can be ranked according to their deformation energy. Conversely, with identical strain
energy assigned to all the modes, ranking according to entropy is possible. Decreasing entropy was
found to represent the scaling factors of the buckling modes that coincide with the measurement of
the initial out-of-straightness imperfections in IPE160 beams. Applied to steel plane frames, scaled
buckling modes can be used to model initial imperfections. It is demonstrated that the entropy (scale
factor) for a given energy roughly decreases with the inverse square of the mode index. For practical
engineering, this study presents the possibility of using scaled buckling modes of steel plane frames
to model initial geometric imperfections. Entropy proves to be a valuable complement to strain
energy in structural mechanics.

Keywords: strain energy; entropy; buckling; structural mechanics; structural engineering; steel
structures; initial imperfections

1. Introduction

The investigation of buckling modes is of great importance in the field of structural
engineering and structural mechanics. Understanding the stability behaviour of structures
under various loads and conditions is essential to ensuring their safety and reliability [1,2].

Throughout history, the study of structural stability has been intertwined with the
evolution of engineering and mathematics [3]. The concept of buckling, where slender
columns or beams, which are subjected to axial loads, deform and potentially fail under
compression, has captured the attention of engineers and mathematicians for centuries [4].
The history of buckling analysis can be traced back to the 18th century in the works of Euler,
who has made significant contributions to the understanding of the stability of columns [5].

As theory advances, so does our ability to investigate the structural behaviour of
frame structures [6,7]. The emergence of computer-based analysis and numerical methods
have enabled engineers to explore the intricacies of buckling modes in various configu-
rations. Initially, perfectly straight bars were modelled, although real geometries were
always identified as imperfect. A significant advancement has been the introduction
of finite element methods and geometrically and materially non-linear solutions [8] ca-
pable of analysing the load-bearing capacity of structures with initial imperfections; see,
e.g., [9-11]. Generally, imperfections can be categorized into three main groups: geometrical
imperfections, material imperfections, and structural imperfections [12].

Currently, the design of structural steel employs a systematic design approach known
as the Direct Design Method [13], which explicitly accounts for material and geometric
nonlinearities, residual stresses, and the presence of initial imperfections. The shape of
these initial imperfections should be defined to take into account their influence on the
designs’ load-carrying capacity while respecting the real-world measures from experiments;

Entropy 2023, 25, 1630. https:/ /doi.org/10.3390/€25121630

https://www.mdpi.com/journal/entropy


https://doi.org/10.3390/e25121630
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-6873-3855
https://doi.org/10.3390/e25121630
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25121630?type=check_update&version=1

Entropy 2023, 25, 1630

20f17

see, e.g., [14-16]. Typically, the first buckling mode shape is used to represent these initial
imperfections, assuming it is the most critical [17,18]. However, in cases where the critical
buckling loads of two distinct buckling modes coincide, the sensitivity to imperfections
increases significantly [19,20]. In these cases, the buckling mode shapes may be more
important than the magnitude of the critical force when modelling initial imperfections.

As most steel structures are unique, data on the initial imperfections from experi-
ments are limited. One approach to modelling initial imperfections is using the super-
position of the first several buckling modes and the probabilistic characteristics of their
amplitudes [13,21]. Buckling modes have shapes of trigonometric functions with indeter-
minate amplitudes, which are a subject of research.

This article is based on the heuristic argument that if two distinct buckling modes
coincide, the system tends to follow the buckling mode with lower energy and higher
entropy. Entropy can provide new information about the stability behaviour of slender
structures, both in the context of Euler buckling and geometrically nonlinear solutions with
initial imperfections. Since the entropy of the buckling mode has not yet been studied,
the concept of a surrogate model is proposed based on thermodynamics, where entropy
naturally occurs. The entropy measure used in this study is defined by decomposing the
strain energy of the buckling mode into entropy and virtual temperature.

Thus, a new concept of entropy and virtual temperature, based on the equivalence of
strain and heat energy in the surrogate model, is introduced. The surrogate model is based
on an unconventional connection between classical theories: entropy [22], heat energy [22],
strain energy [23], and buckling [1]. Entropy is presented as a new indicator of stability
and resistance to buckling. This study follows a method for modelling initial geometric
imperfections using a linear combination of buckling modes scaled by entropy. The research
progresses from a simple strut to more complex structures, such as steel plane frames.

2. Surrogate Entropy Model of Buckling

Structural mechanics uses the energies in the system, following the fundamental
principles of Lagrangian mechanics, but does not consider entropy. The question is how to
calculate entropy for a deformed structure. One of the approaches may involve a surrogate
model based on thermodynamics and the isothermal process in ideal gases; see Figure 1.

Before

No strain energy from bending = No heat energy =
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of ideal gas of buckled strut
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Figure 1. Surrogate model with ideal gas. (a) State before buckling. (b) State after buckling; a pair of
pistons has a resultant non-zero force.

