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Abstract: A Multilayer network is a potent platform that paves the way for the study of the interac-
tions among entities in various networks with multiple types of relationships. This study explores the
dynamics of discrete-time quantum walks on a multilayer network. We derive a recurrence formula
for the coefficients of the wave function of a quantum walker on an undirected graph with a finite
number of nodes. By extending this formula to include extra layers, we develop a simulation model
to describe the time evolution of the quantum walker on a multilayer network. The time-averaged
probability and the return probability of the quantum walker are studied with Fourier, and Grover
walks on multilayer networks. Furthermore, we analyze the impact of decoherence on quantum
transport, shedding light on how environmental interactions may impact the behavior of quantum
walkers on multilayer network structures.
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1. Introduction

Quantum walks (QWs) are the quantum analogs of classical random walks (CRWs).
Importantly, QWs contribute to the theoretical and applied studies of quantum com-
puting [1] and quantum algorithms [2]. There are two broad classes of QWs known as
discrete-time QWs (DTQW) and continuous-time QWs (CTQW), each of which has signifi-
cant distinctions in their mathematical formalism [3]. A considerable body of work can be
found in the literature which explores the dynamics of linear and cyclic QWs in two and
higher-dimensional spaces, as well as on specific graphs [3,4].

In the study of complex systems, multilayer networks play a crucial role as a modeling
tool [5–7]. A multilayer network consists of nodes and edges, yet the edges exist in
separate layers representing different forms of interactions. Multilayer networks are used
to understand the evolution of ecological systems [8], complex interactions across multiple
layers of biological systems [9], public transportation systems [10] and the structure of
financial markets [11]. One can find several studies that utilize the framework of CTQWs
to investigate transport properties of multilayer dendrimer networks [12], honeycomb
networks [13], and important models of scale-free networks [14]. Nonetheless, it is clear that
there has been insufficient exploration of the dynamics of DTQWs on multilayer networks.
Therefore, we present a comprehensive study of DTQWs on a multilayer network to address
this gap. Several formulations of the DTQWs on specific network structures can be found
in the literature. However, defining a DTQWs on an arbitrary network is more difficult
than that of a CTQWs [15]. Ref. [16] has proposed a framework for defining QWs on
regular graphs. Sometimes, this framework is termed the Shunt-Decomposition model [17].
In [2], it is suggested to add one or more self-loops to each vertex with the purpose of
obtaining a regular graph when modeling the QWs on irregular graphs. Redefining the
action of the conditional swap operator in [18], Kendon [19] has presented a method to
simulate DTQWs on general undirected graphs. Sometimes, this method is identified as
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the arc-reversal model [17]. Ref. [20] has proposed another framework for QWs on a graph
in which the motion of the quantum walker takes place on the edges of the graph rather
than the vertices.

In our work, we give a block matrix representation for the state of the quantum
walker instead of the usual column vector representation. Then, we derive formulae that
imitate the coin toss and the shifting operation of the DTQW. Using these formulae and
the block matrix representation, we develop a simulation to mimic the progression of
DTQWs on an undirected graph. Later, we extend our framework to mimic DTQWs on
multilayer networks.

The paper is organized in the following way. In Section 2, we present our mathematical
model for DTQWs on a graph. Section 3 is dedicated to extending our mathematical model
to include DTQWs on multilayer networks. Moreover, for comparison purposes, we also
model a CRW on a multilayer network in Section 4. Numerical implementation of DTQWs
on a toy model and some synthetic multilayer networks are given in Sections 5 and 6,
respectively, along with a detailed analysis of time-average probability, return probability,
and decoherence.

2. QWs on a Graph

Consider a finite undirected graph G = {V, E} where V = {v1, . . . , vn} is the set of
vertices (nodes) and E = {(vi, vj) | vi, vj ∈ V} is the set of edges (connections). Note that,
the graphs we studied here are finite as opposed to the unrestricted line or the integer
line we used to define the QWs on a line [21]. Moreover, our study considers only simple
graphs (i.e., graphs without self-loops or parallel edges). We denote the adjacency matrix
corresponding to G as A ∈ Rn×n which is defined in the following way

aij =

{
1 If (vi, vj) ∈ E
0 Otherwise

(1)

The positive integers n = |V| and m = |E| represent the number of nodes and edges in G,
respectively. The number of edges linked to a particular node vi is referred to as its degree
and denoted by di = ∑n

j=1 aij.
Let us now model the propagation of a QW on G. For convenience, let us relabel

the vertices of G or, in the QWs’ terminology, the position states of the QW as |x〉p where
x = 1, . . . , n. Then, the set of vertices V = {|1〉p, |2〉p, . . . , |n〉p} becomes the position
basis set of the QW which spans the position of the Hilbert space Hp. Let us denote the

subspace spanned by the basis element |x〉p in V as H(x)
p . That is, H(x)

p = span{|x〉p}where

|x〉p ∈ V. Now, for each vertex |x〉p, let us assign a coin Hilbert space H(x)
c spanned by

the coin basis {|r〉c | r = 1, . . . , dx} where dx is the degree of the vertex |x〉p. Note that,

the dimension of the coin Hilbert space H(x)
c is dx. To gain an advantage in simulation,

we adopt the following strategy to modify the labeling of the coin states. We define a
set Bx that comprises the labels of the vertices adjacent to the vertex |x〉p as Bx = {y :
vertex |x〉p and |y〉p have a connection} where |Bx| = dx. Now, we define a function as,
fx(r) = rth element of Bx. Since the parallel edges are excluded in our study, the function
fx(r) is a bijection. Without the loss of generality, we always arrange the elements of Bx

in an ascending order. Now, we can denote the basis of the coin Hilbert space H(x)
c as

