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Abstract: The increase in ecosystem biodiversity can be perceived as one of the universal processes
converting energy into information across a wide range of living systems. This study delves into the
dynamics of living systems, highlighting the distinction between ex post adaptation, typically associ-
ated with natural selection, and its proactive counterpart, ex ante adaptability. Through coalescence
experiments using synthetic ecosystems, we (i) quantified ecosystem stability, (ii) identified correla-
tions between some biodiversity indexes and the stability, (iii) proposed a mechanism for increasing
biodiversity through moderate inter-ecosystem interactions, and (iv) inferred that the information
carrier of ecosystems is species composition, or merged genomic information. Additionally, it was
suggested that (v) changes in ecosystems are constrained to a low-dimensional state space, with
three distinct alteration trajectories—fluctuations, rapid environmental responses, and long-term
changes—converging into this state space in common. These findings suggest that daily fluctuations
may predict broader ecosystem changes. Our experimental insights, coupled with an exploration
of living systems’ information dynamics from an ecosystem perspective, enhance our predictive
capabilities for natural ecosystem behavior, providing a universal framework for understanding a
broad spectrum of living systems.

Keywords: synthetic ecosystem; experimental ecosystem; microcosm; information; entropy; diversity;
adaptability; adaptation; evolution; homeorhesis; homeostasis; constraints

1. Introduction

Living systems can be perceived as systems that convert energy into information.
The increase in the biodiversity in ecosystems is seen as one of the conversion processes.
Therefore, understanding ecosystem dynamics from the perspective of information, the
focus of this special topic is important for both preventing ecological crises and grasping
the fundamental nature of living systems. While it is argued that organisms increase their
systemic information through “adaptation by natural selection,” ecosystems lacking overt
natural selection mechanisms require a distinct framework to understand phenomena that
appear to enhance their information. “Adaptability” is posited as a concerted counterpart
to natural selection, embodying the essence of information processing in living systems [1].
From the viewpoint of ecosystem framework, modeling living systems has propelled
our comprehension of how they augment their information by increasing the entropy of
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the universe [1,2]. In systems ecology, numerous measurable macroscopic parameters
encompassing information have been introduced [3]. Theoretical ecology has identified
pivotal challenges [4] and offered various mechanisms addressing them in the context of
adaptation [5,6]. Despite these advances, a comprehensive quantitative understanding of
the dynamics of ecosystems and broader living systems remains elusive.

The interdisciplinary nature of this field presents challenges in fostering idea ex-
change among researchers, potentially impeding progress [7]. A contributing factor may
be the need for explanations that are more extensive than those typically found in or-
dinary papers. This study, which centers on the changes in ecosystems, approaches a
wide array of living systems from the perspective of an ecosystem framework. Aligned
with the goals of this special issue—to encourage interdisciplinary dialogue—this study
offers both a thorough and accessible introduction as well as preliminary experimental
findings for greater unseen ideas. The extended introduction is designed to elucidate the
relevance of the experiments conducted in this study, demonstrating their significance not
only for understanding ecosystems but also for providing insights into a broad spectrum
of living systems.

1.1. Ecosystem Framework and Macroscopic Parameters

Grasping the overall changes in ecosystems through the lens of macroscopic parame-
ters, such as entropy and information, is beneficial for comprehensive understanding. If the
alterations within various ecosystems can be encapsulated by a limited set of macroscopic
parameters, it not only facilitates predictive modeling but also indicates the presence of
robust constraints, effectively reducing the substantive dimensionality of the systems.

While this approach diverges from the conventional definition of “ecosystem,” expand-
ing the concept of ecosystems to encompass lifeless environments allows for a seamless
integration from molecular to ecosystems. Often, even in typical ecosystems, boundaries
are indistinct and defined abiotically. To circumvent confusion with ecosystems, we in-
troduce the term “panecosystems” to describe systems that include ecosystems but also
extend to contexts devoid of living entities, thereby enabling analysis through an ecosystem
framework. To fully comprehend the significance of ecosystem stability and its under-
lying mechanisms, it is imperative to consider the entropy or information within these
panecosystems.

Let us consider, as a hypothetical exercise far removed from practical reality, the four
panecosystems depicted in Figure 1A. These are represented by focusing solely on the
spatial distribution of an equal total number of identical atoms in a scenario where other
factors, such as chemical energy, are disregarded. In the monomer system (at the leftmost
end of Figure 1A), each monomer possesses a degree of freedom in its state (position,
velocity, etc.). This macrostate encompasses numerous microstates. Statistical entropy (SB)
has been defined as a quantifier of the number of possible microstates (W) expressed as
SB = kB lnW, where kB is the Boltzmann constant. Note that understanding formulas is not
essential to grasp the concepts presented in this study. In the polymer system (positioned
to the right of the monomer system in Figure 1A), defining the state of one monomer
inherently limits the potential states of the remaining nine monomers within a certain
proximity. As a result, the polymer system demonstrates greater order and constraints
relative to the monomer system, manifesting in a reduced number of possible microstates
or a lower statistical entropy. A similar trend of diminishing statistical entropy can be
observed when moving rightward in Figure 1A.

This entropy, SB, is commonly understood to be analogous to the equilibrium case of
Shannon entropy (or expected information) for microstates x, expressed as
SH = −∑

x
p(x)lnp(x), where p(x) is the probability of state x. This relationship can also be

extended to non-equilibrium states [8–11]. Entropy is recognized not only as an indicator
of the direction in which a state will evolve but also as a fundamental link to information,
energy, and work. In this study, we do not dwell on the distinctions but rather adhere
to the prevailing conventions of information thermodynamics. We employ SH, which is
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applicable to non-equilibrium states, as a surrogate for entropy (S) in the broader contexts
of thermodynamics and statistical mechanics.
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Figure 1. Ecosystem framework for a wide range of living systems. (A) Four panecosystems with
an emphasis on the spatial arrangement of an equivalent number of identical atoms in a simplified
scenario that excludes other variables, such as chemical energy. (B) Panecosystems that are marginally
more realistic than those in A incorporate a diversity of components. The three types of macroscopic
parameters associated with information—IS, Emergy, and H′—although distinct in definition, would
roughly exhibit higher values in the systems depicted on the right side. Refer to the main text for
detailed explanations.

The amount of system information could be simply defined as the decrease in the
number of possible microstates, i.e., the difference in statistical entropy [1]: IS = Sinitial − S.
This metric interprets the extent to which states are constrained by order. In this context, as
the statistical entropy decreases as one proceeds rightward in Figure 1A, the information
correspondingly increases. This definition of information is simple, intuitive, and theoreti-
cally convenient as it directly relates S, despite the unclear initial state Sinitial. Therefore,
in this study, “information” means IS unless otherwise specified. However, their practical
application to complex systems presents significant challenges, and actual measurement
is fraught with difficulties [1]. Furthermore, note that this definition is sometimes not ap-
propriate when considering information about living systems. For example, if all internal
components in the system disappear, S will be zero, and IS will be maximum. Therefore,
more suitable definitions of information exist, contingent upon the specific situation. For
instance, the relative entropy between the current state and the steady state is thought to
exemplify the concept that ecological communities acquire information from the environ-
ment as they near equilibrium [12]. It has also been demonstrated that relative entropy can
depict state stability in models of the adaptive dynamics of ecological communities [13].

In the field of systems ecology, information is addressed as the “components and
connections of system organization” [3]. This definition intuitively aligns with the afore-
mentioned concept of IS. Although translating this definition into mathematical terms
poses a challenge, systems ecology proposes some measurable indexes that include the
concept of information, such as “Emergy” [3,14,15]. This term represents the summation of
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energy required to generate a system and has been utilized as an indicator of ecosystem
sustainability. Intuitively, incinerating 50 kg of humans or bacteria may yield a similar
amount of energy. However, the creation of a 50 kg human would consume more en-
ergy. This discrepancy suggests the involvement of information, positioning Emergy as a
substantive macroscopic parameter encapsulating information. Moreover, the concept of
“Transformity” is defined as Emergy divided by available energy, potentially drawing it
closer to the concept of information.

Distinct from the information IS, the Shannon–Wiener index, frequently employed
as a diversity index within ecosystems [16], denotes the Shannon entropy of species [17]
as H′ = −∑

i
pilnpi, where pi is the proportion of individuals belonging to the i-th species.

This index is zero for all panecosystems in Figure 1A involving only a single species or
type. It is important to note that while various terms with “information”, “entropy”, and
“diversity” are prevalent, there are both nuanced similarities and even conceptual inversions
between them.

However, adopting a slightly more realistic perspective with diversity, as depicted
in Figure 1B, the diversity index H′ increases as one moves to the right, aligning with the
direction of IS. This co-direction suggests that the constraints by the “realistic perspective”
of the living system somehow connect H′ and IS. In other words, understanding these rela-
tionships will directly lead to an understanding of living systems. Though diversity takes
various forms, it tends to align with the direction of IS in reality. Diversity’s relationship
with thermodynamic indicators like IS or Emergy is typically more tenuous, yet it is often
more convenient and allows for more straightforward measurement. No single form of
diversity would be inherently superior, and even combinations of various diversity indexes
lead to a dramatic reduction in system dimensions.