Entropy can be viewed as a characteristic closely related to energy [24,25]. In thermo-
dynamics, heat energy is generated as a result of changes in the entropy of a system [22]. In
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modern theories, this entropy can be described using a relationship based on the energy
balance [26].
F-Ax =T-AS. 1)

Equation (1) relates mechanical work to thermodynamic work. The left-hand side
of the equation is the mechanical work performed by force F on path Ax as the body
moves. The right-hand side of Equation (1) is the heat energy produced by the system at
temperature T due to changes in the entropy of the system AS; see, e.g., [22].

Figure 1 illustrates the relationship between the strain energy of the lateral deformation
of the strut and the heat energy of a surrogate model based on an ideal gas. The calculation
of strain energy is grounded in linear elasticity theory, following Hooke’s law. The static
load action of the critical force is taken into account. Heat energy is modelled using the
work of pistons, where all pistons are identical, with an ideal gas, with constant mass
and constant temperature, surrogating the original strut model. The pistons undergo
deformation caused by buckling. The change in piston energy is equivalent to the change
in energy due to bending in a buckled strut. Both energies depend on an indeterminate
constant derived from Euler’s solution for buckling. With the exception of adopting
buckling energy, the surrogate model, based on the isothermal process of the gas, does not
exchange energy with its surroundings.

The entropic approach can be employed in novel applications, illustrated by modelling
the initial imperfections through the utilization of scaled buckling modes.

3. Buckling of a Pin-Ended Strut

This section illustrates a pin-ended strut as a specific case for explaining the entropy
problem. The strain energy is derived and decomposed into entropy and virtual tempera-
ture using a surrogate model. The section concludes with case studies of scaled buckling
modes, showcasing the application of maximum entropy and minimum energy principles
in the establishment of initial imperfections.

Consider a slender strut with pin-ended supports subjected to an axial compressive
load P. The strut remains ideally straight until the load reaches its critical value P, and
buckling occurs [1,2]. The critical load places the strut in a state of unstable equilibrium,
where, in addition to equilibrium on the straight strut, there also exists equilibrium on the
deflected strut; see Figure 2.

P, =1 P
; 2 e
First mode of buckling P.,= TEL# -

Figure 2. The flexural buckling of the pin-ended strut.

For a strut under critical load, bending deformation can be described according to the
Euler-Bernoulli beam theory, using the following differential equation:

dy?(x) p

o TE1YTO @)

where y(x) is the lateral deflection, E is Young’s modulus, and I is the second moment of
the area. This equation is a linear, nonhomogeneous, differential equation of the second
order with constant coefficients. Upon substituting a*> = P/(E-I), the particular solution of
this differential equation can be expressed in the form

y(x) = c1 - sin(a - x) + ¢3 - cos(a - x), for x € [0, L]. G)

From the boundary conditions, it can be calculated that ¢, = 0 for y(0) = 0 and c; -sin(a-L)
=0 for y(L) = 0, where L is the strut length and c; is the indeterminate amplitude. By using
1 > 0, it can be obtained that sin(«-L) = 0, and thus « = i-7t/L, where i represents a natural
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number of the buckling mode. The corresponding buckling modes can be derived from
Equation (3) as eigenmodes, resulting in deformation patterns that are characterized by
sine functions.

y(x) :cl-sin(i%), forxe [0, L],i =12 ..., (4)

where 7 is the number of half-sine curvatures that occur lengthwise. Buckling modes can be
described as the shapes the strut assumes during buckling, with the sine function playing a
crucial role in their formulation; see Figure 3.

=3

Figure 3. The buckling modes of the pin-ended strut.

Using the previously defined equation a? = P/(E-I), the critical loads are
) E-I .
Pcr,izlz'nzﬁz fori = 1,2, ..., (5)

Equation (5) provides the standard critical load at which buckling occurs in a pin-
ended strut. This provides insight into the behaviour of slender struts under axial compres-
sion, and valuable understanding of the design and analysis of structural systems.

In Euler buckling, the rank of the buckling modes is determined by the ranking of
the smallest critical force to the largest. This is the most common approach for ranking
buckling modes, with the first one considered the most dangerous [27].

3.1. Strain Energy

The estimation of entropy is based on the decomposition of the strain energy of a
buckling mode into entropy and virtual temperature. In the first step, an analytical solution
of the strain energy is derived.

The discretization of y(x) is performed at the centroids of finite elements. By introduc-
ing (j — 0.5)/N instead of x/L, Equation (4) can be rewritten in the discrete form

ﬁj:cl-sin(iw>,forj =12 ... N, (6)

N
wherej=1,2,... Nand N is the number of beam elements. The elements are considered to
have the same length.
In its differential form, the total internal potential energy (strain energy) of the i-th
buckling mode can be obtained as

4

L 2 L 2 2
_1 dyZ(x) 1 TTN2 ., /. TX 4 ci- 7
AHl—ZO/E-I( 102 >dx—20/E~I<cl~<zL) -sm(z T )) dx—z-E-I-4.L3. (7)

The value of All; represents the difference between the zero-strain energy of the
unloaded strut and the strain energy of the buckled strut.