{| fx(r)〉c | r = 1, . . . , dx}. Using fx(r), we have labeled the coin states of each vertex in
terms of the edges connected to it. Such an approach can be found in [18]. Now, the state
vector of the quantum walker at position |x〉p at time t can be written as

|ψ(x, t)〉 =
dx

∑
r=1

αx, fx(r)(t)|x〉p| fx(r)〉c (2)
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where αx, fx(r)(t) ∈ C are called the probability amplitudes, |x〉p ∈ H(x)
p , | fx(r)〉c ∈ H(x)

c and

|ψ(x, t)〉 ∈ H(x)
p ⊗ H(x)

c . Here, dim(H(x)
p ) = 1, dim(H(x)

c ) = dx and dim(H(x)
p ⊗ H(x)

c ) = dx.
For each position x, the coefficient αx,r(t) = 0 whenever r 6∈ Bx. Our next task is to write
an expression for the total wave function of the quantum walker on G at time t. For that,
we need to sum the state vectors |ψ(x, t)〉 in (2) over all the vertices. However, we cannot
perform such a summation because the state vectors |ψ(x, t)〉, corresponding to each vertex,
reside in different composite Hilbert spaces as the size of H(x)

c changes with the degree
of the node x. Therefore, to perform such a summation, one needs to combine the set of
composite Hilbert spaces {H(x)

p ⊗ H(x)
c }x in a reasonable manner to form a bigger Hilbert

space that includes all the state vectors. The operation of the direct sum of the vector spaces
paves a way to combine the composite Hilbert spaces to cater to our demand. Let us define

H =
n⊕

x=1

(
H(x)

p ⊗ H(x)
c

)
where ⊕ denotes the external direct sum of Hilbert spaces and

dim(H) = ∑n
x=1 dx. According to the definition of the global Hilbert space H, it is obvious

that for each vertex x, the state vector |ψ(x, t)〉 ∈ H. Hence, the total wave function of the
quantum walker at time t can be calculated by summing |ψ(x, t)〉 in (2) over all the vertices.
Then, the total wave function at time t can be written as

|ψt〉 =
n

∑
x=1

dx

∑
r=1

αx, fx(r)(t)|x〉p| fx(r)〉c (3)

where |ψt〉 ∈ H and ∑n
x=1 ∑dx

r=1 |αx, fx(r)(t)|
2 = 1. Coin operator C(x), which acts on the

coin states associated with the vertex |x〉p, holds the transition probabilities from |x〉p to its
neighboring vertices. Hence, C(x) can be defined as

C(x) =
dx

∑
i=1

dx

∑
j=1

C(x)
ij | fx(i)〉〈 fx(j)| (4)

where {| fx(r)〉c}dx
r=1 are the basis elements of H(x)

c . The coin coefficients C(x)
ij ∈ C are

chosen in such a way that the condition of unitarity of the QW is preserved, i.e., the total
probability is unity at all time steps. Hence, (C(x))†C(x) = C(x)(C(x))† = I. By combining
each local coin operator C(x), one can write the global coin operator C acting on |ψt〉 ∈ H
as follows

C =
n

∑
x=1

dx

∑
i=1

dx

∑
j=1

C(x)
ij |x〉〈x| ⊗ | fx(i)〉〈 fx(j)| (5)

The shift operator of the QW on a graph is defined as follows

S|x〉p|y〉c = |y〉p|x〉c (6)

Note that the abstract forms of C and S given in (5) and (6), respectively, are similar to
those used in the arc-reversal model [17]. However, the arc-reversal model and our method
significantly differ in numerical simulation (discussed in Appendix A). Both C and S are
unitary operators associated with the Hilbert space H. Hence, a single-step progression of
the quantum walker on the graph is given by

|ψt+1〉 = U|ψt〉 (7)

where U = SC is the evolution operator and S and C are the shift and coin operators,
respectively.
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2.1. Matrix Representation and Simulation

The local coin operator C(x), associated with the vertex |x〉p, holds the transition
probabilities from |x〉p to its neighboring nodes. Suppose that the vertex |x〉p is linked to a
dx number of vertices denoted by |y1〉p, . . . , |ydx 〉p and y1 < y2 < . . . < ydx . Hence, for each
r ∈ {1, . . . , dx}, we can write yr = fx(r). Then, the block matrix of C(x) can be written as

C(x) =


〈 fx(1)| . . . 〈 fx(dx)|

| fx(1)〉 C(x)
11 . . . C(x)

1dx
...

...
...

...
| fx(dx)〉 C(x)

dx1 . . . C(x)
dxdx

 (8)

For example, the local coin operators associated with a four-vertex graph are shown
in Appendix A. In the standard mathematical formalism of QWs [21], a column vector
represents the state of the quantum walker at time t. However, alternatively, one can give a
convenient block matrix representation for the total wave function of the quantum walker
on a graph given in (3) as follows

|ψt〉 = Nt =


|1〉c . . . |n〉c

|1〉p α1,1(t) . . . α1,n(t)
...

...
...

...
|n〉p αn,1(t) . . . αn,n(t)

 (9)

In matrix Nt, the rows represent the position states, and the columns represent the coin
states. A single row holds the coefficients corresponding to the coin states associated with
a single position. According to the definition of the coefficients of αx,r(t), some entries of
the matrix Nt become zero (Appendix A). Such a block matrix representation of the total
wave function can be found in the study [22]. One can view the block matrix representation
given in (9) as an adjacency matrix of a weighted graph with time-dependent complex
weights. By knowing all the coefficients of αx,r(t), in other words, all the elements of Nt,
we can uniquely determine the total wave function of the quantum walker on the graph at
time t. In addition, by appropriately updating the elements of Nt, one can determine the
matrix Nt+1 and hence the total wave function of the quantum walker at time t + 1. The
elements of Nt are updated in two processes. First, an intermediate matrix Ñt is generated
using the following formula

α̃x, fx(i)(t) =
dx

∑
j=1

αx, fx(j)(t)C
(x)
ij (10)

Afterwards, the matrix Nt+1 is determined by taking the transpose of Ñt. The update rule
is given by

αx, fx(i)(t + 1) = α̃ fx(i),x(t) (11)

Note that the expression in (10) and the recurrence formula in (11) correspond to the
coin and shift operations of the QW on the graph, respectively. The proof is given in the
Appendix B.