Ecological studies have characterized ecosystems using various diversity in-
dices [18–20]. For instance, Species Richness, which simply counts the number of
different species in an ecosystem, is the most intuitive and commonly used measure
of biodiversity. However, this indicator does not account for species abundance, ren-
dering it a limited expression of biodiversity and a challenging metric to estimate
accurately from natural observations. Consider an ecosystem with three species, each
comprising 1000 individuals, totaling 3000. Contrastingly, another ecosystem might
have 2997 individuals of one species and one individual from each of three species,
totaling 3000 individuals across four species. While the latter demonstrates greater
Species Richness, the presence of a single individual species may have minimal impact
on the ecosystem’s characteristics. Moreover, observing a solitary individual is highly
probabilistic, and Species Richness is greatly influenced by the scope of observation.
The above-mentioned H′ index is a diversity measure that incorporates the likelihood
of encountering individuals based on probability theory [18]. The Hill number is a
more generalized indicator that enables multi-faceted evaluation, used in the Results
and Discussion section below. Utilizing profiles with multiple indicators is considered
preferable to selecting a single or limited measure [20]. It is also crucial to consider not
only species differences but their phylogenetic disparities and functional diversity [19].
Functional diversity, in particular, is key to comprehending ecosystem processes and
their responses to environmental stresses and disturbances, marking a rapidly evolving
research area. As stated, there are various diversity indicators, each with its merits and
limitations, and the field continues to grow with new insights and measures. These
can be regarded as realistic macroscopic parameters of ecosystems.

Those macroscopic parameters, such as S and IS, Emergy, Transformity, and various
diversity indexes, are applicable beyond ecosystems. Applying them to a wide range of
living systems as panecosystems seamlessly will highlight the characteristics of each system
and provide an integrated understanding of living systems.
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1.2. Information Dynamics in Living Systems: Macroscopic and Microscopic Perspectives

How do living systems accumulate information? As depicted in Figure 1B, according
to the Second Law of Thermodynamics, in an isolated system—one devoid of external
material or energy inputs—the entropy S would increase (signifying a movement to the
left in the figure), indicating a decrease in information, and ultimately reaching a state
of equilibrium. However, when considering living systems, it is important to note that
even Earth is not an isolated system but rather a closed system. In the context of these
living systems, the universe represents the sole example of an isolated system. Thus,
living systems, being subject to external energy inputs, have the capacity to increase
information. This process does not contradict the Second Law of Thermodynamics as long
as the increase in information within living systems is offset by an overall increase in entropy
within the universe.

Nonetheless, it is not a given that energy input always increases information. For
instance, simply raising or lowering the system’s temperature or altering its volume by
expansion or contraction would not typically result in a continuous growth of information.
The continuous information growth necessitates “agents” capable of information process-
ing, akin to Maxwell’s demon [21] that can manipulate internal components. In ecosystems,
the organisms residing internally serve as agents capable of processing information. This
ability is not limited to higher organisms, such as humans; even bacteria possess systems
enabling them to respond optimally to their environment [22].

In the case of organisms with explicit self-replication capabilities, it can be posited that
those with higher informational content may have enhanced survival prospects through
mutation and natural selection. However, this does not necessarily imply an average in-
crease in the system’s informational content; rather, it may lead to a decrease in information
among systems that are not selected. Moreover, it is also difficult to grasp the reproduction
or disappearance of the system itself in a reversible manner.

By considering systems at the unit level of ecosystems like panecosytems and ad-
dressing processes like polymer synthesis, cellular replication, and their respective reverse
reactions through an information thermodynamics analysis, conditions for self-replication
have been mathematically formulated from a statistical entropy standpoint [23]. This
framework suggests that if the system changes in a way that increases the entropy of the
universe more effectively, then the energy input to the system will result in a generation or
enhancement of the system information. It can be used to explain how pre-living molecular
systems gained the function of self-replication or how the Earth has given rise to a variety
of species. In other words, considering the time scale of billions of years or infinity, it might
be possible to think that it is no coincidence that Figure 1B moves to the right. However,
this framework has not yet provided dynamics in a specific timescale and upper limits,
such as the maximum amount of information, or eternal stability, such as immortality.

Regardless of whether it is a simple chemical reaction system or a complex living
system, the behavior of the equilibrium state can be described using free energy, incorpo-
rating both energy and statistical entropy. However, in a non-equilibrium state, various
dynamics can occur in high-dimensional complex systems, making them extremely difficult
to understand and predict. Moreover, the emergence of sequence information in polymers
such as DNA and proteins further complicates the analysis.

In order to understand the characteristics of information carriers or other specific
hardware, the interaction mechanism of elements within a system, and the corresponding
dynamics on a specific time scale, it is necessary to consider not only the macroscopic
perspective but also the mechanism of microscopic dynamics.

As for information carriers, speaking broadly, the simple answer for organisms would
be genomic DNA, although it is known that genomic DNA alone is insufficient to represent
the heritable information [24–26]. However, for more general living systems, it is useful
to consider the process by which information carriers are born in dynamics. Theoretical
research has revealed that competition in two hierarchical layers, intracellular and intercel-
lular, make two originally symmetrical elements asymmetrical into “information carriers,”
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which is not directly functional and become an information source for the functional units,
and “functional units,” which is directly functional and does not become information
source [27]. This research shows that the characteristics of each element become differ-
entiated regardless of their original characteristics. Thus, the framework can be applied
not only to the differentiation of DNA and proteins, i.e., the origin of the central dogma
but also to cell differentiation or the division of roles in social animals. Extended to an
extreme, it may be possible to consider that two system parameters acquire characteristics
appropriate for the roles of information carriers, e.g., robust and not directly functional, and
functional units, e.g., flexible and directly functional, regardless of their original characteris-
tics. This assumption may provide clues to elucidate the information carrier of ecosystems
in experiments in this study.

The fidelity of replication of sequence information in organisms has been extensively
studied in the context of the “error catastrophe” concept, wherein excessive copying errors
can lead to inviability [28]. While this concept primarily addresses a high level of accuracy
in genetic self-replication, it might be valuable when considering other systems, such
as ecosystems.

The perspective of the dynamics of sequence information also has features in common
with other systems, such as ecosystems. Theoretically, the synthesis and destruction process
of polymer sequence information has been analyzed from the perspective of the hardness
of the processes [29], which would be similar to the concept of Emergy in the ecosystem
mentioned above. Also, it is known that slow kinetic synthesis produces complex polymer
sequences [30], which would be related to the trends of ecosystems in that developed
ecosystems are slow [31] and that mutualism and diversity are enhanced in slower envi-
ronments [32]. From this microscopic dynamic perspective, there arises a potential for
macroscopic parameters that can describe the stability of conditions and the direction of
change from molecules to ecosystems.

1.3. Diversity and Information Dynamics in Ecosystems: Necessity of Adaptability

From the information thermodynamics perspective above, it may be natural that
ecosystems with higher diversity are more stable at Earth-level sizes and very long
timescales. However, understanding the human-level time scale of each ecosystem
would require more specific mechanisms. Note that the consideration below ignores de-
tails and roughly assumes that more complex or diverse systems have a larger amount
of information.

The relationship between ecosystem stability and diversity is a paramount topic in
ecology. Ecosystems are posited to develop towards a stable state and accrue information
following significant disturbances [31]. Empirical observations have led to the hypothesis
that complex ecosystems tend to be more stable [33]. Conversely, mathematical models
indicate that as the number of species increases in simple random networks, the stability
correspondingly diminishes [4]. This principle holds across networks of various structures,
not limited to random configurations. However, network models that include adaptation [5]
or network assembly models by adding new species, i.e., not organism-level adaptation
but ecosystem-level adaptation [6], can exhibit enhanced stability with growing diversity.
These insights suggest that “adaptation” is a key when considering ecosystem diversity
and information dynamics.

It is necessary to consider this “adaptation” in ecosystems more deeply. First, in the
genetic adaptation of natural selection, organisms are systems that are selected. The system
information does not consistently increase, and many systems disappear. However, if we
consider the population as a panecosystem, it is possible for the system to consistently
increase information. In other words, as living organisms act as information-processing
agents through natural selection, even if many individual organisms disappear, the popula-
tion can consistently increase in information. However, this is true within one population
and does not necessarily increase the information of ecosystems with diverse populations.
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Natural selection alone is not sufficient to explain the increase in ecosystem informa-
tion. Ecosystems, unlike organisms, do not have clear boundaries or solid information
carriers and, therefore, are not subject to sophisticated selection. In the ecosystem itself, it
is impossible to randomly make various copies and end up with the best ones remaining.
Note that in the framework of natural selection, adaptation and fitness are determined post
hoc. While fitness is often predefined for each organism in theoretical studies, it actually
varies depending on the environment or situation. Therefore, fitness cannot be definitively
established before the specific environment or situation is encountered. Similarly, adapta-
tion is fundamentally the result of these environmental interactions. Thus, what is required
for the ecosystem per se is not only a serendipitous adaptation by processing results but
also a successful adjustment that preserves and increases information even in the face of
all unexpected disturbances, i.e., “adaptability.” In this study, we adopt the definition of
adaptability in the previous study [1] as “the ability of a system to cope with unexpected
disturbances in the environment.”

