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Abstract: Using a single-site mean-field approximation (MFA) and Monte Carlo simulations, we
examine Ising-like models on directed regular random graphs. The models are directed-network
implementations of the Ising model, Ising model with absorbing states, and majority voter models.
When these nonequilibrium models are driven by the heat-bath dynamics, their stationary char-
acteristics, such as magnetization, are correctly reproduced by MFA as confirmed by Monte Carlo
simulations. It turns out that MFA reproduces the same result as the generating functional analysis
that is expected to provide the exact description of such models. We argue that on directed regular
random graphs, the neighbors of a given vertex are typically uncorrelated, and that is why MFA for
models with heat-bath dynamics provides their exact description. For models with Metropolis dy-
namics, certain additional correlations become relevant, and MFA, which neglects these correlations,
is less accurate. Models with heat-bath dynamics undergo continuous phase transition, and at the
critical point, the power-law time decay of the order parameter exhibits the behavior of the Ising
mean-field universality class. Analogous phase transitions for models with Metropolis dynamics
are discontinuous.

Keywords: Ising model; directed random graphs; mean-field approximation; nonequilibrium systems

1. Introduction

The formulation of a number of statistical mechanics models was inspired by social
dynamics [1]. Indeed, the dynamics of opinion formation [2], of epidemic spreading [3],
or diffusion of innovations [4] can be, to some extent, described by a collection of interact-
ing agents, whose states are represented by certain discrete, very often binary, variables.
Such an approach bears some similarity to statistical mechanics phenomenology with
an Ising model being a prime example [5]. Because statistical mechanics models origi-
nally intended to explain some thermodynamic properties of matter, their dynamics were
constructed so as to reproduce the canonical equilibrium probability distributions [6].
Having in mind social dynamics applications, we are no longer obliged to impose such
restrictions. This is important when modeling, for example, epidemic or rumor spreading
since the corresponding models typically contain the so-called absorbing states and are
thus much different from equilibrium systems [7].

Although statistical mechanics models are often formulated on regular lattices, such
as a square lattice or a linear chain, more heterogeneous networks are usually considered in
the context of social dynamics. Corresponding structures are often characterized with broad
distributions of vertex degree [8], but also with temporal variability [9], adaptability [10],
multilayered structure [11], or directedness of links [12]. Statistical mechanics models
placed on such networks constitute a considerable challenge, and sophisticated mathe-
matical methods must be used to examine their properties [13,14]. An important insight
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into the behavior of such models is also provided by various approximate methods, which
very often are some kind of mean-field approximations (MFAs). A systematic approach to
derive such approximations can be based on a master equation, as was demonstrated for
several models with binary dynamics [15].

Of course, it is desirable to know the accuracy of such approximate methods.
The experience that we have with the Ising model suggests that MFA on a complete
graph, where each agent interacts with every other agent, should be exact [16]. On the other
hand, interaction networks are usually less dense, which probably affects the accuracy
of MFA. Perhaps, however, this is not always the case. Sometime ago, it was shown that
for the Ising model on directed regular random graphs, MFA agrees with Monte Carlo
simulations within a relative error ∼10−5 [17]. In the present paper, we show that the
accurate description within MFA is provided also for some other models on directed reg-
ular random graphs, namely, for the Ising model with absorbing states and the majority
voter model. Moreover, we note the equivalence of MFA and the solution given within
a generating functional method [18,19] for the Ising model and provide some arguments
why, for models on directed regular random graphs and driven with heat-bath dynamics,
MFA should describe these models exactly. We show that such a behavior results from
the treelike structure of random graphs that effectively decouple the neighbors of a given
site [13].

In some cases, our models undergo continuous phase transitions, and we also examine
the time decay of the order parameter. For models with Metropolis-like dynamics, MFA
turns out to be less accurate, which we relate to certain additional correlations generated by
such dynamics, but apparently neglected by MFA. For the examined values of parameters,
phase transitions in models with Metropolis dynamics turn out to be discontinuous.