2.2. Probability Calculation

The probability Pq(x, t) of finding the quantum walker at vertex x at time t can be
calculated using (2) as follows

Pq(x, t) =
dx

∑
r=1
|αx, fx(r)(t)|

2 (12)
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Note that Pq(x, t) can be determined by summing the elements in the xth row of the matrix
Nt �N∗t where � is the Hadamard product of matrices and N∗t is the complex conjugate of
the block matrix given in (9).

3. QWs on Multilayer Networks

A multilayer network is a pairM = (G, C) where G = {Lα; α ∈ {1, 2, . . . , l}} is a fam-
ily of undirected graphs of Lα = {Vα, Eα} (called layers ofM) with Vα = {vα

1 , vα
2 , . . . , vα

nα
}

is the set of vertices and Eα = {eα
1 , eα

2 , . . . , eα
rα

: erα = (vα
i , vα

j )} is the set of edges in the Lα

layer of the multilayer network [6]. The positive integers l, nα and rα are termed as the
number of layers inM, the number of vertices and the edges of the layer Lα respectively.
Moreover, C = {Eαβ ⊆ Vα ×Vβ : α, β ∈ {1, 2, . . . , l}, α 6= β} is the set of edges between the
Lα and Lβ layers. The elements of C are crossed layers. Furthermore, the elements of each
Eα are called the set of intralayer edges, and the elements of each Eαβ (α 6= β) are called the
interlayer edges ofM [23]. Let us denote the adjacency matrices corresponding to each
layer Lα as A(α) = (aα

ij) ∈ Rnα×nα which is defined by

aα
ij =

{
1 If (vα

i , vα
j ) ∈ Eα

0 Otherwise
(13)

for 1 ≤ i, j ≤ nα and 1 ≤ α ≤ l where nα is the number of nodes in layer Lα. The interlayer
adjacency matrix corresponding to Eαβ is the matrix A[α,β] ∈ Rnα×nβ given by

aαβ
ij =

{
1 If (vα

i , vβ
j ) ∈ Eαβ

0 Otherwise
(14)

By appropriately combining the adjacency matrices corresponding to each layer Lα and
the interlayer adjacency matrices, one can derive a supra-adjacency matrix [23] which
characterizesM. Now, let us define a QW onM. Recall that, in Section 2, we developed a
mathematical model to mimic the propagation of a QW on any given undirected graph.
According to our model, when the adjacency matrix is given, we define the sets of {Bx}n

x=1
along with the set of functions { fx(r)}n

x=1 and then simulate the evolution of the QW on
the graph by updating the elements of the block matrix in (9). Likewise, one can use the
same mathematical model to mimic the propagation of a quantum walker on a multilayer
network just by following the same procedure given in Section 2 with the supra-adjacency
matrix ofM. In a QW, the transition probabilities from vertex x to its neighboring vertices
are given by the coin operator C(x). According to the simulation, one can choose suitable
coin operators to control the probability flow from one vertex to the neighboring vertices in
the multilayer network. When the transition probabilities from a vertex x to its neighboring
vertices are the same, we say that the QW on the multilayer network is unbiased. To model
such an unbiased QW, we can attach a Fourier coin F(x) to each vertex x given by

F(x) =
1√
dx

dx

∑
r=1

dx

∑
s=1

e2iπ(r−1)(s−1)/dx |r〉〈s| (15)

where dx is the degree of vertex x [24]. Note that, the relationship of F(x)(F(x))† =
(F(x))†F(x) = I is preserved by the Fourier coin. In the studies of QWs on graphs, it
has been shown that the Grover coin tends to localize the quantum walker around the
initial vertex [24]. Hence, it is also worth exploring the Grover’s walk on a multilayer
network. The ijth element of the Grover coin G(x) attached to the vertex x onM can be
written as

G(x)
ij =

{
2−dx

dx
If i = j

2
dx

Otherwise
(16)
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where 1 ≤ i, j ≤ dx and dx is the degree of vertex x. Note that, the Grover coin holds the
relationship of G(x)(G(x))† = (G(x))†G(x) = I. In Sections 5 and 6, we analyze the dynamics
of some QWs on specific multilayer networks with different choices of coin operators. Note
that a multilayer network can be conceptualized as a single-layer network with different
groups of nodes, each having distinct connection properties. Hence, the general definition
of discrete-time QWs on the undirected graph in Section 2 already captures the case of QWs
on multilayer networks. However, since the multilayer networks offer a more detailed
and comprehensive representation of complex systems [25], the framework for QWs on
multilayer networks, which we have given in this paper, can be conveniently used to
model and analyze complex scenarios. For instance, our framework for QWs on multilayer
networks enables the modeling and analyzing of the situation in which each layer possesses
a different coin (Appendix C and Figure A2).

4. Classical Random Walk on Multilayer Networks

The propagation of the classical random walk (CRW) on different graph structures
is a topic that has been extensively studied [26]. In general, the propagation of a random
walker on any given network structure is modeled using the transition probabilities from
a vertex x to its neighboring vertices [19,27]. By adopting the same concept, one can also
define a CRW on a multilayer network [28]. Let Ωx,y be the transition probability from
vertex x to y. Then, the probability Pc(x, t) of finding the random walker at position x at
time t is given by the following recurrence relations

Pc(x, t) =
dx

∑
r=1

Ω fx(r),xPc( fx(r), t− 1) (17)

where dx is the degree of the vertex x and for each r, the function fx(r) gives the labels
of the neighbouring vertices of x. When the transition probabilities from a vertex x to its
neighboring vertices are the same, we say the CRW is unbiased. In usual practice [27],
transition probability Ω(ub)

x,y for the unbiased classical random walk (UBCRW) on any graph
structure is defined as follows

Ω(ub)
x,y =

{
1

dx
If (x, y) is connected

0 Otherwise
(18)

where dx is the degree of vertex x. One can adopt the same definition given in (18) to model
the UBCRW on a multilayer network.