Adaptability can be thought of as the ability of a system to use energy to retain or
increase information. The concept of the distinction between adaptation and adaptability
does not imply that organisms only adapt due to natural selection, but organisms also
have adaptability [1]. Natural selection was not considered the only mechanism for species
modification even when it was proposed [34]. The adaptability of organisms encompasses
adaptive phenotypic plasticity in response to unforeseen situations that is indeed observed
in microbial experiments [35,36] and is considered to be an efficient exploratory dynamical
process inherent even in cells and organisms [36]. Nevertheless, the mechanism that
achieves adaptability and information increase in ecosystems remains unclear.

1.4. Mechanism for Information Increase and Identifying Information Carriers in Ecosystems

When considering a mechanism for information increase in ecosystems, other than
natural selection, it would be easiest to first consider some kind of “competition between
ecosystems” as an information selection. Figure 2A shows the relationship between ecosys-
tems L and H, depicted in Figure 1B. If these ecosystems were a closed system, a shift to the
left could occur rapidly by species extinction, while a shift to the right would necessitate
a long time for evolution. If the spatiotemporal scale is limited, unlike Earth, and evolu-
tion is negligible, ecosystem L would be more stable, and information would decrease.
However, because ecosystems are open systems, the reintroduction of extinct species from
external sources is feasible, making a shift to the right possible. This leads to important
discussions about the competition between which information will remain when two
ecosystems interact.

Consider competition between two ecosystems when the ecosystem is open. At the
extreme, this is a question of what kind of information will result when the two are mixed
(Figure 2B). Although complete coalescence is unrealistic in natural ecosystems, similar
phenomena are likely commonplace at the boundaries between distinct ecosystems. This
competition by coalescence is not like natural selection as a competition within a species
population. Rather, in an organism-level analogy, it would be like competition between
species, i.e., what happens when two organisms exist in the same place. In a predator–
prey relationship, information from the prey, primarily utilized to sustain the predator’s
information, would diminish. In the case of symbiosis, both information would remain,
resulting in merged information.

Next, consider the competition between ecosystems H and L in a meta-ecosystem
consisting of multiple ecosystems H and L (Figure 2C). Let us assume that ecosystem
H is stronger in competition than ecosystem L and that when those interact, ecosystem
L becomes H. If every ecosystem is completely closed and there is no interaction, all
ecosystems H become L, as discussed above (Figure 2C(i)). Conversely, if every ecosystem
is completely open, i.e., the meta-ecosystem becomes a single merged ecosystem, the
merged ecosystem once becomes ecosystem H, but it eventually becomes ecosystem L,
assuming the scale difference between the meta-ecosystem and each ecosystem is negligible
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(Figure 2C(ii)). Only if the ecosystem is moderately open can information on ecosystem
H be preserved (Figure 2C(iii)). In natural ecosystems, for instance, this moderately open
scenario might correspond to a meta-ecosystem separated by rivers that occasionally
intermix due to relatively rare events such as typhoons. Alternatively, simply, it might
be that the rate of transition between ecosystems is low, but this was not experimentally
confirmed in this study. In this way, ecosystem information can be preserved through
ecosystem competition at moderate openness.
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(A) The relationship between ecosystems L and H is depicted in Figure 1B. (B) Competition between
two systems by coalescence is an extreme case of interaction. Upper and lower show the cases
of ecosystems and organisms, respectively. The strategies for inferring information carriers and
functional units are summarized on the right. (C) One simple mechanism by which ecosystems
sustain or increase their information. (i) “Closed” refers to scenarios where there is no interaction
between different ecosystems. (ii) “Completely open” describes situations in which boundaries
between different ecosystems disappear. (iii) “Moderately/sometimes open” denotes cases where
some level of interaction occurs between different ecosystems, though they are not entirely mixed,
and boundaries between them still exist. Alternatively, this could imply that while in most instances
there is no interaction between different ecosystems, occasionally they become completely intermixed.
Explanation is provided in the text.

It is possible to infer the information carrier and functional unit of ecosystems if it is
indeed possible to maintain or increase information through such competition between
ecosystems. As discussed above, let us assume that the two system parameters differentiate
into those that are robust and not directly functional and those that are flexible and directly
functional, as the information carrier and functional unit, respectively, regardless of their
original characteristics. Then, simply examining what parameter is more robust or flexible
during the competitions may provide clues to identify the two roles, even without knowing
their properties.

This method of identifying information carriers is not surprising when considering a
typical example. One of the most notable examples of adaptability in living systems is the
brain, which utilizes energy for information processing. Let us consider two parameters in
the brain: synaptic weight and neural activity. When mathematically modeled as artificial
neural networks, these are often expressed as w and x vectors, respectively, and function as
w·x [37]. Thus, the characteristics of those two parameters are often symmetrical. However,
there is a clear difference between the two parameters in both the brain and artificial
neural networks: synaptic weight and neural activity are more robust and flexible as
information carriers and functional units, respectively. In artificial neural network models,
synaptic weights are developed gradually through a learning process. Often, these weights
remain unchanged when the model is utilized for inference. Therefore, synaptic weight
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can be regarded as an information carrier that defines the model’s characteristics. In
contrast, neural activity is a variable that changes at each instance of inference. It is a
functional parameter that varies in response to input and generates output. Consequently,
in artificial neural networks, synaptic weight and neural activity can be interpreted as
information carriers and functional units, respectively. While it cannot be claimed that
these are identical to the brain, artificial neural networks were initially devised as brain
models and are believed to replicate similar characteristics.

Additionally, there are some similarities between ecosystems and the brain, as both
are living systems that use energy to process information without natural selection [38].
A typical example of the brain’s adaptability to respond to unexpected situations is in-
spiration with the Eureka effect, which is an ability to come up with the correct answer
to unlearned tasks without any learning by taking a relatively long time to think [39,40].
Also, the brain can learn a new concept from one example of Hebbian learning, a simple
process of strengthening the synaptic connections that are used [41]. Conversely, it is theo-
retically shown that ecosystems can have adaptability akin to Hebbian learning in neural
networks [42]. This notion of adaptability as an inherent characteristic of living systems
also aligns with the “free energy principle,” which assumes that brains and organisms
inherently predict their state, ensuring their survival by minimizing the “prediction error”
using sensory feedback from the environment [43]. This convergence suggests that both
organisms and ecosystems are inherently grounded in principles of adaptability, ensuring
resilience in the face of uncertain disturbances.

1.5. Freedom and Constraints, Homeostasis and Homeorhesis

Adaptability, which is an essential ability of living systems, is thought to require
a balance between freedom and constraints. It would be reasonable for information-
processing systems to have strong orders and keep large amounts of information, that is,
constraints of the system states in the context of statistical entropy. On the other hand,
responding to unexpected disturbances requires not only constraints but also freedom.
Thus, a balance between the opposing facets of freedom and constraint is considered to be
a fundamental demand on living systems [1,44].

The property that expresses the balance in an easy-to-understand manner is “home-
orhesis” [45]. Homeorhesis is a property of a dynamical system that maintains a
particular trajectory despite perturbations from the environment. This is similar to
homeostasis, which describes the property of maintaining a stable state [46], but it is
different in that a system with homeorhesis is constantly changing. It should be noted
that living systems exhibit characteristics that can be identified as both homeostasis
and homeorhesis, and it is not feasible to distinctly differentiate between these two
in actual phenomena. These terms merely serve as useful concepts for emphasizing a
particular characteristic of a dynamic system.

To discuss the necessity of homeorhesis, let us consider, conversely, that adaptation
through natural selection is possible even without homeorhesis. In adaptation through
natural selection, freedom and constraint can be provided to the organisms independently
(Figure 3A). First, organisms need a stable phenotype that corresponds to a static informa-
tion carrier for being selected by the environment. This is homeostasis, which is a property
of system dynamics as constraints. On the one hand, freedom in variation is required for
the adaptation, which is provided as random mutations, independent of the properties
of the dynamics. Therefore, as a property of dynamics, as long as there is homeostasis to
maintain a stable state, adaptation through natural selection is possible.
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On the other hand, in the case of an ecosystem without a static information carrier
and its mutation, freedom in variation for adaptation is also required as a characteristic of
the system dynamics. Therefore, the system must not only have stability but also remain
degrees of freedom to change. As mentioned above, if this change were completely free,
the system would not be able to continuously retain or increase its information. Therefore,
adaptability requires both strong constraints and a certain degree of freedom for changes
as a property of the system dynamics, which is exactly homeorhesis (Figure 3B). Note that
homeostasis and homeorhesis are not mutually exclusive properties. At least, homeorhesis
in organisms and ecosystems would encompass random changes within the sublevels of
their hierarchical structure. Consequently, homeorhesis may be considered a property of a
higher hierarchy than homeostasis.