It can be noted that the square of the second derivative can be replaced by the product
of the function value and the fourth derivative, E-I-(y")? = y-E-I-y""". In this expression, the
term involving the fourth derivative, E-I-y""”, represents a fictitious transverse load action.

The total potential energy is the sum of AIl; and AIl,. According to the principle of
conservation of mechanical energy, the strain energy from the internal forces AIl; (from
bending moment) is equal to the potential energy of the external forces AIl, (from load
action P, ;).
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L L
1 dy(x)\*, 1 , LE-1 [ T TX\N\2 2.t
AHQ—Z'PC;»,I"O/( dx dx—§'1 'nL'b/(Cl'lL'COS(lL)) dx—l Elﬁ (8)

The discrete form of Equation (7) is used to introduce discrete entropy. By introducing
L/N instead of dx and j/N instead of x/L, Equation (7) can be rewritten in its discrete
form as

N N ; 2
B 1 N2 . (.m-(j—0.5) L .

All; = ]; All; = EJ;E -1 <c1 . (lf) ~sm(zN N’ for N > i, (9)
when N > i and i is the index of the buckling mode. The discrete form is suitable for use in
the finite element method. One member of the series Allj; is the strain energy of a single
element of the strut. The square of the sine function in Equation (9) converges to the value

of N/2. ,
N . '_
2<sin(i”(]N0'5)>> - % for N > i. (10)
j=1

Let each buckling mode have its own scale factor using amplitude c;. By substituting

Equation (10) into Equation (9), the sum of the discrete strain energy is equal to the value
calculated from Equation (7).

27

4.137

4
AIl; =i* E-T- (11)
where i is the buckling mode number, E is the elastic Young’s modulus, I is the second
moment of the area, L is the length of the specimen, and c; is the amplitude of the half-sine
curvature that occurs lengthwise.

The strain energy is a function of the indeterminate amplitude c;, as seen, for example,
in Equation (11). However, if it is possible to link energy with entropy, ranking based on
the strain energy can be justified.

3.2. Entropy in the Surrogate Model

The strain energy of the deformed structure can be decomposed into temperature and
entropy using a surrogate model. For this purpose, the strain energy is transformed into
gas energy. In investigating the characteristics of a surrogate model, the terms entropy AS;
and virtual temperature T; are used. Following Equation (1), it can be written as

ATL; = T; - AS;, (12)

where AlIl; is the strain energy of the buckled strut from the previous section, and the
right-hand side is the heat energy associated with the gas surrogate model from the
following section.

When the virtual temperature T; is constant, the change in entropy AS can be expressed
as the work of an ideal gas with constant mass m during an isothermal process. Under
constant T}, the internal energy of the gas remains unchanged. Thus, the heat absorbed
during pressure change equals the work done by the gas; see, e.g., [28]. The entire system
is isolated, meaning there is no exchange of particles or energy with the surrounding
environment, i.e., the number of particles and energy remain constant.

The change in entropy of an isothermal process for gases, where pressure varies as a
function of volume, can be expressed as
m- R nPL_m R. W,

In

AS = = ,
My p2 My W

(13)
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where p; is the initial pressure, p; is the final pressure, V1 is the initial volume, V' is the
final volume, M, is the molar mass of the gas, and R = 8.314 Jmol 1K~ is the molar gas
constant; see, e.g., [29].

The change in entropy in the surrogate model can be described using the change in
gas volume. The buckling causes gas compression (volume reduction) on the deflection
side and expansion (volume increase) on the opposite side of the strut; see Figure 4. The
pistons are located at the centroids of the finite elements in the direction of deformation,
and the mesh of the finite elements is uniform.

; /‘n’ ~)

L H

A 1'-

o« | -ENTROPY

b

EL T

e

w [ .
raa

Figure 4. Surrogate model for the transformation of the buckling mode into entropy.

The change in entropy AS;; can be written on the basis of Equation (13). The gas
loading of the j-th element (compression and expansion) has a mass of m/N, where N is
the number of beam elements. The mass of the gas in one piston is 0.5-m/N. For the j-th
element, the equation for the change in entropy on one side of the strut (compression or
expansion) can be obtained via

- m- R Vij m-R A~ hyj m-R hij
ASi =N v, 7 T aN M,

"V T 2N M,y 14
where Vj; is the final gas volume and /;; is the final piston height. The volume V is expressed
as the product of the area A and the height /. The entropy AS;;, depending on two indices,
is similar to the volumes of the pistons Vj;. The change in volume can be expressed as the
change in the height & of the piston in the gas vessel, where & is a constant.

Figure 4 presents the gas analogy with virtual forces that straighten the elastic strut
released by the axial force. The change in the entropy of the gas on both sides of the beam
element can be expressed as the difference between two entropies caused by expansion
(h + Ahy;)/h and compression (b — Ah;;)/h.