2. Models

We examine models where binary variables si = ±1 are placed on the vertices (i) of a
directed regular random graph of size N. Such graphs are generated with a straightforward
algorithm, which randomly selects z neighbors (i.e., out-links) for each vertex (excluding
connections to itself and multiple connections). As a result, we obtain the directed random
graph where each vertex has z out-links. The number of in-links at a vertex has a Poisson
distribution with the average value z. The evolution rules of spin variables mimic those
often implemented in Ising ferromagnets, namely the heat-bath and Metropolis dynam-
ics [6], suitably modified to encompass three classes of models—the Ising model, the Ising
model with absorbing states, and the majority voter model. We performed Monte Carlo
simulations of the above models and confronted the results with a single-site mean-field
approximation (MFA).

Let us emphasize, however, that despite some similarity, like binary variables and
up–down symmetry, such models are much different from an equilibrium Ising model,
where a certain Hamiltonian determines the probability of spin configurations. Indeed,
on directed graphs, detailed balance is, in general, broken, and such systems should be
considered as nonequilibrium systems [20,21].

Ising-like models on directed graphs and with heat-bath dynamics were already exam-
ined using generating functional analysis [18,19] or a cavity method [22,23]. Within such
techniques, one examines the exact equations governing the evolution of the order parameter.
These techniques provide a correct description of such models and might be even used for
graphs of arbitrary distribution. Let us notice, however, that in the heat-bath dynamics, we
specify the probability to set a given spin in a given state. This is not the case in the Metropolis
dynamics, where we specify the probability to flip a given spin. It is, in our opinion, not clear
whether the above-mentioned powerful techniques might be used for models with Metropolis
dynamics. Our studies are restricted to regular directed random graphs, and we demonstrate
that for models with heat-bath and Metropolis-type dynamics, the behavior of these models is
much different.
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3. Results
3.1. Ising Model
3.1.1. Heat-Bath Dynamics

First, we examine an Ising model with the heat-bath dynamics [6]. In such a case, after
randomly selecting the spin, we determine the probability Phb to set the randomly chosen
spin i as si = 1. By analogy with equilibrium systems, Phb is given as

Phb =
1

1 + exp (−2hi/T)
, where hi = ∑

ji

sji (1)

where T is a temperature-like parameter and ji are the (out-)neighbors of the site i, i.e., those
z sites the site i is linked with. With the probability 1− Phb, the i-th spin is set to −1.

In our simulations, the initial configuration for each temperature was fully ferromag-
netic (si = 1). We measured the magnetization m = 1/N ∑i si, typically during tMC = 105

steps, where a step is defined as a single, on average, update of each site. In some cal-
culations, where we analyzed the size dependence of our results, we used averages over
10 independent samples (generating a new graph in each sample). Before measurements,
the model relaxed for tMC steps (usually, such a long relaxation was not needed because
most of our simulations were outside the transition points).

Numerical results for z = 8 are presented in Figure 1. They indicate that, in this model,
the ferromagnetic phase (m > 0) is replaced by the paramagnetic one (m = 0) around
T = 7.

The behavior of such a model can be also examined using a single-site mean-field
approximation. Namely, assuming that the (out-)neighbors of a given site are uncorrelated,
we expect that, in the stationary state, the probability P+ that a randomly chosen spin
equals 1 satisfies the following equation:

P+ =
z

∑
k=0

Rz,k

1 + exp [−4(k− z/2)/T]
(2)

where Rz,k = (z
k)Pk

+(1− P+)z−k. In Equation (2), we assume some homogeneity, namely,
that the probability for the neighbors of the chosen site to be equal 1 is also P+. The term
Rz,k is the probability that, among z (out-)neighbors of a certain spin, there are k neighbors
that are 1 and z− k that are −1. The denumerator in Equation (2) comes from the heat-bath
dynamics probability of updating such a spin. The nonlinear Equation (2) can be easily
solved numerically, and for z = 8, the magnetization m = 2P+ − 1 corresponding to P+ is
plotted in Figure 1. One can notice that both MFA and numerical simulations are in perfect
agreement. In particular, calculations for T = 6.5 and for N up to 106 (inset in Figure 1)
show that MFA agrees with Monte Carlo simulations within an accuracy ∼10−5.