In systems ecology, it is postulated that systems at sub-organism levels in the hier-
archies of living systems, such as organs or molecules, mainly demonstrate homeostasis,
whereas super-organism levels, such as populations or ecosystems, mainly display home-
orhetic properties [3]. For instance, molecular systems have an equilibrium or steady state
they can maintain, whereas ecosystems are far from any equilibrium or steady state and
continuously changing.

Organisms can play genetic evolution through natural selection without homeorhesis;
however, a theoretical study has suggested that continuous evolution inevitably leads to
the acquisition of homeorhesis [47]. More specifically, as a result of continuous evolutionary
processes, the behavior of high-dimensional organisms was constrained to a small num-
ber of dominant mode dimensions, which correspond to the dimensions of proliferation
rate. The changes due to steady fluctuations, responses to environmental changes (i.e.,
phenotypic plasticity for organisms), and long-term changes (evolution) are constrained
into the dominant mode (Figure 3B). Therefore, for example, the direction of an adaptive
change in the state space is predictable from the fluctuation, like a fluctuation-response
relationship [48,49].

In this study, this hypothesis proposing the existence of such a dominant mode as a
balance of strong constraints and a small degree of freedom is referred to as the Dominant
Mode Hypothesis (DMH). The DMH demonstrates the emergence of homeorhesis and
proposes that even if a genetic mutation is random, changes in the system are never random
and fully controlled. This property depicts the adaptability of dynamics that facilitates ex
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ante adaptation rather than ex post adaptation as ordinarily considered in natural selection.
Indeed, the DMH was experimentally tested using bacterial adaptation [47,50]. For instance,
various types of environmental changes, such as osmotic pressure, high temperature, and
starvation, seemed to induce similar changes in the transcriptome [51]. Similar observa-
tions have been made in proteomes under varying environmental conditions, including
different nutrients and cultivation methods [47]. Additionally, it has been observed that
responses to environmental changes and alterations resulting from adaptive evolution
(laboratory evolution) were also similar [52]. Constraints to low-dimensional phenotypic
states were further confirmed in a high-throughput laboratory evolution for various drug
resistances [50].

Considering that ecosystems do not undergo clear natural selection, unlike living
organisms, and are thought to exhibit stronger characteristics of homeorhesis rather than
homeostasis [3], it can be proposed that the DMH may also be applicable to ecosystems.
The DMH will be a powerful tool for predicting system changes, e.g., the response to the
global warming of an ecosystem can be predicted from its daily fluctuations. Note that
there is another useful idea of using the resilience of dynamical systems to describe changes
in a steady state in a low-dimensional “efficient dimension” [53,54]. This idea focuses only
on homeostasis and is fundamentally different from the DMH.

More generally, the DMH suggests an inevitable existence of strong dimensionality
reduction for systems with adaptability, including all living systems. Living systems can
fundamentally be viewed as dynamic networks comprising numerous dimensions. For
instance, even in the bacterium Escherichia coli, there are over 1000 types of gene expression
levels, in addition to the amount and spatial arrangements of many other molecules.
From a control theory standpoint, managing scale-free networks, which typify biological
networks, is exceedingly challenging [55]. However, it is posited that this difficulty is
managed due to the interrelations among many dimensions and their constraint to fewer
dimensions [56]. This dimensionality reduction has also been observed in the brain, which is
a typical example of a biological information-processing system [57,58]. The dimensionality
reduction per se would be an inherent feature of information-processing systems and may
also appear as a topological constraint, such as biological “Bowtie” structures [59] or
autoencoders in artificial neural networks [60]. Therefore, the DMH would be useful not
only for understanding living systems with adaptability but also for constructing dynamic
artificial information-processing systems as an application.

1.6. Using Experimental Ecosystems as a Phenomenological Approach

Despite numerous approaches to understanding the changes and stability of complex
living systems, a comprehensive understanding at both macroscopic and microscopic
levels remains elusive [61,62]. This gap indicates a potential shortfall in phenomenological
approaches similar to those employed in thermodynamics.

Since living systems have many commonalities and strong universality, model ex-
perimental systems are useful. For example, the understanding gained with one of the
simplest model organisms, Escherichia coli, has helped us understand many other organ-
isms [63]. Such universality suggests common constraints and reduced dimensionality
and, therefore, makes us expect that the systems can be described with a small number of
macroscopic parameters.

In systems ecology, species-defined experimental ecosystems by synthetic assemblages
of microorganisms, designated here as “synthetic ecosystems”, were proposed for experi-
mental model ecosystems [64,65]. Experimental studies concerning ecosystem diversity,
stability, and ecosystem services include outdoor systems such as Cedar Creek [66,67] and
laboratory-level systems like Ecotron [68,69]. Even microcosms composed of microorgan-
isms, despite their limited scale, are considered valuable for addressing global ecological
issues [70]. However, assessing ecosystem stability poses various challenges, including
issues related to replicability. Furthermore, exploring system characteristics sometimes
requires studying conditions not present in natural ecosystems. For instance, in assessing a
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system’s resilience to external disturbances, it is crucial to impose various types of distur-
bances that are too extreme for the system’s continued existence. Additionally, to ascertain
if the core characteristic of a sustainable ecosystem is “something”, it is vital to compare
systems that vary only in the presence or absence of that “something,” ensuring that the
system lacking this “something” cannot exist as a natural ecosystem.

To address these challenges in microcosms, we previously developed a high-throughput
experimental system of a synthetic ecosystem consisting of only model microorganisms,
comprising three important functional groups of the ecosystem: producers, decomposers,
and consumers [71]. The synthetic ecosystem includes fundamental ecological processes
like photosynthesis, predator–prey interactions, competition, and cooperation. Each species
within this system is amenable to cryopreservation, ensuring experimental replicability.
This experimental model ecosystem allows for systematic ecosystem experimentation un-
der various conditions, including those unattainable in natural environments, akin to the
role of E. coli as a model for various organisms.

Specifically, our model ecosystem facilitates the investigation of inter-ecosystem com-
petition and the identification of ecosystem information carriers, as depicted in Figure 2, as
well as the examination of ecosystem constraints in the form of homeorhesis, illustrated in
Figure 3.

The mixture of two ecosystems shown in Figure 2B can be easily tested systematically
in our model ecosystem. While such complete coalescence is unrealistic in macroscopic
ecosystems, thereby lacking research, it is considered to be frequent in microbial ecosystems,
known as “community coalescence” [72]. Experiments involving merged microbial com-
munities demonstrated the strong influence of dominant species and support of dominant
species by other species [73]. Therefore, these results suggested that the characteristics of
dominant species, rather than diversity, are important for representing the system dynamics.
The study represents an important step in investigating commonalities and discrepancies
in various ecosystems; however, the tested experimental ecosystems lack predatory factors,
a feature crucial in general ecosystems.

Moreover, it is also possible to address the DMH, i.e., homeorhesis and constraints of
ecosystems, in our model ecosystem. The homeorhesis has been observed in the process
of leading ecosystems towards stable states, called ecological succession, in an exceed-
ingly simple synthetic ecosystem [74]. In similar synthetic ecosystems, it has also been
demonstrated that stochastic fluctuations within the system adhere to a power law as
a constraint [75]. Furthermore, in experimental ecosystems using more complex, field-
collected microbial communities, even in microbial ecosystems with considerable pop-
ulation changes, the functional structure has been found to remain stable [76]. Similar
experimental ecosystems have shown that even with changes in species, the overall phyloge-
netic structure is robust [77]. Those studies might suggest the existence of the homeorhesis
and constraints in experimental ecosystems; however, the applicability of the DMH for
ecosystems has not been empirically demonstrated. Experimentally demonstrating the
DMH necessitates precise and numerous replicated experiments, a challenge in natural
ecosystems or experimental ecosystems where high-throughput experimentation is ardu-
ous. Moreover, testing dimensionality reduction is unfeasible with an overly simplistic
synthetic ecosystem. Nonetheless, our synthetic ecosystem possesses the potential to
demonstrate the DMH as a high-throughput experimental system despite possibly having
too few species. If the DMH is experimentally shown to be applicable to ecosystems, it will
be of great help in proactive biodiversity conservation and ecosystem management.

Understanding ecosystem dynamics requires not only a macroscopic view but also
microscopic insight, with a particular emphasis on comprehending evolution and popu-
lation dynamics [78]. Microbial experimental systems are powerful tools for elucidating
evolutionary processes, as demonstrated by many studies [79–81]. Our model ecosystem is
also conducive to evolutionary research, and some pertinent results related to evolution
are shown below, but this study will not delve deeply into discussions of evolution due
to limited experimental data. In studies concerning evolution within similar synthetic
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ecosystems, numerous significant findings have been presented. For instance, evidence
has been shown of species diversifying their survival strategies [82] and instances where
free-living algae have shifted towards a more endosymbiotic existence [83,84]. These exam-
ples are being discussed from a broader perspective [85], suggesting experimentally that
ecosystems tend toward an increase in information.