5. Numerical Implementation on a Toy Model

In this section, we perform the UBCRW and the Fourier walk (unbiased QW) on a
toy multilayer network structure (Figure 1) and examine the flow of probability through
various layers. We intend to explore the fundamental differences between classical and
quantum dynamics on a multilayer network. From the definition of the multilayer network
given in Section 3, one can consider diverse configurations of structures with multilayers.
Nonetheless, a two-layer network consisting of two distinct graphs can be understood
as the simplest multilayer network. Hence, we consider one such simplest multilayer
structure to perform the UBCRW and the Fourier walk. Note that the interlayer edges of
the toy model in Figure 1 only link the vertices representing the same entity in different
layers. Hence, this network can be classified as a multiplex network, which is a special
class of multilayer networks [29]. Let the top and bottom layers be L1 = {V1, E1} and
L2 = {V2, E2} respectively where V1 = {1, 2, 3, 4} and V2 = {5, 6, 7, 8} are the set of
vertices in each layer and E1 and E2 are the set of edges corresponding to each layer. The
supra-adjacency matrix [23] of the multilayer network in Figure 1 can be written as follows
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Asup =

A(1) I
I A(2)

 =



0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


(19)

where the first (A(1)) and second (A(2)) block matrices along the diagonal (i.e., the top-left
corner and bottom-right corner) represent the adjacency matrices of the layer L1 and L2
respectively. The top-right and bottom left block matrices represent the connection between
the layers. Using the supra-adjacency matrix in (19), one can define the sets of {Bx}8

x=1
along with the set of functions { fx(r)}8

x=1 and then simulate the evolution of the QW on
the multilayer network by updating the elements of the block matrix in (9).

Figure 1. A multilayer network with four vertices and two layers named L1 and L2. The set of labels
{x, x + 4} where x ∈ {1, 2, 3, 4} represent the same entity in different layers. The solid lines connect
the vertices within each layer, and the dotted lines connect interlayer. The top layer represents an
undirected regular graph, and the bottom layer represents an undirected connected graph. This
schematic diagram is inspired by [6,7].

5.1. Probability Distribution

We perform the UBCRW and the Fourier walk on the toy multilayer network structure
and investigate the probability of finding the walker on each layer after 100 steps. The
UBCRW is initialized from the vertex 1, and the Fourier walk is initialized from two
localized initial states of the form |1〉p ⊗ |3〉c and |1〉p ⊗ |5〉c. We place the quantum walker
at the position state |1〉p (vertex 1), attaching the coin state of |3〉c and |5〉c to the walker. We
select these localized initial states to replicate the conditions similar to those in the UBCRW,
which enables a meaningful comparison between the unbiased CRW and QW on the toy
multilayer model. After 100 steps, we calculate the probability of finding the walker at
each layer by summing the probability of finding the walker at each node corresponding
to a given layer. An interesting distinction between the unbiased classical and quantum
walkers is illustrated in Figure 2. For the case of UBCRW, the probabilities of finding the
walker on the top and bottom layers eventually stabilize to a steady state as time progresses
(Figure 2a). Conversely, the Fourier walk displays dynamic changes in probability over
time (Figure 2b,c).
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It is important to note that, in the case of UBCRW, the probability of locating the walker
on the top layer is consistently higher than that of the bottom layer, which is expected
since the top layer comprises a complete graph. However, in the Fourier walk, certain
time steps exist where the probability of locating the walker on the bottom layer surpasses
that of the top layer. For instance, in Figure 2c, one can see certain time steps where the
probability of finding the walker on the bottom layer is higher than that of the top layer. In
addition, from Figure 2b,c, one can identify that the different initial coin states of the Fourier
walk can control the temporary transition of the quantum walker from top layer to bottom
layer. Such a behavior has no analogy to the UBCRW. The ability of the Fourier walker
to temporarily transit from the top layer to the bottom, with higher probability, implies
that the Fourier walk could explore a broader portion of the multilayer structure compared
to the UBCRW. This enhanced exploration could be useful when searching through large,
complex databases represented as multilayer networks. In Section 6, we further examine
this behavior by employing different types of larger multilayer networks.

Figure 2. Probability of finding the walker on the top layer (red solid line) and bottom layer (blue
dotted line) for each time step up to 100 steps (a) unbiased CRW is initiated from vertex 1. Fourier
walk is initiated from (b) |1〉p ⊗ |3〉c and (c) |1〉p ⊗ |5〉c.

In Figure 2b,c, we have seen that the quantum probability is fluctuating. This behavior
is attributed to the unitary characteristic of QWs, which prevents the quantum walker from
reaching a steady state [30]. Hence, to obtain an idea of the static picture, one can calculate
the time-averaged probability of finding the quantum walker at vertex x defined by

PT(x) =
1
T

T−1

∑
t=0

Pq(x, t) (20)

where T ∈ N [3]. Note that when T becomes larger, PT(x) becomes a better measure that
depicts the static picture. In Figure 3, we illustrate the time-averaged probabilities for a
time period of T = 100 for Fourier and Grover walks on the toy network model. For the
sake of comparison, we calculate the probability profile of the UBCRW as well (Figure 3a).
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The vertical axis of the heatmaps in Figure 3 represents the initial node from which the
walker starts the walk, while the horizontal axis represents the target node where the
walker ends the walk. For both Fourier and Grover walk, we consider two cases. In the first
case, we initiate both Fourier and Grover walkers from the localized initial state of the form
|φ1〉 ≡ |x〉p ⊗ 1√

dx
∑dx

r=1 | fx(r)〉c where x ∈ {1, . . . , 8}. We start both QWs from each node
by attaching a uniform superposition of coin states. Then, for each node, the time-averaged
probability for a time period of T = 100 is calculated using (20). The results are given in
Figure 3b,c. In the second case, we repeat the same procedure by using the localized initial

state of the form |φ2〉 ≡ |x〉p ⊗
(

i√
dx
| fx(1)〉c + 1√

dx
∑dx−1

r=2 | fx(r)〉c − i√
dx
| fx(dx)〉c

)
where

x ∈ {1, . . . , 8}. The results are given in Figure 3d,e. According to Figure 3a, the classical
walker tends to stay on the top layer of the toy model after 100 time steps, irrespective of
its initial node. Since the top layer comprises a complete graph, we can expect this result.
The time-average probability profile of the Fourier walk also exhibits similar behavior
to the classical walker when initiated from |φ1〉. That is, the time-average probability of
finding the Fourier walker on the top layer is relatively higher than that of the bottom layer,
irrespective of the initial node.