The reason for such a good accuracy is not accidental. Indeed, it turns out for our
model that MFA reproduces the exact solution of the model as obtained using generating
functional analysis. In particular, the MFA description of the steady state as given by
Equation (2) is exactly the same as the one obtained within the generating functional
analysis [19]. The only difference is that the models examined within generating functional
analysis implement the parallel version of the heat-bath dynamics, but the asynchronous
version that we are using apparently leads to the same result.

Let us notice that, writing Equation (2), we assume that (out-)neighbors of a given site
are uncorrelated. One can argue that for directed random graphs, such an assumption is
likely to be satisfied. First, let us observe that neighboring spins sa and sb (Figure 2A) are
influencing (correlating) a given spin sc (i.e., they enter the h-term in Equation (1)), but not
vice versa. Namely, sc does not influence sa or sb. To have sa and sb correlated, we thus
need a direct link between them. However, for finite-z graphs, such links exist with a small
probability ∼1/N. It means that for large graphs, most sites have uncorrelated neighbors,
and that justifies the mean-field approximation (Equation (2)). Our argumentation on the
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validity of Equation (2) is only qualitative. For example, sa and sb could be correlated when
we have a directed path of links instead of a single link, but short paths of this kind are
unlikely on random graphs [13]. Actually, such a property implies that random graphs
are locally treelike graphs. A more quantitative approach justifying Equation (2) would
be certainly desirable, but the agreement with generating a functional method supports
our considerations.
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Figure 1. Magnetization m as a function of temperature T for the Ising model with the heat-bath
dynamics (z = 8). The inset presents the size dependence of the magnetization as calculated for
T = 6.5. The black bullet shows the MFA value m = 0.5155186 . . ., as obtained from the numerical
solution of Equation (2). From the linear fit, based on numerical data for 104 ≤ N ≤ 106, in the limit
N → ∞, we obtain 0.51551(1), which is extremely close to the MFA value.

Let us also notice that on an undirected network (Figure 2B), the spins sa and sb are
influenced by sc, which makes them correlated (no matter whether they are connected by a
direct link or not). In such a case, we expect that Equation (2) will be erroneous. For the
Ising model on random regular undirected graphs, the critical temperature is known to be
equal to Tc = 2/ ln [(z + 1)/(z− 1)] [24], and for z = 8, we obtain Tc = 7.958 . . .. This is
different from the MFA Equation (2), which in this case predicts Tc = 7.062 . . . (as also seen
in Figure 1). Actually, spin models on undirected random graphs, and also on certain more
general treelike lattices, might be analyzed exactly using several techniques, such as the
recursion method [24], the replica technique [25], or the cavity method [26].

One can generalize Equation (2) for Ising models on directed Erdös–Rényi random
graphs, where it also shows a very good agreement with numerical simulations [21].
For z = 2, 3, and 4, Equation (2) can be easily solved analytically [17].

Since our model exhibits a continuous phase transition, it might be of interest to
examine some of its dynamical features at criticality. We analyzed the time decay of the
order parameter m(t). Asymptotic decay of m(t) was already analyzed for a number of
models [27], and it is expected that in the long-time regime at the critical point, one has
m(t)∼t−β/νω, where β and ν are exponents that describe the critical behavior of the order
parameter and correlation length and ω are the dynamical critical exponents [28,29]. One
might expect that our model belongs to the mean-field Ising universality, but taking into
account its nonequilibrium features, such a behavior is by no means obvious, especially
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with respect to its dynamical behavior. Using the well-known mean-field values β = 1/2,
ν = 1/2, and ω = 2 [30] in the long-time limit, we obtain m(t)∼t−1/2. To verify such
an expectation, we calculated the average behavior of the time-dependent magnetization
m(t) for z = 8 and several temperatures. We made simulations for N = 106, and the final
results, which are averages over 100 independent samples, are presented in Figure 3. Our
simulations demonstrate that at the critical point (T = 7.06), the decay of magnetization is
consistent with the decay∼t−1/2. It shows that with respect to the dynamical characteristics,
the behavior of our model is consistent with the mean-field Ising universality class.