1.7. Experiments in This Study

We have demonstrated, using the model synthetic ecosystems, scenarios such as
the coalescence of two ecosystems and the constraints of ecosystems shown in Figures 2
and 3, respectively. Specifically, we quantified which ecosystem was more competitive
by merging two ecosystems. The results showed that ecosystems with higher diversity
were more competitively stable, and the species composition was more robust and had a
higher ability to explain the dynamics than the population of dominant species that was
flexible. Therefore, the scenario depicted in Figure 2C was valid in these experiments, and
it was speculated that the information carrier and functional units of ecosystems were
species composition, i.e., merged genomic information and species abundance, respectively.
Moreover, we investigated the response to temperature changes and long-term changes
in ecosystems. The results have suggested that the DMH is also applicable to ecosystems.
While these results are not comprehensive enough to substantiate theories, those outcomes
are appropriate for fostering discussion in this special issue and for demonstrating the
potential for future research using our model synthetic ecosystem for connecting a wide
range of living systems.

2. Materials and Methods
2.1. Microorganisms

This study used microcosms obtained in the previous study [71]; no individual mi-
croorganisms were prepared for this study. The materials and methods for preparing the
microcosm used in this study have been described in detail in the previous study. The meth-
ods for this study were basically the same as the previous study, and a brief explanation is
provided below.

2.2. Microcosm Experiments

For microcosm experiments, a 50 µL of culture solution was prepared in each well of
a 384-well plate (#142761; Nunc, Rochester, NY, USA) and sealed with a heat-adsorption
seal (#4ti-05481; 4titude, Wotton-under-Edge, UK). Liquid medium BG11HLB, which
contains half the concentration of the BG-11 medium for cyanobacteria [86] and 1/100 the
concentration of the LB medium for bacteria [87], was used for all experiments. The 384-
well plates were placed on a white LED panel (TH-224X170SW; CCS, Japan) in an incubator
at 23 ◦C with irradiation at an intensity of 50 µmol·m−2·s−2 for 12 h intervals. Different
incubators with different temperatures were used for the experiments on temperature
changes. The plate was shaken by inversion and spun down approximately twice a week.
All ecosystems used in this study were passaged approximately once every two weeks
with a 1/10 dilution into a fresh medium.

Specifically, in the ecosystem coalescence experiments, the origin of each microcosm
was a 50 µL culture, which was subcultured biweekly for six months in the previous
study [71]. To increase the volume for the coalescence experiments, each culture was
replicated into eight separate 50 µL cultures during 10-fold dilution passages, followed by a
two-week cultivation period. These eight cultures were then combined and further diluted
10-fold to prepare 2500 µL of each microcosm. Subsequently, each microcosm was allocated
into 8 wells of a new 96-well plate, with 130 µL per well. There were eight different
microcosms, each dispensed into 8 wells, thus occupying 64 wells in an 8× 8 matrix. In this
matrix, each horizontal row of eight wells represented one type of microcosm. Similarly,
the microcosms were dispensed into another 96-well plate so that each vertical column of
8 wells contained the same microcosm. Using a 96-channel pipette, 115 µL from each well
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of these two 96-well plates was combined in a new 96-well plate, resulting in a total volume
of 230 µL per well. This 8 × 8 matrix facilitated a comprehensive combination of two types
of microcosms. On the diagonal, identical ecosystems were mixed. The wells along this
diagonal represented two replicate experiments. Subsequently, 50 µL was transferred from
each well into 4 wells of a new 384-well plate, yielding four replicates for each combination
in the 8 × 8 matrix. The plate was sealed with a heat-adsorption seal and incubated at
23 ◦C. Subculturing was performed biweekly with a 10-fold dilution, as above.

Note that these experiments themselves do not directly correspond to the three types
depicted in Figure 2C(i–iii). These experiments demonstrate only a single mixture process
of interaction with neighboring ecosystems, where mixing occurs permanently (ii) or
sometimes (iii), as represented in Figure 2C. Specifically, mixing was performed only at
the initial step, and there was no interaction between the microcosms during subsequent
passages, as described above. Suppose that, as presented in the Results and Discussion
section below, the mixing of H and L types in Figure 2C results in a microcosm with
diversity similar to or even greater than that of H. Conversely, it is presumed that H would
become similar to L in the absence of interaction between microcosms, as in scenario (i),
described earlier. Therefore, it is posited that diversity can only be maintained in situations
akin to scenario (iii). Thus, it is important to note that while this experiment does not
replicate scenarios (i), (ii), and (iii) in Figure 2C exactly, it is instrumental in testing the
hypothesis outlined in the figure.

2.3. Measurements

A fluorescence plate reader (Varioskan Flash; Thermo, Waltham, MA, USA) was used
for fluorescence spectroscopy to quantify the concentrations of Cyanobacteria, Chlorophyta,
and E. coli (red fluorescent protein-labeled). For microscopy, each well was scanned using
an inverted microscope (Nikon Ti-E with the Perfect Focus System and High Content
Analysis; Nikon, Tokyo, Japan), and obtained bright-field images (two images with a
time difference of 12 s) and fluorescent-field micrographs (three images with filter sets
of Semrock FITC-3540C, Semrock TRITC-B, and Chroma 49006-ET-Cy5) of the center of
each well (one position per well) from the bottom. A 60× objective lens (CFI S Plan Fluor
ELWD ADL 60XC, Nikon, Japan) or 4× objective lens (CFI Plan Apochromat Lambda D
4X, Nikon, Japan), and a digital CMOS camera (Neo sCMOS, Andor, Belfast, UK; 2048
× 2048 pixels; 0.1 µm/pixel) was used for capturing images. For quantification of the
concentration of Tetrahymena thermophila, the temporal variation of images obtained via
low-magnification micrographs using the 4× objective lens, whose viewfield (one side
is approximately 3.3 mm with a resolution of 1.6 µm/pixel) captured the entire well,
because there was a correlation between T. thermophila concentration and the temporal
variation since T. thermophila is large (major axis approximately 50 µm) and swims [71].
For the machine learning methods, the machine learning model that was constructed in
the previous study was used [71]. The model was based on the publicly available object
detection network framework YOLOv3 [88].

3. Results and Discussion
3.1. Ecosystems Used as Initial State

We prepared eight ecosystems, each with a certain degree of stability, and conducted
coalescence experiments by mixing them pairwise, as detailed below. In the previous
research, experimental ecosystems composed of a mix of 11 species were divided into
72 replicates and cultivated under identical conditions for six months. Stochastically, these
ecosystems were separated into roughly seven patterns [71]. For this study, we utilized
8 of these 72 ecosystems. Out of the 11 species, 5 species could not survive in any of the
ecosystems, leaving 6 species that persisted in at least across one of the seven patterns.
These six species are listed in Table 1, and we refer to each of them by their abbreviated
names shown in Table 1, i.e., Ecoli, Tetra, CyanoA, CyanoS, AlgaR, and AlgaC, in this
study. These species include three important functional groups of ecosystems: producers,
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decomposers, and consumers. Some species exhibit mutualistic relationships, enabling
their coexistence with multiple species, as they could not survive alone [71,89]. Moreover,
Tetra had predator–prey interactions with Ecoli and CyanoS [90]. The producers include
four species, with both prokaryotes and eukaryotes represented by two species each, which
have potentially competitive relationships. Note that not all six species coexisted within a
single ecosystem, but each ecosystem contained between two and five species.

Table 1. Species included in the synthetic ecosystems of this study.

Species Abbreviation Classification Functional Group Shape, Approx. Vol.

#0 Escherichia coli Ecoli Proteobacteria Decomposer Rod, 1 µm3

#1 Tetrahymena thermophila Tetra Ciliophora Consumer Oval, 104 µm3

#2 Anabaenopsis circularis CyanoA Cyanobacteria Producer Filamentous, 103 µm3

#3 Synechocystis sp. 6803 CyanoS Cyanobacteria Producer Spherical, 10 µm3

#4 Raphidocelis subcapitata AlgaR Chlorophyta Producer Crescent, 102 µm3

#5 Chlorella vulgaris AlgaC Chlorophyta Producer Spherical, 102 µm3

Figure 4 illustrates the species composition of the eight ecosystems used as the initial
states (designated as Ecosystems E0 through E7). Figure 4A represents the original ecosys-
tems, with 4B depicting the initial states that were achieved by diluting and aliquoting
the original ecosystems into four replicates. Subsequently, the outcomes after approxi-
mately seven serial transfers, conducted approximately every two weeks, are shown in
4C (in other words, those that survived through 107 to 108 dilutions, roughly four months
after the coalescence). While the ecosystems are stable overall, not all of them are en-
tirely so. Specifically, the population of AlgaR tended to decrease gradually, and in some
ecosystems, it fell below the detectable limit after four months. For the following analyses,
the values from Figure 4B were utilized as the initial conditions, representing the states
before coalescence.
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the initial state in this study. As an initial condition, we employed the logarithmic mean of eight
values, combining the data at 0th (day 14) and 1st (day 28) transfers of four replicated wells. (C) The
population composition after 4 months. Specifically, it presents the logarithmic mean of eight values,
incorporating the 6th (day 102) and 7th (day 116) transfers. Error bars indicate the standard deviation
of logarithmic values.
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3.2. Ecosystem Coalescence Experiments for Investigating Competitive Stability and
Information Carrier

We mixed the above eight distinct ecosystems in a comprehensive pairwise manner,
incorporating two of each, leading to an all-versus-all combination. Figure 5A illustrates the
outcomes four months post-coalescence for these pairwise combinations. It encompasses
the results of the 36 distinct ecosystems, considering both the 8C2 combinations and the
8 original ecosystems. For the latter, identical ecosystems were mixed to align experimental
conditions. Observationally, when ecosystems with lower and higher species richness (the
number of species) were merged, the resulting species richness seemed to tend to gravitate
towards the values of the higher species richness (see below for quantitative analyses).
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limit. (E) q-dependence of predicting the post-coalescence Hill numbers based on the Hill numbers
of merged populations of pre-coalescence ecosystems. The maximum value was 0.56 at q = 0.1,
decreasing thereafter.