Figure 3. Heatmaps are depicted for (a) unbiased CRW, (b,d) Fourier walk, and (c,e) Grover walk.
The vertical axis shows the initial node from which the walker starts the walk, and the horizontal axis
shows the target node where the walker ends the walk. Each square corresponding to the Fourier
and Grover walks indicates the value of time-averaged probabilities for a time period of T = 100. For
the unbiased CRW, each square corresponds to the probability after 100 time steps. Both Fourier and
Grover walks in (b,c) are initiated from the localized position state |φ1〉 ≡ |x〉p ⊗ 1√

dx
∑dx

r=1 | fx(r)〉c

and for (d,e) walks are initiated from the localized position state |φ2〉 ≡ |x〉p ⊗
(

i√
dx
| fx(1)〉c +

1√
dx

∑dx−1
r=2 | fx(r)〉c − i√

dx
| fx(dx)〉c

)
. Note that, |φ1〉 and |φ2〉 have a uniform superposition of coin

states, yet |φ2〉 contains some complex coefficients.

However, when the Fourier walker is initiated from |φ2〉, we can confine the walk to
a particular layer with a higher probability, which is visible in Figure 3d. When initiated
from |φ1〉, Grover walk exhibits no significant behavior, but for the initial condition of
|φ2〉, Grover walker tends to stay, with a higher probability, at the initial position and the
corresponding position on the other layer. As a result, one can see a sharp line along the
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diagonal of the grid in Figure 3e and two lines parallel to this sharp diagonal line. Hence,
one can control the quantum dynamics on the multilayer network by changing the initial
state, which has no direct analogy in UBCRW.

5.2. Return Probability

Another interesting question one could ask related to CRWs or QWs on a multilayer
network is that of how long it would take for the walker to return to its initial position. This
could be understood as the recurrence of the walk on the multilayer network. Recurrence
in a CRW is characterized by the Pólya number [31], which can be written as

P = 1− 1
∑∞

t=1 P(x0, t)
(21)

where P(x0, t) is the probability of finding the walker at the initial node x0 at time step
t. For P = 1, the walk is identified as recurrent. Otherwise, the walk is called transient.
Moreover, the expression

P = 1−Π∞
t=1[1− P(x0, t)] (22)

can also be used as a definition for the Pólya number as it provides the same criteria for the
classification of the walk [32]. With the formula given in (22), the notion of Pólya number
can be extended to the study of recurrence in QWs [32,33]. For practical purposes, one can
calculate the partial Pólya number using either (21) or (22) for a finite number of time steps
t = Tp rather than extending t → ∞. We calculate the partial Pólya number for UBCRW
as well as Grover and Fourier walks on the toy multilayer network by choosing a set of
finite time steps Tp ∈ {0, 5, 10, . . . , 200} with a gap of 5 units. Our purpose is to make an
estimation of the convergence of the Pólya number for each walk. We initialize the walker
from node 1, and for both Grover and Fourier walks, the initial coin state is chosen as
the uniform superposition of coin states (i.e., |1〉p ⊗ 1√

d1
∑d1

r=1 | f1(r)〉c). Figure 4 shows the
convergence of the partial Pólya number for UBCRW, Grover, and Fourier walks. According
to Figure 4, Grover and Fourier walkers exhibit recurrence during the progression of the
walk on the toy multilayer structure. However, the Grover walker returns to its initial
position faster than the Fourier and unbiased classical walker.

Figure 4. Convergence of the partial Pólya number for Grover (green dotted line), Fourier (blue dash
line), and unbiased classical (red solid line) walkers on the toy multilayer network. The Partial Pólya
number is calculated by choosing a set of finite time steps Tp ∈ {0, 5, 10, . . . , 200}with a gap of 5 units.
Each walk is initiated from node 1, and for both the Grover and Fourier walks, the initial coin state is
chosen as the uniform superposition of coin states.
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5.3. Impact of Decoherence

This section is devoted to study the impact of decoherence on the quantum dynamics
of the walker that propagates on the toy mulitlayer network model. With regard to this, we
study the impact of decoherence that arises from randomly broken links. In the context
of QWs on graphs, broken link decoherence specifically relates to the loss of coherence in
a QW due to imperfections or disruptions in the graph structure [34,35]. This can occur
when edges in the graph are altered or removed, creating discontinuities in the QW. These
disruptions can be caused by various factors, including physical imperfections, noise, or
intentional modifications to the graph.

We perform a Fourier walk for 100 time steps on the toy mulitlayer network model
while breaking the connection between nodes 1 and 3 with a 0.5 probability at each time
step. Afterward, the mean probability distribution was calculated by averaging over
1000 trials. Figure 5c displays the mean probability distribution of the Fourier walk over
100 time steps when subjected to the broken link decoherence model. Additionally, for
comparison purposes, the probability distributions of the UBCRW and the standard Fourier
walk are also presented in Figures 5a and 5b, respectively. According to Figure 5a, the
classical walker tends to stay on the top layer with higher probability after 100 time steps,
a behavior which we have consistently seen in Figures 2 and 3. On the other hand, the
standard Fourier walk exhibits a very different probability profile compared to the UBCRW,
as shown in Figure 5b.