Figure 2. (A) On a directed network, (out-)neighboring spins sa and sb influence (correlate) sc, but
not vice versa. Namely, sa and sb are uncorrelated unless there is a direct link between them (dashed
line). On a graph of size N, where each vertex is connected to z other vertices, such a link exists with
a probability (N−1

z−1 )/(
N−1

z ) = z/(N − z) ∼ 1/N; i.e., on a large random directed graph, neighbors
of a given site are mainly uncorrelated. (B) On an undirected network, neighboring spins sa and sb
influence sc, but also sc influences sa and sb. Thus, on an undirected network, neighbors of a given
spin sc are correlated (at least via sc).

3.1.2. Metropolis Dynamics

The so-called Metropolis dynamics is yet another algorithm to simulate Ising
models [6]. In this dynamics, one randomly selects a spin (si) and flips it with the probabil-
ity min [1, exp(−∆E/T)], where ∆E is the energy change experienced during such a flip.
On directed graphs, by analogy with undirected graphs, we can define the (pseudo-)energy
change as ∆E = 2sihi, where hi is defined in Equation (1). With such an algorithm, we
made Monte Carlo simulations, and the results for z = 8 are presented in Figure 4.

The rules of the heat-bath and Metropolis dynamics were devised in such a way that
when they drive an Ising model on undirected graphs, they both reproduce the same
equilibrium probability distribution. On directed graphs, these dynamics do not obey
a detailed balance, and they are unlikely to be equivalent. Indeed, as we can notice in
Figure 4, the magnetization m vanishes at a substantially lower temperature than for the
model with the heat-bath dynamics. What is more, with the Metropolis dynamics, the
magnetization seems to have a discontinuous jump. It would be desirable to gain some
understanding of such a behavior that is in qualitative contrast with continuous phase
transitions that are more typical of Ising-like models. Let us notice that some other fine
dynamical details are also known to induce a similar discontinuous behavior [31,32].
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Figure 3. Time decay of the magnetization m(t) for the Ising model with the heat-bath dynamics
(z = 8). At the critical point (T = 7.06), magnetization seems to decay as ∼ t−1/2.
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Figure 4. Magnetization m as a function of temperature T for the Ising model with Metropolis
dynamics (z = 8). MFA denotes numerical solutions of Equation (3).

For the Ising model with Metropolis dynamics, we can also develop the mean-field ap-
proximation. In the stationary state, as described using MFA, we expect that the probability
that a selected spin is 1 and it flips to −1 should be equal to the probability that it is −1 and
it flips to 1. Using the Metropolis transition rates, we can thus write the following relation:

P+

[
z/2

∑
k=0

Rz,k +
z

∑
k=z/2+1

Rz,k exp (2z− 4k)/T

]
= (1− P+)

[
z/2−1

∑
k=0

Rz,k exp (4k− 2z)/T +
z

∑
k=z/2

Rz,k

]
, (3)

where, for simplicity, we assumed that z is an even number and P+ is interpreted as a
probability that a randomly chosen spin is 1.