Figure 5B represents the outcome of the 36 ecosystems after 4 months using a Principal
Component Analysis (PCA) performed on the logarithm of the population sizes of the six
species. The results for the unmixed eight ecosystems are indicated by text. An immediate
observation is that the ecosystem consisting solely of prokaryotes (E0) was dramatically
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altered from its own state in every combination. Additionally, there appears to be a
clustering toward ecosystems E4, E5, E6, and E7.

We investigated which ecosystems maintained their state stably. In this context, we
introduce the concept of a competitive stability index (Θ) as a metric to assess the extent to
which an ecosystem sustains its population composition post-coalescence. The competitive

stability index of each i-th ecosystem is defined as Θi = 1/∑
j

∑
k

(
xafter,k,j − xinit,k,i

)2
, where

xafter,k,i and xinit,k,i denote the logarithm of the population of species k in the i-th ecosystem at
initial and 4 months, respectively. As x is a logarithm value, we used x = 0 for the population
not detected. Figure 5C illustrates the relationship between Θ values and diversity indexes
(α-diversity) of the eight ecosystems. We considered three simple measures of α-diversity:
species richness (0D, the number of species), the Shannon–Wiener index (H′), and the
biomass-corrected Shannon–Wiener index (BH′). In BH′, the probability of each species’
population (pi) in H′ is substituted with the relative biomass of each species, which is the
proportion of biomass represented by each species [91–94]. The values of approximate
volume, shown in Table 1, were used as biomass values for each species.

The results indicated the highest correlation between BH′ and Θ, with R = 0.86,
p = 0.007, hereafter α = 0.05. Note that this relationship was somewhat influenced by
the formulation of Θ. For instance, while species richness did not significantly correlate
with Θ (R = 0.59, p = 0.12), its inverse (1/Θ) showed a significant negative correlation
(R = −0.72, p = 0.04), similar to that of BH′ (R = −0.73, p = 0.04). BH′ normalizes the
disparities between populations of larger and smaller organisms, making it closer to a
measure of species richness.

Therefore, for a simple understanding, the larger the species richness, the more stable
the ecosystem was, i.e., having better adaptability. These results support the mechanisms
illustrated in Figure 2C that explain the sustainability or increase in ecosystem information.
Note that the objective of this comparison of indicators is not to determine which is superior
in representing natural ecosystems but to contrast the characteristics of stable ecosystems
using straightforward indicators. For example, species richness, although deemed overly
simplistic and problematic in depicting a natural ecosystem requiring estimation [20], has
the benefit of involving just a single parameter, considerably fewer than other indicators.
Therefore, if a phenomenon can be effectively explained by species richness, it is beneficial
from an information criterion standpoint.

Conversely, H′ failed to account for the competitive stability (R = 0.03, p = 0.95). This
shortfall likely arises because H′ inherently underrepresents species with larger biomass
but smaller populations, thereby reducing their contribution. In systems ecology, larger
individuals are often considered to carry more information [31], which is expressed in the
opposite way in H′.

The obtained fact that ecosystems with a larger richness are more stable suggests that
the larger richness of the two pre-coalescence ecosystems could more accurately predict
the post-coalescence richness than the smaller one. However, it is not clear whether
information from the ecosystem with smaller richness remains in the post-coalescence
ecosystems. Using an analogy with organisms (Figure 2B, lower), it is necessary to clarify
whether only information about ecosystem H remains, like predator–prey relationships or
information that merges both ecosystems remains, like symbiosis.

We investigated which data set from the two ecosystems or their combination could
better forecast the outcome. Specifically, we employed richness as the most fundamental
indicator with the fewest number of parameters and determined how much the pre-
coalescence richness could dictate the post-coalescence richness (Figure 5D). It was found
that the larger richness had a greater coefficient of determination than the smaller or
mean richness of the two ecosystems. This implies that the results are closer to the larger
richness, consistent with the aforementioned competitive stability of ecosystems with
higher richness. Additionally, the richness calculated from the merged two ecosystems
(representing the gamma diversity of the two ecosystems, which is the same as the initial
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state of the merged ecosystem) had the greatest coefficient of determination. This suggests
that the initial richness upon coalescence remains relatively unchanged, indicating that the
information from the ecosystem with smaller richness was not lost but was influential in the
resultant richness; thus, when comparing with the cases of organisms in the aforementioned
Figure 2B, the observation that mixing two ecosystems results in the retention of information
from both may suggest that the relationship between these ecosystems can be interpreted
as not predatory but rather symbiotic.

In the results above, the richness was able to adequately explain the outcomes, whereas
H’, i.e., population information, was less explanatory. This may differ from previous mi-
crobial coalescence studies where the dominant species could explain the outcomes [73].
Conversely, in a natural wetland ecosystem, it is known that an ecosystem state index NDVI
(Normalized Difference Vegetation Index) can predict species richness more accurately
than dominant populations [95], suggesting a potentially similar situation. To quantita-
tively verify this in our case, we employed an approach akin to the previous study of
the natural wetland ecosystem [95], examining the predictability of outcomes by varying
the order parameter q in the widely applicable diversity index known as Hill numbers

qD =

(
∑
i

pq
i

)1/(1−q)
, where pi is the proportion of individuals belonging to the i-th species.

When q = 1, the formulation is undefined, but the mathematical limit as q approaches 1 is

defined as 1D = exp
(
−∑

i
pilnpi

)
, i.e., the exponential of H′.

Specifically, using a certain value of q, we calculated the qD from the population
of two pre-coalescence ecosystems and used this as the explanatory variable, with the
qD of the post-coalescence ecosystem after four months as the dependent variable to
determine the coefficient of determination. This process was repeated with varying q
values, and we obtained the q profile of the coefficient of determination (Figure 5E). Note
that the interpretation of Hill numbers changes with the order parameter q. Roughly
speaking, smaller q values emphasize the presence or absence of species, while larger
values prioritize population sizes, i.e., the proportion of dominant species population in
extreme cases. Specifically, 0D equates to species richness, independent of population sizes.
1D corresponds to the exponential of the Shannon–Wiener index, where population sizes
are considered. 2D equals the Simpson index, focusing more on the population sizes and
highlighting the prevalence of dominant species.

The results show that the highest coefficient of determination was observed at a low
q value of 0.1 (Figure 5E), indicating that species composition was robust and species
abundance was flexible. They also satisfy, respectively, not functioning directly and func-
tioning directly. Therefore, the information carrier and functional units of ecosystems
were speculated as the species composition and species abundance, respectively. It is
important to note that this speculation is based on a comparison between only these two
aspects: species composition and species abundance. In reality, ecosystems comprise many
other parameters.

This nature of flexibility of populations and robustness of species composition would
be consistent with the characteristics of the human gut microbiota [96]. Moreover, this
q profile is akin to the predictability of the mean NDVI in natural wetland ecosystems,
maximum at q = 0.2 [95]. Therefore, our finding that the information carrier of ecosystems
is species composition might be universally applicable to other ecosystems as well.

In our experimental system, the low explanatory power of the dominant species can
be readily explained by the presence of predation. For instance, in a system consisting only
of Ecoli and CyanoS, as represented in E0, both species exhibit small biomasses, leading to
exceedingly high population numbers. When this ecosystem is mixed with one containing
the predator, Tetra, the population of these smaller organisms diminishes rapidly. In the
same sense, the predator is the largest in biomass; thus, their population is always small,
but the outcome changes greatly depending on whether the predator is present or not,
just like a keystone species [97]. Consequently, population size scarcely contributes as an
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explanatory variable. On the contrary, the rapid decrease in the prey population does not
equate to extinction, and species often persist at low population levels, thereby maintaining
species richness.