(15)

. W+ Ak h— Ay R Ak
AS; = ASE — asG = - 1K (n g ”>~ m R 2%

2-N-M, I Ty “N-M, h’

where displacement Ah;; represents a small change in the piston height. The characteristic
Ahjj/h can be interpreted as an analogy to the strain ¢ in Hooke’s laws. The small displace-
ments are a standard condition in the Euler-Bernoulli beam theory in structural mechanics.
The magnitude of AS;; can be expressed as

m-R 1

A M, N

1
. ’Ahl]| =k - N : ’Ahl] , where A]’li]' << h. (16)
This equation expresses that there is an entropy change in the direction of deformation
Ahj;. The constant k; replaces the characteristics of the gas in the pistons, and in the context
of the buckling of the strut, it represents lateral deformation stiffness. The change in entropy
is linearly dependent on displacement.
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3.3. Entropy and Virtual Temperature

During the i-th buckling mode, the virtual temperature T; is constant in the isothermal
process, and the strain energy can be summed over all beam elements, where T; is constant
across all elements. In Equation (12), entropy and strain energy are additive quantities, so
their values can be obtained by the summation of all elements. After introducing Ah;; = f;;,
the summation of all j-th elements leads to

2. 4 4N , 2 N ,
4 pop. G Vel (- (G=05)NT 1 | (e (= 05)
W N]; {Sm<l N =Tk /; ¢ - sin | i——"

7

ATT; AS;

(17)
where ¢; > 0 is a scale factor of the i-th buckling mode. Equation (17) creates a connection
between the products of the second derivative (bending moment) on the left-hand side and
the product of deformation on the right-hand side of the equation. The sum of the absolute
value of the sine function in Equation (17) converges to the value of 2-N /.

I (.- (j—05) ¢
&:nlo'Zci-51n(z>‘—2~N~. (18)

= N T

For i < N < oo, Equation (18) takes the form of an approximate relationship. By
substituting Equations (10) and (18) into Equation (17), Equation (17) can be simplified to
the form of Equation (19).

4

2
4 Ci'TL' [oF
E.]- =T .2k -2 1
1 4.3 i 1 i (9)
| — ————
ATT; AS;

where the left-hand side is the change in strain energy AIl; and the right-hand side T;-AS;
takes into account the change in entropy. By separating the entropic term from Equation (20),
an expression for entropy can be written.

C.
AS; =2k - El (20)

where m is the mass of the gas in all pistons and m, R, My, h are constants. Equation (20)
expresses the entropy of the ideal gas in the surrogate model. Due to the specific shape of
the sine functions of the buckling modes, the entropy of the ideal gas is a function of only
the amplitude ¢; and constant ky.

The virtual temperature T; of the gas calculated from the surrogate model of the
pin-ended strut can be written using Equation (19), as

0

— 4. E- ] ——
T,=1i"-¢;-E-1 8§k I3

(21)
The decomposition of All; into T; and AS; introduced both T; and AS; as dependent

on ¢;, but only the virtual temperature T; is a fourth power function of the index i.
Equation (19) can be written using P,,;

Pcr,l Pcr,l
E-I c2 . 2 E-T ;-3 c
oE-L g o 2E-T 4 e i
LA — A Dk S 27
7 O A 7 S Sy S A 22)
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Equation (22) introduced the decomposition of the strain energy All; into terms of
virtual temperature T; and entropy AS;. The utilization of Equation (22) can be presented
in two fundamental cases.

In thermodynamics, any equilibrium state can be characterized either as a state of
maximum entropy for a given energy or as a state of minimum energy for a given en-
tropy [30]. In structural mechanics, the strain energy and the principle of minimum total
potential energy exist in many applications [31-40], but the principle of maximum entropy
is not commonly considered. Equation (22) establishes a link between structural mechanics
and thermodynamics. In the surrogate model, the principle of maximum entropy can be
applied using the right-hand side of Equation (22).

The case of constant energy, AIT; = constant. If ¢; = ¢1 /i is introduced, then the strain
energy remains constant across all buckling modes, and entropy decreases with the square
of index i. The first buckling mode, which has the highest entropy at a constant energy, is
realized first.

In the case of constant entropy, AS; = constant: if c; = ¢y is introduced as a constant for
all buckling modes, then the strain energy increases with the fourth power of the index i,
and entropy remains constant across all buckling modes. The first buckling mode, which
has the lowest strain energy at constant entropy, is realized first.

3.4. The Case Study

This case study considers a pin-ended IPE240 steel member with the length of L = 3 m.
The member has a Young’s modulus of E = 210 GPa, and its second moment of area is
1=2.83-10"° m*. Euler’s critical load is Pcr1 = 651.7 kN. The results in Table 1 are obtained
with the assumption of c; =1 m and k; = 1000 Jm~1K~1. Table 1 presents a scenario of
constant entropy, as entropy does not depend on the buckling mode index.

Table 1. Ranking of buckling modes according to strain energy, assuming constant entropy.