However, when subjected to a broken link decoherence model, the classical signature
emerges in the average probability distribution of the Fourier walk as depicted in Figure 5c.
Recall that, in this study, we have realized the broken link decoherence model by breaking
the connection between nodes 1 and 3 of the toy multilayer network model with a 0.5 prob-
ability at each time step. That is, we allow to alter only a single edge in the toy multilayer
network. Yet, the effect of decoherence substantially impacts the dynamics of the walk,
eventually converging it to the classical distribution. This implies that QWs on a multilayer
network could be sensitive to decoherence models like broken links.

Figure 5. Probability distributions of the (a) unbiased CRW and (b) the standard Fourier walk after
100 time steps on the toy multilayer network. The unbiased CRW is initiated from node 1, and the
Fourier walk is initiated from the localized state of |1〉p ⊗ |2〉c. (c) The mean probability distribution
of the Fourier walk subjected to the broken link decoherence model is generated by breaking the
connection between nodes 1 and 3 of the toy multilayer network with a 0.5 probability at each time
step and by averaging over 1000 trials.

6. Numerical Implementation on Synthetic Multilayer Networks

We next apply our model to perform QWs on six different two-layered multiplex
networks, each consisting of 100 nodes. The top and bottom layers of each multiplex
network are constructed from the combinations of scale-free (SF), complete (CP), and star
networks with 50 nodes. Moreover, the walker is initiated from a randomly chosen node
for the CP and SF networks and from the hub node in the case of the star network. First, we
perform the Fourier walk on the two-layered multiplex networks, which is initiated from
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the localized state of |1〉p ⊗ 1√
d1

∑d1
r=1 | f1(r)〉c. For each time step, up to 100 time steps, we

calculate the probability of finding the walker on each layer by summing the probabilities
of finding the walker at each node corresponding to that layer (Figure 6). For comparison
purposes, we perform the UBCRW on the same two-layered multiplex network structures
(Figure A4). The unbiased classical walker is initiated from node 1.

Figure 6. Illustrates the probability of finding the Fourier walker on the top layer (red solid line) and
the bottom layer (blue dotted line) of six different two-layered multiplex networks, each consisting of
100 nodes. The top and bottom layers of each multiplex network are constructed from combinations
of scale-free (SF), complete (CP), and star networks with 50 nodes. For the case of SF-SF, two different
scale-free networks are chosen. Fourier walk is initiated from the localized position state of the
form |1〉p ⊗ 1√

d1
∑d1

r=1 | f1(r)〉c and for each time step up to 100 steps, the probability of finding the
walker on a given layer is calculated by summing the probabilities of finding the walker at each node
corresponding to that layer.
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By comparing the results in Figures 6 and A4, one can conclude that the probability
of finding the Fourier and classical walkers on most of the multiplex networks follow a
similar trend. However, for the cases of CP-CP, CP-STAR, and STAR-STAR, Fourier walk
shows slight differences in its probability profiles in the first few time steps compared to
the UBCRW (Figures 6d–f and A4d–f). Nonetheless, as time elapses, the overall trend of
the probability profiles of the Fourier walker becomes similar to that of the UBCRW.

The probability profiles of the Grover walk on the six different multiplex networks
are given in Figure 7. The Grover walker is also initiated from the localized state of |1〉p ⊗

1√
d1

∑d1
r=1 | f1(r)〉c and for each time step up to 100 time steps, we calculate the probability

of finding the walker on each layer by summing the probabilities of finding the walker at
each node corresponding to that layer. On average, for the cases of SF-SF and SF-STAR, the
Grover walker tends to be on both layers with an equal probability. This can be identified from
Figure 7a,c. Grover walker on the CP-STAR multiplex network behaves in a very similar way
to a classical walker (Figures 7e and A4e). A periodic behavior of the probability of finding
the Grover walker on top and bottom layers can be seen on CP-CP and STAR-STAR multiplex
networks (Figure 7d,f). The periodicity reflects Grover walker’s coherent oscillations between
the network layers and could be influenced by the topology and connectivity of the CP-CP
and STAR-STAR multiplex network. Further research and analysis are essential to unlock the
full potential of these insights for practical quantum applications.

In addition to exploring probability profiles, we have studied the recurrence proba-
bility of the Fourier, Grover, and unbiased classical walkers on the six different multiplex
networks. We calculate the partial Pólya number for the UBCRW, Grover, and Fourier
walks by choosing a set of finite time steps Tp ∈ {0, 5, 10, . . . , 100}with a gap of 5 units. Our
purpose is to make an estimation of the convergence of the Pólya number for each walk. We
initialize each walker from node 1, and for both Grover and Fourier walks, the initial coin
state is chosen as the uniform superposition of coin states (i.e., |1〉p ⊗ 1√

d1
∑d1

r=1 | f1(r)〉c).
Figure 8 shows the convergence of the partial Pólya number for the UBCRW, Grover, and
Fourier walks. From Figure 8, one can identify that the Grover walk exhibits recurrence
on most of the network structures. On the other hand, Fourier and unbiased classical
walkers show no recurrence within 100 time steps. For all the plots in Figure 8, initially, the
convergence of the partial Pólya number of the Fourier walk is low compared to that of the
unbiased classical walker. However, as time elapses, the convergence of the Fourier walk
surpasses that of the UBCRW, except for the case of the STAR-STAR multiplex network.