Thus, emphasizing the functions of each species can effectively elucidate the results,
indicating the advantages of considering functional diversity. In our system, the species
variety is too limited to be worth evaluating quantitatively, but conceptually, only ecosystem
E0 lacks predators and may be deemed to have reduced functional diversity. Consequently,
it might be inferred that ecosystems with greater functional diversity are more stable. Note
that microbial experimental ecosystems in the previous study [73], where the dominant
population shows high explanatory power, do not contain any predators, which may
affect our results or the natural wetland ecosystem [95]. These ecosystems are, therefore,
perceived as having low functional diversity, with competition occurring exclusively among
them. Should a functional diversity index be uniformly applicable across all ecosystems, it
might enable comparisons of markedly disparate ecosystems on an equal footing. While
functional diversity presents various challenges due to its inherent complexity, ongoing
enhancements aimed at ensuring universality and mathematical robustness are promising,
positioning it as a potential comprehensive indicator [98]. Simultaneously, if our synthetic
ecosystem were to be developed to include more species, it would become possible to
experimentally demonstrate the advantages of functional diversity.

As mentioned above, the predator species Tetra plays an important role as a keystone
species in this ecosystem. This keystone species is small in number and has a slow maxi-
mum rate of proliferation. The population was also robust for this predator species. These
characteristics of robust, small in number, and slow are appropriate for an information
carrier. For example, if the characteristics of a single individual of this keystone species
change due to genetic variation, the characteristics of the whole ecosystem can change
rapidly because the population size is small, and this species is influential. Although we did
not compare this specific population with other parameters in this analysis, the keystone
species itself might be the information carriers of ecosystems.

Our coalescence experiments consistently showed that species richness generally
demonstrated robustness, thereby serving as an information carrier or a stable macroscopic
parameter inherent to the systems. However, it is imperative to acknowledge that this find-
ing does not universally apply to all ecosystems. The ecosystems utilized in the coalescence
experiments here represent a recombination of divergent ecosystems that originated from
the same source. Systematic investigations are essential to discern under what conditions
certain parameters prove most useful or possibly appropriate as information carriers. In
our synthetic ecosystems, this investigation is feasible, and further elucidation is expected
from future research.

3.3. Ecosystem Constraints for Investigating the Dominant Mode Hypothesis

In this study, we experimentally investigated the DMH, which suggests that living
systems possess a small degree of freedom by strong constraints, with changes predomi-
nantly confined to lower dimensions. Specifically, we examined the two types of ecosystem
changes: (i) the rapid response of ecosystems in 7 days due to temperature changes and
(ii) the gradual alterations of ecosystems observed in approximately 18 months without
any induced environmental changes.

Before explaining our results, we describe the inherent limitations of these experiments
below. Firstly, the measurements lack microscopic observation and rely solely on fluorom-
etry using a plate reader (see Materials and Methods for details). While the precision of
fluorometry is higher than that of data obtained from the microscopic observation, the
dimensionality is limited, presenting a problem for the study of dimensionality reduction.
Moreover, the low number of species of the synthetic ecosystem is also a significant problem.
Nevertheless, we believe that presenting these results is beneficial as a trial demonstration
for predicting ecosystem changes. For instance, the reduction from two dimensions to one
can also be considered a kind of constraint.
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We first tested environmental temperature changes. Specifically, for ecosystems ini-
tially at 23 ◦C, we varied the temperature to 25, 28, and 33 ◦C and observed the changes
after seven days. The comparison of responses was not between the initial values and those
after seven days, but between the responses at 23 ◦C after seven days and those at the
varied temperatures after the same period because our ecosystems have a kind of stable
state in the circumstances of subculturing every two weeks.

We used three ecosystems: E0, the simplest ecosystem comprising only bacteria, and
E6 and E7, ecosystems with the two largest richness among the eight types of ecosystems
depicted in Figure 4. Figure 6A presents the results of PCA for the logarithm of the
fluorescence intensity, projecting the results in two dimensions. In the case of ecosystem
E6, the direction of fluctuation in the standard environment (23 ◦C, blue dots) appears
to align with the response to temperature changes. E7 may adhere as well, suggesting
changes within certain constraints. The simplest ecosystem, E0, exhibits little fluctuation
and response change. This co-absence of fluctuation and response is also consistent with
the implications of the DMH.
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(B) Results of fluorescence intensity in the temperature variation experiments. (C) Long-term changes
without environmental changes imposed, when each of the 32 replicates was independent, for testing
a situation like closed systems. (D) Long-term changes without environmental changes imposed
when all 32 dispensed ecosystems were merged at every subculturing transfer.

The reason why such constraints were observed was simple. First, examining the
contribution fractions in PCA (as seen in the inset of Figure 6A), it is evident that only
the two dimensions corresponding to cyanobacteria (Cyano) and green algae (Alga) are
contributing, indicating that the PCA does not actually compress dimensions, unfortunately.
Thus, the utilization of PCA here was merely for demonstration purposes, serving as an
example for analyzing higher-dimensional ecosystems in future research. Nevertheless, the
constraint from two dimensions to one was indeed present.

Second, Figure 6B illustrates the relationship between the fluorescence intensities
representing the populations of cyanobacteria and green algae. These results suggest that
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the sum of both populations reaches a constant number as a carrying capacity, likely due
to a trade-off resulting from competition for a resource such as carbon dioxide. Although
this is a simplistic observation, it could be considered a typical constraint anticipated
within ecosystems.

Next, we observed the long-term changes in the state of ecosystems. We branched
each of the three aforementioned ecosystems into 32 replicates, continuing independent
cultivation for 18 months. Although the fresh medium is supplied at each subculturing
transfer, the biological elements are not supplied from outside each ecosystem, like the
situation shown in Figure 2C(i). The results of the PCA, conducted in the same manner
as in Figure 6A, are presented in Figure 6C. For both E6 and E7, the state transitions
again roughly appear to align along a singular curve, a phenomenon explainable by the
constraints in the dominant mode hypothesis. E0 again exhibited little changes.

We also tested the long-term changes when the 32 dispensed ecosystems were merged
at every subculturing transfer (Figure 6D). This experiment tested a situation similar to the
one shown in Figure 2C(ii). The results show the constraints as well.

All these results shown in Figure 6 suggest that the DMH is also applicable for
ecosystems, which highlights the homeorhesis and adaptability of ecosystems. Although
the results were poor, compression from two dimensions to one dimension was visible.
However, as mentioned above, there are many problems with this experiment, and it is
necessary to set better conditions and confirm it properly. At the same time, it is expected
that similar analyses will be attempted in other experimental systems. In this study,
replicate experiments were employed to account for the fluctuation of the ecosystem,
but in natural ecosystems, utilizing daily fluctuations, for instance, could also be used.
Our findings, exemplified by the trajectories in Figure 6C,D, suggest that the permissible
direction of daily variations is constrained to a lower dimensionality.

Additionally, the results in Figure 6C,D, i.e., when closed and completely open situ-
ations, respectively, also show interesting results consistent with the scenario shown in
Figure 2C. In Figure 6C, as closed systems, 32 replicates are scattered on the right edge, left
edge, and center. The right and left edges indicated that producers were almost exclusively
Cyano or Alga, respectively. One of them might actually be extinct. The plots between
them indicate the states in which both Cyano and Alga coexist. Therefore, information on
some of the 32 ecosystems decreased, as depicted in Figure 2C(i). In Figure 6D, the final
results were almost entirely at the right edge. Thus, information on all 32 ecosystems, or
more precisely, one large ecosystem, decreased, as depicted in Figure 2C(ii). These two
results suggest that it is impossible for ecosystems to sustain or increase the information if
they are completely closed or completely open, as shown in Figure 2C(i) and Figure 2C(ii),
respectively, despite the fact that ecosystems with higher richness were more competitively
stable as above.

4. Conclusions

In this study, we engaged with the significant question of how ecosystems change,
discussing the information dynamics in living systems ranging from molecules to ecosys-
tems from an ecosystem standpoint. Specifically, we utilized coalescence experiments in
synthetic ecosystems to elucidate the quantitative relationship between biodiversity and
competitive stability. We revealed that ecosystems with larger species richness were more
stable in the disturbances by coalescence. Moreover, we found that species richness holds
more robustness compared to population sizes in response to the process of coalescence,
which was similar to a natural wetland ecosystem and the human gut microbiota. These
results inferred that the information carrier of ecosystems was species composition or
merged genomic information, and the functional unit of ecosystems was species abundance.
The distinction between species composition and species abundance may be interpreted as
a difference between species-level and individual-level parameters. Our experiments also
suggested the potential applicability of the DMH to ecosystems, proposing that fluctuations
in steady state, instantaneous responses to environmental changes, and long-term shifts
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are all constrained within the same lower dimensionality. These outcomes, combined with
explanations of general aspects of adaptability, would contribute to the understanding and
forecasting dynamics of not only ecosystems but also a wide range of living systems.
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77. Goldford, J.E.; Lu, N.; Bajić, D.; Estrela, S.; Tikhonov, M.; Sanchez-Gorostiaga, A.; Segrè, D.; Mehta, P.; Sanchez, A. Emergent
simplicity in microbial community assembly. Science 2018, 361, 469–474. [CrossRef] [PubMed]