Standard numerical methods can be used to solve the nonlinear Equation (3), and the
solution for z = 8 is shown in Figure 4. Good agreement of MFA with simulations can be
seen but only at low temperature. Similar to Monte Carlo simulations, MFA also predicts a
discontinuous jump of the magnetization at the transition temperature.
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Clearly, MFA for the Ising model with the Metropolis dynamics is not very accurate.
Of course, writing Equation (3), we also assumed that the neighbors of a chosen site are
uncorrelated, but as we already argued, this is a plausible assumption. Let us notice,
however, that in Equation (3), we are making yet another assumption, namely, that the
considered spin is independent of the neighboring spins. In our opinion, this is the main
source of the discrepancy between MFA and numerical simulations. In a more adequate
treatment, we should introduce additional parameters describing such correlations and
additional equations like Equation (3) that would enable their determination. Such an
approach, often called pair approximation, as well as the single-site MFA analyzed in our
paper, can be obtained in a more systematic way from a certain master equation, which
describes a large class of stochastic models with binary dynamics [15].

We will not pursue such more elaborate mean-field approximations. Instead, we will
confront numerical simulations with MFA in some other models with the heat-bath and
Metropolis dynamics. Let us also notice that the generating functional analysis [18,19] is
based on transition rates that are used in heath-bath dynamics, and it is not clear whether
this technique might be extended for Metropolis dynamics.

3.2. Ising Model with Absorbing States
3.2.1. Heat-Bath Dynamics

In a certain class of models, the rules of the Ising dynamics are modified so as to obtain
models with absorbing states. Such systems violate a detailed balance, but they can exhibit
a rich behavior with some nonequilibrium phase transitions [33,34]. They often retain an
Ising up–down symmetry, which, combined with the absorbing-state transition, results in
a voter-type critical point. Sometime ago, it was noticed that the voter critical point can
split, and the breaking of the up–down symmetry and the collapse into an absorbing state
would take place separately [35]. Such an effect was explained in terms of the Langevin
description [36] and observed in some other systems [37–40].

The Ising model on directed networks retains the up–down symmetry, and to have
the dynamics with absorbing states, we should modify the heat-bath dynamics so that the
spin that has z neighbors in the same state is set in the same state (as neighbors) with the
probability Phb = 1. It means that in the definition (1), we should set Phb = 1 for hi = z
and Phb = 0 for hi = −z. For the remaining configurations of neighbors, we keep the
definition (1). For a model with such dynamics, the MFA equation takes the form

P+ = Rz,z +
z−1

∑
k=1

Rz,k

1 + exp [−4(k− z/2)/T]
. (4)

A numerical solution of Equation (4) and results from Monte Carlo simulations for
z = 8 are shown in Figure 5. Since the model dynamics contains some absorbing states
(with all spins +1 or all spins −1), we start simulations from 80% of spins set as +1 and 20%
as −1. At high temperature, the model remains in the disordered paramagnetic phase. At
around T = 5.33, the up–down symmetry gets broken, and the model is either positively
(m > 0) or negatively (m < 0) magnetized. Upon further cooling, at T = 4.97, the second
transition takes place, and the model enters an absorbing state. As we already mentioned,
a similar behavior has already been reported for the absorbing-state Ising model on some
regular lattices (square lattice with further neighbor interactions or simple cubic lattice) [35].
Let us notice (inset in Figure 5) that MFA (Equation (4)), similar to the Ising model with the
heat-bath dynamics, also provides an extremely accurate and possibly exact description of
the model. Of course, Equation (4) is also based on the independence of neighboring spins,
but as we argued in the previous subsection, for random directed regular graphs, such an
assumption should be satisfied.

We do not present numerical results, but our analysis shows that for z = 4, the
intermediate phase (with 0 < m < 1) does not exist, and the model transitions from
the paramagnetic phase directly to the absorbing state. In such a case, the symmetry
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breaking and the absorbing-state phase transition take place simultaneously, as in the voter
model [41]. A similar behavior is observed for the absorbing-state Ising model on a square
lattice, where with the nearest-neighbor interactions (z = 4), both transitions take place
at the same temperature, while the addition of further range interactions leads to their
separation [35]. For z = 2, our model remains in the paramagnetic phase for any T > 0,
similar to the Ising model (without absorbing states) on a directed regular random graph
with z = 2 [21] and, of course, to the one-dimensional (equilibrium) Ising model.
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Figure 5. Magnetization m as a function of temperature T for the Ising model with absorbing states
and with the heat-bath dynamics (z = 8). The inset presents the size dependence of the magnetization
as calculated for T = 6.8. The black bullet shows the MFA value m = 0.583665 . . ., as obtained from
the numerical solution of Equation (4). From the linear fit, based on numerical data for 104 ≤ N ≤ 106,
in the limit N → ∞, we obtain 0.5837(2), which is extremely close to the MFA value.