We apply the broken link decoherence model for the six different multiplex networks
as well by following the same procedure described in Section 5. To realize the broken link
decoherence model, we have removed some intralayer edges of the multiplex networks
randomly and have calculated the average probability distribution of the QW after 100-time
steps by averaging over 1000 trials. In Section 5, we observed the emergence of classical
signature in the probability distribution even for a single broken link on the toy multilayer
network. However, since the number of nodes in the six different multiplex networks is
relatively large, we could not observe a fast convergence to the classical behavior when
a single edge is broken. Nonetheless, when the number of broken links increases, the
convergence to the classical distribution seems to be faster (Figure A3). This appears to
imply that the impact of decoherence depends on the number of broken edges—a claim that
should be further quantified and generalized in future research. While our investigation has
shed some light on decoherence in multilayer networks, it is important to acknowledge that
the scope of this research is not fully comprehensive. There remains significant potential
for future studies to expand upon these findings to gain a deeper understanding of how
decoherence impacts the propagation of the quantum walker on multilayer networks.
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Figure 7. Illustrates the probability of finding the Grover walker on the top layer (red solid line) and
the bottom layer (blue dotted line) of six different two-layered multiplex networks, each consisting of
100 nodes. The top and bottom layers of each multiplex network are constructed from combinations
of scale-free (SF), complete (CP) and star networks with 50 nodes. For the case of SF-SF, two different
scale-free networks are chosen. Grover walk is initiated from the localized position state of the
form |1〉p ⊗ 1√

d1
∑d1

r=1 | f1(r)〉c and for each time step up to 100 steps, the probability of finding the
walker on a given layer is calculated by summing the probabilities of finding the walker at each node
corresponding to that layer. In cases (d,f), the time step has been extended to 200 steps to improve
the clarity and visibility of the plot shapes.

Figure 8. Cont.
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Figure 8. Convergence of the partial Pólya number for Grover (green dotted line), Fourier (blue dash
line), and unbiased classical (red solid line) walkers on six different two-layered multiplex networks,
each consisting of 100 nodes. The top and bottom layers of each multiplex network are constructed
from combinations of scale-free (SF), complete (CP), and star networks with 50 nodes. For the case of
SF-SF, two different scale-free networks are chosen. Partial Pólya number is calculated by choosing a
set of finite time steps Tp ∈ {0, 5, 10, . . . , 100}with a gap of 5 units. Each walk is initiated from node 1,
and for both Grover and Fourier walks, the initial coin state is chosen as the uniform superposition of
coin states.

7. Discussion

This article studied the dynamics of discrete-time quantum walks on multilayer net-
works. We derived a recurrence formula for the coefficients of the wave function of a
quantum walker on an undirected graph with finite nodes. Then, by extending this formula
to include extra layers, we developed a simulation to mimic the evolution of the quantum
walker on a multilayer network. While multilayer networks have been studied in the
context of CTQWs, to the best of our knowledge, there is a lack of literature related to the
case of DTQWs. Hence, the prime objective of this study was to present a comprehen-
sive mathematical framework to model DTQWs on multilayer networks with the aim of
bridging this gap. In this regard, we employed our mathematical model to analyze the
time-averaged probability and the return probability of the quantum walker on multilayer
networks in relation to the Fourier and Grover walks. Moreover, we studied the impact
of decoherence on the progression of Fourier walk on multilayer networks. For the sake
of clarity and readability, first, we used a toy multilayer network to conduct our analysis.
Later, we extended our analysis to much larger synthetic multilayer networks. Our study
revealed that the Grover walk on a multilayer network exhibits rich dynamics. For instance,
the Grover walker displays a periodic behavior of occupying the top and bottom layers of a
two-layered multiplex network constructed from a complete graph or a star graph. Further
research and analysis are essential to unlock the full potential of these insights for practi-
cal quantum applications, e.g., for quantum computation and quantum communication.
Moreover, in relation to the recurrence probability, the Grover walker returns to the initial
position faster than both Fourier and unbiased classical walkers. In the context of general
QWs, the recurrence probability has a deep link to the localization property, playing a
pivotal role in diverse applications, including quantum search algorithms and topological
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insulators [36–39]. Hence, there seems to be significant potential for future studies related
to the return probability on multilayer networks.

Another finding of this study is that the QWs on multilayer networks are vulnerable
to decoherence arising from randomly broken links. Multilayer networks with a smaller
number of nodes are sensitive to defects, even on a single edge. However, for larger
multilayer networks, the tolerance of the QWs for decoherence appears to decrease as
the number of broken links increases. Nonetheless, this observation should be further
quantified and generalized in future research.

To experimentally realize quantum walks on multilayer networks, we need to imple-
ment a position-dependent coin. This can be archieved, e.g., by employing the method
recently reported in [40]. In this experiment, a cascaded interferometric network was
constructed incorporating birefringent calcite beam displacers to perform the conditional
position shifts. Position-dependent coin operations were realized using various wave plates
placed in the specific spatial modes of the heralded single photons traversing the setup.

As a future extension of this study, one could explore how other forms of decoherence
models, such as Pauli channels, as well as amplitude and phase damping in the coin degree
of freedom, impact the QWs on multilayer networks. In summary, we anticipate that the
mathematical analysis we have performed here may have a profound influence on a broad
spectrum of problems that can be modeled or assisted by DTQWs on multilayer networks.
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Appendix A. Arc-Reversal Model vs. Our Method Described in Section 2

In the realm of QWs, the arc-reversal model introduces a mechanism to reverse the
direction of the walk along specific paths or arcs. This directional reversal aims to enhance
interference effects, the constructive or destructive interaction of probability amplitudes,
for different paths [17]. In the arc-reversal model, the state of the quantum walker is
represented by a column vector. The global coin operator is defined by a block diagonal
matrix where each block along the diagonal represents the local coin operators. The shifting
operation is done by a permutation matrix, which is termed the arc-reversal matrix [17].
The size of the permutation and the coin matrices depend on the number of edges of the
graph. With related to the numerical simulation of the arc-reversal model, a single step
of the quantum walker’s evolution is simulated by applying the coin matrix, followed
by the permutation matrix, to the column vector that represents the current state of the
quantum walker.

In our method, which is described in Section 2, we represent the state of the quantum
walker as a block matrix, given in (9), rather than a column vector. In the abstract form of
our model, we employ the same coin and shift operators as those used in the arc-reversal
model (see Equations (5) and (6)). However, with related to the numerical simulation of
our model, a single step of the quantum walker’s evolution is simulated by updating the
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elements of the block matrix that represent the state of the quantum walker and then by
taking the transpose of the block matrix (see Equations (10) and (11)).

Figure A1. Graph of four vertexes and the coin operators associated with each vertex. For each
vertex x, the elements of the coin operator associated to x are chosen in such a way that C(x)(C(x))† =

(C(x))†C(x) = I where x ∈ {1, 2, 3, 4}.