78. Hosoda, K.; Tsuda, S.; Kadowaki, K.; Nakamura, Y.; Nakano, T.; Ishii, K. Population-reaction model and microbial experimental
ecosystems for understanding hierarchical dynamics of ecosystems. Biosystems 2016, 140, 28–34. [CrossRef]

79. Momeni, B.; Chen, C.-C.; Hillesland, K.L.; Waite, A.; Shou, W. Using artificial systems to explore the ecology and evolution of
symbioses. Cell. Mol. Life Sci. 2011, 68, 1353–1368. [CrossRef]

80. Tenaillon, O.; Barrick, J.E.; Ribeck, N.; Deatherage, D.E.; Blanchard, J.L.; Dasgupta, A.; Wu, G.C.; Wielgoss, S.; Cruveiller, S.;
Medigue, C.; et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 2016, 536, 165–170. [CrossRef]

81. Blount, Z.D.; Lenski, R.E.; Losos, J.B. Contingency and determinism in evolution: Replaying life’s tape. Science 2018, 362,
eaam5979. [CrossRef]

82. Nakajima, T.; Sano, A.; Matsuoka, H. Auto-/heterotrophic endosymbiosis evolves in a mature stage of ecosystem development in
a microcosm composed of an alga, a bacterium and a ciliate. Biosystems 2009, 96, 127–135. [CrossRef]

83. Germond, A.; Kunihiro, T.; Inouhe, M.; Nakajima, T. Physiological changes of a green alga (Micractinium sp.) involved in
an early-stage of association with Tetrahymena thermophila during 5-year microcosm culture. Biosystems 2013, 114, 164–171.
[CrossRef] [PubMed]

84. Nakajima, T.; Fujikawa, Y.; Matsubara, T.; Karita, M.; Sano, A. Differentiation of a free-living alga into forms with ecto- and
endosymbiotic associations with heterotrophic organisms in a 5-year microcosm culture. Biosystems 2015, 131, 9–21. [CrossRef]
[PubMed]

85. Nakajima, T. Symbiogenesis is driven through hierarchical reorganization of an ecosystem under closed or semi-closed conditions.
Biosystems 2021, 205, 104427. [CrossRef] [PubMed]

86. Allen, M.M. Simple conditions for growth of unicellular blue-green algae on plates1, 2. J. Phycol. 1968, 4, 1–4. [CrossRef]
87. Bertani, G. Studies on Lysogenesis.1. The Mode of Phage Liberation by Lysogenic Escherichia-coli. J. Bacteriol. 1951, 62, 293–300.

[CrossRef]
88. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.

https://doi.org/10.1038/s41467-020-20197-x
https://doi.org/10.1016/j.tibtech.2004.07.007
https://doi.org/10.1126/science.1127647
https://doi.org/10.3389/fcpxs.2022.1080801
https://doi.org/10.1111/ele.12648
https://www.ncbi.nlm.nih.gov/pubmed/27432641
https://doi.org/10.1038/417022a
https://doi.org/10.4319/lo.1969.14.1.0136
https://doi.org/10.1038/379718a0
https://doi.org/10.1038/nature10282
https://doi.org/10.1038/368734a0
https://doi.org/10.1890/0012-9658(1998)079[2603:CSRAAB]2.0.CO;2
https://doi.org/10.1016/j.tree.2007.08.003
https://doi.org/10.1016/j.biosystems.2023.105087
https://doi.org/10.1016/j.tree.2015.06.004
https://doi.org/10.1073/pnas.2111261119
https://www.ncbi.nlm.nih.gov/pubmed/35105804
https://doi.org/10.1073/pnas.1901055116
https://www.ncbi.nlm.nih.gov/pubmed/31292259
https://doi.org/10.1016/j.cell.2012.03.040
https://www.ncbi.nlm.nih.gov/pubmed/22632978
https://doi.org/10.1038/s41559-016-0015
https://www.ncbi.nlm.nih.gov/pubmed/28812567
https://doi.org/10.1126/science.aat1168
https://www.ncbi.nlm.nih.gov/pubmed/30072533
https://doi.org/10.1016/j.biosystems.2015.12.005
https://doi.org/10.1007/s00018-011-0649-y
https://doi.org/10.1038/nature18959
https://doi.org/10.1126/science.aam5979
https://doi.org/10.1016/j.biosystems.2008.12.006
https://doi.org/10.1016/j.biosystems.2013.08.005
https://www.ncbi.nlm.nih.gov/pubmed/24035831
https://doi.org/10.1016/j.biosystems.2015.03.005
https://www.ncbi.nlm.nih.gov/pubmed/25816767
https://doi.org/10.1016/j.biosystems.2021.104427
https://www.ncbi.nlm.nih.gov/pubmed/33857536
https://doi.org/10.1111/j.1529-8817.1968.tb04667.x
https://doi.org/10.1128/jb.62.3.293-300.1951


Entropy 2023, 25, 1624 25 of 25

89. Hosoda, K.; Habuchi, M.; Suzuki, S.; Miyazaki, M.; Takikawa, G.; Sakurai, T.; Kashiwagi, A.; Sueyoshi, M.; Matsumoto, Y.; Kiuchi,
A. Adaptation of a cyanobacterium to a biochemically rich environment in experimental evolution as an initial step toward a
chloroplast-like state. PLoS ONE 2014, 9, e98337. [CrossRef]

90. Azuma, Y.; Tsuru, S.; Habuchi, M.; Takami, R.; Takano, S.; Yamamoto, K.; Hosoda, K. Synthetic symbiosis between a cyanobac-
terium and a ciliate toward novel chloroplast-like endosymbiosis. Sci. Rep. 2023, 13, 6104. [CrossRef] [PubMed]

91. Wilhm, J.L. Use of Biomass Units in Shannon’s Formula. Ecology 1968, 49, 153–156. [CrossRef]
92. Hossain, M.; Amakawa, T.; Sekiguchi, H. Density, biomass and community structure of megabenthos in Ise Bay, central Japan.

Fish. Sci. 1996, 62, 350–360. [CrossRef]
93. Zhuang, S. Species richness, biomass and diversity of macroalgal assemblages in tidepools of different sizes. Mar. Ecol. Prog. Ser.

2006, 309, 67–73. [CrossRef]
94. Menalled, U.D.; Adeux, G.; Cordeau, S.; Smith, R.G.; Mirsky, S.B.; Ryan, M.R. Cereal rye mulch biomass and crop density affect

weed suppression and community assembly in no-till planted soybean. Ecosphere 2022, 13, e4147. [CrossRef]
95. Tan, X.P.; Shan, Y.Q.; Wang, X.; Liu, R.P.; Yao, Y.L. Comparison of the predictive ability of spectral indices for commonly used

species diversity indices and Hill numbers in wetlands. Ecol. Indic. 2022, 142, 109233. [CrossRef]
96. Faith, J.J.; Guruge, J.L.; Charbonneau, M.; Subramanian, S.; Seedorf, H.; Goodman, A.L.; Clemente, J.C.; Knight, R.; Heath, A.C.;

Leibel, R.L. The long-term stability of the human gut microbiota. Science 2013, 341, 1237439. [CrossRef] [PubMed]
97. Payton, I.J.; Fenner, M.; Lee, W.G. Keystone Species: The Concept and Its Relevance for Conservation Management in New Zealand;

Department of Conservation: Wellington, New Zealand, 2002.
98. Chao, A.; Chiu, C.H.; Villéger, S.; Sun, I.F.; Thorn, S.; Lin, Y.C.; Chiang, J.M.; Sherwin, W.B. An attribute-diversity approach to

functional diversity, functional beta diversity, and related (dis) similarity measures. Ecol. Monogr. 2019, 89, e01343. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pone.0098337
https://doi.org/10.1038/s41598-023-33321-w
https://www.ncbi.nlm.nih.gov/pubmed/37055487
https://doi.org/10.2307/1933573
https://doi.org/10.2331/fishsci.62.350
https://doi.org/10.3354/meps309067
https://doi.org/10.1002/ecs2.4147
https://doi.org/10.1016/j.ecolind.2022.109233
https://doi.org/10.1126/science.1237439
https://www.ncbi.nlm.nih.gov/pubmed/23828941
https://doi.org/10.1002/ecm.1343

	Introduction 
	Ecosystem Framework and Macroscopic Parameters 
	Information Dynamics in Living Systems: Macroscopic and Microscopic Perspectives 
	Diversity and Information Dynamics in Ecosystems: Necessity of Adaptability 
	Mechanism for Information Increase and Identifying Information Carriers in Ecosystems 
	Freedom and Constraints, Homeostasis and Homeorhesis 
	Using Experimental Ecosystems as a Phenomenological Approach 
	Experiments in This Study 

	Materials and Methods 
	Microorganisms 
	Microcosm Experiments 
	Measurements 

	Results and Discussion 
	Ecosystems Used as Initial State 
	Ecosystem Coalescence Experiments for Investigating Competitive Stability and Information Carrier 
	Ecosystem Constraints for Investigating the Dominant Mode Hypothesis 

	Conclusions 
	References