Buckling Critical Force o Strain Energy Ten‘lhr:raatlure Entropy
Mode Index  P,,; [kN] i ATL; [MJ] le Kl AS; [JK1]
1 651.7 1 0.536 842.0 636.62
2 2606.9 1 8.576 13,472.7 636.62
3 5865.5 1 43.418 68,200.3 636.62
4 10,427.6 1 137.221 215,546.7 636.62
5 16,293.1 1 335.013 526,237.0 636.62
6 23,462.0 1 694.683 1,091,205.0 636.62

In Equation (22), considering the decomposition of strain energy into entropy, virtual
temperature is the measure by which energy is evaluated in terms of entropy.

The criterion that the equilibrium state can be characterized as a state of minimum
energy for given entropy can be applied. The minimal strain energy occurs for the first
buckling mode, which occurs first; see Table 1. Subsequent buckling modes are ranked in
ascending order, just as if according to critical forces. It holds that ATT; = i*-AIT;.

The same conclusion can be obtained using the criterion that the equilibrium state
can be characterized as a state of maximum entropy for a given energy. By using Equa-
tion (22), the amplitude (scale factor) needs to be set as decreasing across buckling modes,
¢; = c1/#%, in order to keep the strain energy constant across all modes. Using this new scale,
the entropy of the buckling modes is computed; see the last column in Table 2.

In Table 2, the criterion of maximum entropy for a given energy is applied. The first
buckling mode, which occurs first, corresponds to the maximum entropy. Subsequent
buckling modes are ranked in descending order, inversely to their ranking by critical forces.
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Table 2. Ranking of buckling modes according to entropy, assuming constant strain energy.
Buckling Critical Force c Eslizlt;y Terzllll)ret:;lure Entropy
. t 1K1
Mode Index P, ; [kN] ATL, [MJ] T, [K] AS; [J-K-1]

1 651.7 1 0.536 1.0000 636.62
2 2606.9 0.25 0.536 15.3229 159.15
3 5865.5 0.111 0.536 25.0961 70.74
4 10,427.6 0.063 0.536 58.2375 39.79
5 16,293.1 0.04 0.536 72.6713 25.46
6 23,462.0 0.028 0.536 130.7333 17.68

The scale factor c; in Table 2 decreases approximately as intensively as the mean values
of the scale factors of the first three buckling modes for I-sections in [21]. The article [21]
presents data in its Table 1 from measurements of the initial out-of-straightness of nine IPE
160 columns, performed at the Polytechnic University of Milan and published by the ECCS
8.1 committee [41]. In addition, the article [21] uses the results from the measurements of
428 samples [42]. The scale factors ¢; in Table 2, obtained from the analysis of strain energy
and entropy, are practically the same (differences are minimal) as the scale factors from
those experiments [21,41].

The case in Table 2 is a realistic reflection of the buckling problem, and the scale factor
c; represents the imperfection measure. Thus, the initial imperfection can be introduced as
a linear combination of the scaled buckling modes using their amplitudes ¢; = ¢; /i, where
I is the index of the buckling mode and c; is the amplitude of the first buckling mode. The
amplitudes c; also express the (virtual) entropy for a given strain energy.

The ranking of buckling modes by strain energy in Table 1 and by entropy in Table 2
is the same. In the case study, both the criteria of minimum energy and maximum entropy
lead to the same ranking of the buckling modes.

4. Buckling of a Cantilever

It can be assumed that the entropy in Equation (16) is applicable to other patterns
of the buckling modes of other compression columns with different boundary condi-
tions. The entropy of the i-th buckling mode can be obtained by summing the terms from
Equation (16).

1 N
AS; =k - N Y| Ak, (23)
j=1
where k; is constant and 4;; is a deflection from the eigenvalue vector of the i-th buckling
mode. Each eigenvector is dimensionless, with an indeterminate scale factor c;. For example,
the deformation of the i-th buckling mode of a cantilever can be expressed by the function

cy(x) =c;- (1—cos((2i—1)%)), forxe 0, L],i=12 ..., (24)

where ¢; > 0 and the prefix c in “y(x) stands for cantilever. By substituting j/N for x/L, the
continuous function can be written in its discrete form as

fii=ci (1—cos((2i—1)7w>>, forj = 1,2, ... N. (25)

For Ah;; = fjj, the entropy of the i-th buckling mode of the cantilever can be written as

G- (1 cos<(2i 1)7”2]_1\]05))) ‘ (26)

N

1
CA P . —_
Si=ki-g ];
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In contrast to a pin-ended strut, the entropy of cantilever buckling modes is not
constant but slightly dependent on the i-th index, especially for the first buckling mode.

AS; =kq - ¢ {1 + — 0'5)}, (27)
where [-] is not constant across buckling modes. However, the change in entropy is small
compared to the change in strain energy. The change in strain energy All; of the i-th
buckling mode of the cantilever can be derived analogously to the solution in Section 3.