For the Ising model with absorbing states, we also examined the time decay of magne-
tization at the symmetry breaking transition. Our results (Figure 6) demonstrate that, also
in this case, the decay (∼ t−1/2) is consistent with the Ising mean-field universality class.
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Figure 6. Time decay of the magnetization m for the Ising model with absorbing states with the
heat-bath dynamics (z = 8). At the critical point (T = 7.17), magnetization seems to decay as ∼ t−1/2.

3.2.2. Metropolis Dynamics

We also analyzed the Ising model with absorbing states and the Metropolis update.
To have the absorbing states, we suppress flips that would result in a maximum increase in
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energy (∆E = 2z). With such dynamics, the MFA equation is similar to Equation (3) and
has the form

P+

[
z/2

∑
k=0

Rz,k +
z−1

∑
k=z/2+1

Rz,k exp (2z− 4k)/T

]
= (1− P+)

[
z/2

∑
k=1

Rz,k exp (4k− 2z)/T +
z

∑
k=z/2+1

Rz,k

]
. (5)

The numerical solution of Equation (5) and the results from Monte Carlo simula-
tions for z = 8 are presented in Figure 7. Both methods predict the intermediate phase
(0 < m < 1) and separate the symmetry-breaking and absorbing-state transitions. Similar
to the Ising model, the symmetry breaking transition is discontinuous, and MFA and Monte
Carlo simulations are noticeably different.
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Figure 7. Magnetization m as a function of temperature T for the Ising model with absorbing states
and the Metropolis dynamics (z = 8). MFA denotes a numerical solution of Equation (5).

3.3. Majority Voter Model
3.3.1. Heat-Bath Dynamics

The majority voter model is a frequently studied model of opinion formation [42–44].
In this model, the behavior of a given spin is determined by the sign (not the strength) of
the majority of neighboring spins. In the heat-bath-like formulation of the majority voter
model dynamics, we specify the probability Phb that a randomly chosen spin si is set to 1 as

Phb =


1+q

2 for hi > 0
1
2 for hi = 0

1−q
2 for hi < 0

, (6)

where hi is defined as in Equation (1) and the parameter q controls the level of noise.
For such a model, MFA leads to the following equation:

P+ =
1
2
(1 + q)

z/2−1

∑
k=0

Rz,k +
1
2

Rz,z/2 +
1
2
(1− q)

z

∑
k=z/2+1

Rz,k. (7)

The numerical solution of Equation (7) and the results from Monte Carlo simulations
for z = 4 are shown in Figure 8. As expected, for large q, the model remains in the polarized
phase (0 < m < 1), which around q = 0.66(1) is replaced with the unpolarized phase
(m = 0). As in our other models with the heat-bath dynamics, as well as in this case, MFA
is in perfect agreement with simulations, which is clearly demonstrated for more detailed
calculations for q = 0.75.
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Figure 8. Magnetization m as a function of the parameter q for the majority voter model with the
heat-bath dynamics (z = 4). The inset presents the size dependence of the magnetization as calculated
for q = 0.75. The black bullet shows the MFA value m = 0.577350 . . ., as obtained from the numerical
solution of Equation (7). From the linear fit, based on numerical data for 104 ≤ N ≤ 106, in the limit
N → ∞, we obtain 0.577349(3), which is extremely close to the MFA value.