L 2 2 E-T-7%.c2
CAHZ-:;/EJ(‘%(;)) dx:ﬁ(zi—l)‘l. (28)
0

By substituting Equations (27) and (28) into Equation (12), the virtual temperature °T;
can be written as
C_CATL
"TOCAS

c

2-i—1)*¢

It (i—
E-I-m [n( - (i—0.5) (29)

64-ky L3 i—0.5) +cos(m-i) |’

If ¢; = ¢y is introduced as a constant for all buckling modes, the strain energy greatly
increases with the fourth power of index i. However, the entropy computed from the
surrogate model changes slightly across the buckling modes.

Similarly to the pin-ended strut, the strain energy increases significantly with the
fourth power of the index i. In comparison to the pin-ended strut, the entropy cal-
culated from the surrogate model is slightly dependent on the index 7, as shown in
Equation (27) compared to Equation (20). This example implies that the entropy of other
members with different supports may also exhibit a slight dependence on the index i. The
virtual temperature is proportional to the fourth power of the index i, as indicated by
Equations (29) and (21).

In summary, it can be concluded that the dependencies of the pin-ended strut and
cantilever are very similar. Generalized to other structures, entropy may show a slight
dependence on the index i, while the virtual temperature exhibits a strong dependence
on the fourth power of the index i. Both entropy and virtual temperature are linearly
dependent on the amplitude c, as observed in both the pin-ended strut and cantilever cases.

5. Buckling of Steel Plane Frames

The design criteria for steel structures are built on the principles of the natural sciences
and empirical experience [2]. The limit states of structures are traditionally studied using
the finite element method, which allows for modelling structures with general geometry,
boundary conditions, and loading. Engineers combine theoretical knowledge with practical
expertise and innovations to design safe and reliable structures.

In the previous sections, strain energy was decomposed into its components of virtual
temperature and entropy. This chapter consists of a case study that verifies the heuristic
argument that a similar decomposition can be carried out for steel plane frames, albeit with
certain limitations. In the initial step, the strain energy and its dependence on the index i of
the buckling mode are studied.

The change in the strain energy for the i-th elastic buckling mode of the steel plane
frame can be calculated using a second-order theory-based finite element model (FEM);
see, e.g., [20].

dy2(x)\
dkx2 ) dx|, (30)

K 19 L
AL = Y 5-/5.1,( K; -
k=1 0

where L is the length of the k-th member, I is the second moment of the area of the k-th
member, and yi(x) represents the deformation of the i-th elastic buckling mode of the
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k-th member. The input condition for addressing Equation (30) involves incorporating
eigenmodes normalized to the sum of deformations equal to one.

A significant gap exists regarding the calculation of entropy change in buckled frames.
Without a consideration of entropy, strain energy is analysed using an undetermined scale,
denoted as «; in Equation (30). It can be assumed that, for a given strain energy, the entropy
will decrease analogously to the results in Table 2. The scale factor x; can be calibrated in
such a way that the strain energy of each buckling mode is equal to the strain energy of the
first mode. The most critical mode should have the highest entropy corresponding to the
lowest critical force, but this question has not been examined so far.

The methodology for ranking the buckling modes of steel plane frames can be illus-
trated in a case study. The columns and cross-beam of the frame are made of hot-rolled
IPE240 members. The structural material is steel grade 5235, with a Young’s modu-
lus of elasticity E = 210 GPa, and the second moment of the area for the IPE profile is
I, = 3890 cm*. The geometry of the frame is shown in Figure 5.

|’ I
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i
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i
i
i
i
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i
i
i
i
i
i
i
i
i

IPE 240

6m
6 m

Steel plane frame

I PE 240
I PE 240

e == —— ]

6m

*

6m

Figure 5. The geometry of the steel plane frame.

The frame is modelled using the finite element method, with the stiffness matrices
and geometric matrix of the beam finite element published in [20]. The frame is meshed
using 37 nodes and 36 beam finite elements. Each element has nine internal points where
deformations are utilized. In total, there are 37 + 36 - 9 = 361 deformation points, where each
point has one horizontal and one vertical deformation. The total deformation at each point,
which has a general direction, is calculated using the Pythagorean theorem. Rotations are
not considered. The vector of all 361 total deformations is normalized so that the sum of all
total deformations equals one. The critical forces and corresponding buckling modes are
computed using a second-order theory-based FEM [20]; see Figure 6.

BUCKLING A 11 BUCKLING

GRAPHIC | & GRAPHIC
NUMERIC | f NUMERIC
BENDING M. { ! | BENDING M. |
ENTROPY l " ENTROPY
P.ENERGY : P.ENERGY

Figure 6. Second-order theory-based FEM: first buckling mode and bending moment of a steel
plane frame.



Entropy 2023, 25, 1630

12 of 17

The first six eigenvalues (critical forces) and eigenvector deformations (buckling
modes) are computed using the step-by-step loading method; see Figure 7.

Figure 7. First six buckling modes of a steel plane frame.

The procedure was practically carried out as follows: The critical forces P,; and
the corresponding buckling modes (eigenvectors) were computed. Using x; = 1 and the
normalized scale of total deformations, the strain energies of the buckling modes were
computed; see the third column in Table 3. The strain energy from the third column
approximately correlates with the strain energy calculated using the approximation formula
i* AT}, where the formula i* AIT; was explicitly derived for pin-ended struts.

Table 3. Ranking of the buckling modes according to the strain energy for a given entropy.

Strain Energy ATl [J]

Buckling Mode Critical Force . Scale Factor «; Appro?< imation of
Index P... [kN] (fror.n Normalized (~Entropy) Strém Energy
et Eigenmodes) ~it ATl [J]
1 4125 1.1056 1.0000 1.1056
2 2925.8 61.3416 1.0000 17.6905
3 3830.9 101.8158 1.0000 89.5581
4 9784.0 451.7487 1.0000 283.0477
5 11,085.0 880.4734 1.0000 691.0345
6 21,023.4 1406.9822 1.0000 1432.9292

Equation (30) uses the scale factor «;, which influences All;. If the value of x; = 1, then
All, is solely computed from the normalized total deformations; see Table 3.

The last column in Table 4 provides the approximation of entropy ~ «;, which sets the
strain energy of the i-th buckling mode as equal to the strain energy of the first buckling
mode. The value of «; is calculated according to Equation (31).

a1
Ki = ATT, (31)

where the strain energies under the square root are calculated solely from the normalized
total deformations.
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Table 4. Ranking of the buckling modes according to the entropy for a given strain energy.
Buckling Mode Critical Force Given itllia'l[r}]Energy Scale Factor x; Entropy ~
. i L= ~ R
Index Peyi kNI (by Scaled Eigenmodes) (for AIL; = ATL)
1 412.5 1.1056 1.0000 1.0000
2 2925.8 1.1056 0.1343 0.1343
3 3830.9 1.1056 0.1042 0.1042
4 9784.0 1.1056 0.0495 0.0495
5 11,085.0 1.1056 0.0354 0.0354
6 21,023.4 1.1056 0.0180 0.0180

The strain energy can be roughly approximated as AIl; ~ i* AIly. Similarly to the
strain energy relationship between the frame and the pin-ended strut, a similar relationship
for entropy can be assumed. Although the link is not direct, it can be expected that the
change in entropy can be found to be linear in «;, albeit with the potential influence of
additional factors. Although the equation for computing the frame’s entropy has not been
derived, a strong correlation between entropy (for a given energy) and the results in the
last column of Table 4 can be expected. The scale factor «; in the penultimate column can
be heuristically considered as the entropy estimate; see Table 4.

The perfect independence of entropy from the index i exists only for pin-ended struts;
see Equation (20). The distinction between a frame and a strut lies in their structural
composition. A frame consists of distinct and differently loaded structural members, with
each absorbing a different part of the strain energy. For instance, a frame may include
an unloaded cantilever that can buckle without strain. The significant presence of such
structural elements represents a limitation of this method. In such cases, the frame’s entropy
is slightly dependent on the index i, because entropy is associated with deformation due
to buckling. In this context, entropy computed from the normalized eigenvector can be
understood as an estimation based on the assumption that the behaviour of the frame is
similar to pin-ended struts.

If there is an estimate of entropy, the criterion that the equilibrium state can be charac-
terized as a state of maximum entropy for a given energy can be applied. The maximum
entropy occurs for the first buckling mode, which occurs first; see the last column in Table 4.
The same conclusion can be obtained using the criterion of the minimum energy for the
given entropy; see the third column of Table 3. It can be noted that this conclusion applies
only to the case studies presented in this article, and it is not generally proven for every
frame that the ranking of buckling modes by entropy must be the same as their ranking by
critical force. For instance, if the first and second critical buckling loads coincide, it may be
useful to explore alternative approaches for the ranking of buckling modes [19].

This section addressed Euler stability, which investigates the buckling of ideal frames
without initial imperfections. However, real structures have initial geometric imperfections
due to their manufacturing and assembly. The shape and magnitude of these imperfections
are still a matter of discussion, which will be the subject of the next section.

6. Initial Geometrical Imperfections

This chapter is based on the idea that initial geometric imperfections, simulating the
imperfections characteristic of a physical structure, can be modelled as a linear combination
of scaled buckling modes [43]. The load-carrying capacity of the structure is then computed
using a geometric nonlinearity solution. The challenge lies in estimating the magnitudes
of the buckling modes that should probabilistically capture the tendency of the frame to
exhibit individual buckling shapes [13,21,43]. This article introduces entropy as a measure
of this statistical tendency.

The classical method uses the scaling of the lowest eigenmode, see, e.g., [44,45]. The
concept behind this theory is that the most critical imperfect geometry is the closest to the
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final collapse configuration, since it requires the least deformation energy to go from an
unloaded state to its final collapse situation [46].