For the majority voter model, we also examined the time decay of magnetization.
Our results (Figure 9) demonstrate that, also in this case, the decay (∼ t−1/2) is consistent
with the Ising mean-field universality class.
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Figure 9. Time decay of magnetization m for the majority voter model with the heat-bath dynamics
(z = 4). At the critical point (q = 0.66), magnetization seems to decay as ∼t−1/2.

3.3.2. Metropolis Dynamics

One can also formulate the Metropolis version of the majority voter model. In particu-
lar, we introduce P(si → −si) as the probability to flip the randomly chosen spin si defined
as follows:

P(si → −si) =

{
1 for hisi ≤ 0
(1− q)/2 for hisi > 0

. (8)
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With such dynamics, the model can be analyzed within MFA, and the corresponding equation
has the form

P+

[
z/2

∑
k=0

Rz,k +
1
2
(1− q)

z

∑
k=z/2+1

Rz,k

]
= (1− P+)

[
1
2
(1− q)

z/2

∑
k=0

Rz,k +
z

∑
k=z/2+1

Rz,k

]
. (9)

The numerical solution of Equation (9) and the results from Monte Carlo simulations
for z = 4 are presented in Figure 10. A noticeable discrepancy of these results, especially in
the vicinity of the transition, can be seen. Similar to other models with the Metropolis update,
the transition between polarized and nonpolarized phases is most likely discontinuous.
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Figure 10. Magnetization m as a function of the parameter q for the majority voter model with the
Metropolis dynamics (z = 4). The plot of the magnetization in the vicinity of the transition (inset)
suggests its discontinuous behavior.

4. Conclusions and Remarks

In the present paper, we examined Ising-like models on directed regular random
graphs. We examined these models using mean-field approximation and Monte Carlo
simulations. It turns out that when these models are driven by heat-bath dynamics, their
steady-state behavior is correctly reproduced by MFA. Indeed, for an Ising model, our MFA
is equivalent to the so-called generating functional analysis that is expected to provide the
exact description of this model. Since, for the Ising model with absorbing states and the ma-
jority voter model, MFA also offers a very accurate description, as confirmed using Monte
Carlo simulations, we expect that, in this case, MFA also provides the exact description.
It would be interesting to apply generating functional analysis to these models to verify our
expectations. It is perhaps worth emphasizing that MFA is a very simple approximation
that, nevertheless, as our work demonstrates, in some cases, offers exact results. We gave
some arguments that validate MFA for our models, namely, that on directed random graphs,
the neighbors of a given spin are typically uncorrelated. We also examined some dynamical
characteristics of our models with heat-bath dynamics. Numerical simulations show that,
at criticality, magnetizations decay as t−1/2, which confirms that although these models are
nonequilibrium, their dynamics belong to the Ising mean-field universality class.

A much different behavior appears when these models are driven by Metropolis
dynamics. Let us notice that, for equilibrium systems, both heat-bath and Metropolis
dynamics are equivalent and drive the system toward the equilibrium state described by
canonical distribution. For models on directed graphs, our models are nonequilibrium,
and these two dynamics are not equivalent. For Metropolis dynamics, the independence of
neighbors is not enough, and MFA turns out to be less accurate. The applicability of the
generating functional analysis to models with Metropolis dynamics is, in our opinion, an
open problem. It would be desirable to explain the nature of discontinuous transitions that
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we observed for the Metropolis dynamics both within MFA and in Monte Carlo simulations.
Apparently, even a qualitative behavior of models on directed graphs, such as the nature of
a phase transition, is sensitive to some details of dynamical rules.

It would be interesting to extend our work to some other dynamics, such as conserva-
tive Kawasaki dynamics [45]. One can also examine some other models defined with the
heat-bath dynamics. For example, epidemic spreading models, like the SIR model, can be
formulated in such a way, and we expect that on directed graphs, MFA should also provide
their very accurate, perhaps exact, description. We also expect a similar efficiency of MFA
for models with three (or more) state variables, e.g., the Ising model with a spin S = 1 or
some opinion formation models [44].
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