The initial imperfections of frame structures can be based on scaled buckling modes.
Such fittings of randomly generated shapes of imperfection have been introduced, e.g.,
in [43]. This method is based on the scale factors of cold-formed steel members calculated on
the basis of experimental measurements [47]. The use of the energy measure of eigenmodes
to introduce initial imperfections has been presented for cold-formed steel columns [48]
and axially compressed cylindrical shells [49]. In the case of shells, the energy measure of
the geometric imperfections was defined by the square root of the strain energy [48].

The advanced introduction of the initial frame imperfections using entropy as a
supporting energy factor has not yet been presented. Entropy, as a complement to strain
energy, plays an important role in structural stability analysis by justifying the scaling of
the buckling modes based on strain energy. The case study presented here demonstrated
the rational scales of the buckling modes, with the dominant position of the first buckling
mode. Ranking by strain energy is possible when the entropy remains constant across all
buckling modes, and, analogously, ranking by entropy is achievable only under constant
strain energy.

The scales of the buckling modes exhibit a decreasing trend if the same strain en-
ergy is considered in each buckling mode; see Table 3. Such scaled buckling modes can
be applied in the modelling of initial geometric imperfections. Examples of initial geo-

metric imperfection shapes using combinations of the scaled buckling modes are shown
in Figure 8.

I 1 \ '\ | i
|| Scale factors | \\ Scale factors | l| Scale factors |
\ 1.0000 | \ 1.0000 \ ‘ 1.0000 I
\ 0.1343 | \ -0.1343 | \ -0.1343 |
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\ 0.0354 0.0354 | \ 0.0354 \
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Figure 8. Initial imperfections from scaled buckling modes, first six combinations.

The signs of the scale factors of the buckling modes create 2° = 64 combinations. The
first buckling mode is dominant and the other modes only slightly change its shape; see
Figure 8. However, small changes in the initial geometry of the columns can significantly
influence the load-carrying capacity of the steel plane frame. The initial imperfection of the
cross-beam is not important because it is subjected to a bending moment due to the lateral
deformations of the columns. Compared to other geometrical and material imperfections,
the most significant sensitivity arises when the non-dimensional slenderness of the columns
is approximately equal to one, as demonstrated via global sensitivity analysis [18].

The basic assumption is that enough modes must be applied to ensure that the defor-
mations of critical elements are induced by imperfections [21]. However, the scale factors
of higher-order modes decrease rapidly and their contribution can be neglected from a
certain order. It can be noted that common engineering practice often uses only the first

buckling mode [21]. To estimate the limit state, the initial imperfection should be close to
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the critical mode, which replaces the shape of the frame in the limit state with failure due
to buckling. This approach is consistent with the EUROCODE 3 design standard [27].

In the stochastic approach, the initial imperfection can be thought of as an approxi-
mation of the real imperfection from measurements on a large number of frames. Scaled
buckling modes can be used for the random simulation of the shapes of the initial imper-
fections. One possibility is to consider the contributions of buckling modes with a mean
value of zero (a perfect strain frame) and random variability based on the scale factor. A
similar approach has been applied in probabilistic reliability analyses [18].

7. Conclusions

This article investigated the duality of minimum energy and maximum entropy in
the context of buckling. The entropy analysis of structures supports energy-based com-
putational results and provides a rationale for ranking buckling modes based on strain
energy. An explicit solution was derived for the relationship between the strain energy and
change in entropy within the context of the pin-ended strut. Strain energy is decomposed
into virtual temperature and entropy using a surrogate model. The change in entropy was
found to be linear in displacement. The principle of this decomposition is generalized for
steel plane frames, where it is applied as an approximate relationship.

A contribution to engineering practice is the introduction of an entropy-based analysis
of buckling modes. The introduction of entropy extends the applicability of the criterion of
minimum energy in structural mechanics. Buckling modes can be ranked according to their
strain energy for the given entropy. Alternatively, buckling modes can be ranked according
to their entropy for the given strain energy. The case studies have shown that the ranking
aligns with the traditional method based on critical forces, but this conclusion cannot be
generalized for all types of frames and can be studied further.

Another application of scaled buckling modes was found in the analysis of the initial
geometric imperfections of steel columns. The scaled buckling modes, based on a constant
energy, approximately coincide with the experimentally determined initial imperfections
of steel IPE160 columns [21,41]. The scale factors can be interpreted as an estimate of
entropy. This observation enables the inverse modelling of initial imperfections using
scaled buckling modes, where each mode has the same strain energy.

In the case of frame structures, the scale factors of the buckling modes demonstrate a
decreasing trend when the strain energy is constant in each mode. These scale factors can
heuristically be interpreted as an estimate of entropy. Scaled buckling modes are valuable
when dealing with the initial geometric imperfections formed by their linear combination.
Each buckling mode is assigned the same strain energy through a change in scale. The
initial imperfection can be considered a linear combination of these scaled buckling modes,
similar to the case of columns.
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