Hence, in our method, the coin operation is performed by updating the elements of
the block matrix, and the shifting operation is performed by taking the transpose of the
block matrix that represents the state of the quantum walker. Moreover, in our model,
the size of the block matrix Nt, which we use to represent the state of the quantum
walker, depends on the number of vertices of the graph. Hence, whenever the number of
vertices is less than the number of edges, our method could be more memory efficient than
the arc-reversal model (the arc-reversal model requires much bigger matrices than ours).
Further, we can explain the difference between the arc-reversal model and our method
by referring to the following example. Let us consider the graph given in Figure A1. The
corresponding set of vertices and edges can be written as V = {|1〉p, |2〉p, |3〉p, |4〉p} and
E = {{1, 2}, {1, 3}, {2, 1}, {2, 3}, {3, 1}, {3, 2}, {3, 4}, {4, 3}} respectively. Now let us define
the sets of Bx as follows; B1 = {2, 3}, B2 = {1, 3}, B3 = {1, 2, 4} and B4 = {3}. The
function fx(r) (rth element of the Bx set) can be defined as follows; f1(1) = 2, f1(2) = 3;
f2(1) = 1, f2(2) = 3; f3(1) = 1, f3(2) = 2, f3(3) = 4 and f4(1) = 3. Then, the state vector
of the quantum walker at time t can be written as

|ψt〉 =
4

∑
x=1

dx

∑
r=1

αx, fx(r)(t)|x〉p| fx(r)〉c (A1)

The state vector given in (A1) can be represented in terms of the block matrix Nt as

Nt =


|1〉c |2〉c |3〉c |4〉c

|1〉p 0 α1,2(t) α1,3(t) 0
|2〉p α2,1(t) 0 α2,3(t) 0
|3〉p α3,1(t) α3,2(t) 0 α3,4(t)
|4〉p 0 0 α4,3(t) 0

 (A2)

Note that, by updating the elements of Nt using the relationships given in (10) and (11),
one can mimic the evolution of a QW on the graph in Figure A1. However, according
to the arc-reversal model [17], matrices with the size of 8× 8 are used to represent the
permutation (Rarc) and coin (Carc) matrices related to the graph in Figure A1 as given below
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Rarc =



(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2) (3, 4) (4, 3)
(1, 2) 0 0 1 0 0 0 0 0
(1, 3) 0 0 0 0 1 0 0 0
(2, 1) 1 0 0 0 0 0 0 0
(2, 3) 0 0 0 0 0 1 0 0
(3, 1) 0 1 0 0 0 0 0 0
(3, 2) 0 0 0 1 0 0 0 0
(3, 4) 0 0 0 0 0 0 0 1
(4, 3) 0 0 0 0 0 0 1 0


(A3)

Carc =


C(1) 0 0 0

0 C(2) 0 0
0 0 C(3) 0
0 0 0 C(4)

 (A4)

Moreover, a column vector with the size of 8× 1 represents the state of the walker. Nonethe-
less, our method uses a 4× 4 matrix to represent the same graph in Figure A1. Furthermore,
in the arc reversal model, the position and coin states are not explicitly represented. But in
our method, we explicitly represent the position, and the coin states as a tensor product.

Figure A2. Probability distributions of the Fourier and Grover walk after 100 time steps on a two-
layered multiplex network. The top and bottom layers of the multiplex network comprise two
different Erdős-Rényi (ER) networks, each with 50 nodes. Subfigures (a,c) show the probability
profiles of the Fourier and Grover walks on the entire network, respectively. Subfigure (b) displays
the probability profile when the Fourier and Grover coins are attached to the top and bottom layers.
Subfigure (d) presents the probability profile when the Grover and Fourier coins are attached to the
top and bottom layers. Both walks are initiated from the localized state of |1〉p ⊗ | f1(1)〉c.

Appendix B. Coin Flip and Shift Operation

Proof. Let us represent the state vector |ψt〉 given by (3) in the block matrix form. That
is |ψt〉 ≡ Nt. Now let us apply the global coin operator C given in (5) on the total wave
function |ψt〉 in (3). Then we get the following expression

C|ψt〉 =
n

∑
x=1

dx

∑
i=1

( dx

∑
j=1

αx, fx(j)(t)C
(x)
ij

)
|x〉p| fx(i)〉c (A5)
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Let us write α̃x, fx(i)(t) =
(

∑dx
j=1 αx, fx(j)(t)C

(x)
ij

)
. Then we can rewrite (A5) as follows

C|ψt〉 =
n

∑
x=1

dx

∑
i=1

α̃x, fx(i)(t)|x〉p| fx(i)〉c (A6)

Note that C|ψt〉 can also be represented in the block matrix form. Let us denote C|ψt〉 ≡ Ñt.
Now let us apply the shift operator S given in (6) on C|ψt〉. The result can be written as

SC|ψt〉 =
n

∑
x=1

dx

∑
i=1

α̃x, fx(i)(t)| fx(i)〉p|x〉c (A7)

Figure A3. Probability distributions of the (a) unbiased CRW and (b) the standard Fourier walk
after 100 time steps on the two-layered multiplex network. The average probability distributions
of the Fourier walk subjected to a single (1, f1(1)) and seven {(x, fx(1))}x∈W broken links where
W = {1, 10, 30, 40, 50, 60, 80} are given in (c,d), respectively. The top and bottom layers of the
multiplex network comprise two different scale-free (SF) networks, each with 50 nodes. The unbiased
CRW is initiated from node 1, and the Fourier walk is initiated from the localized state of |1〉p ⊗
| f1(1)〉c. The average probability distributions are generated by breaking some intralayer edgers of
the SF-SF multilayer network with a 0.5 probability at each time step of the Fourier walk and by
averaging over 1000 trials.

Let the block matrix form of SC|ψt〉 be Mt. By observing (A6) and (A7) one can argue
that the elements in the xth row of Ñt is equal to the elements in the xth column of Mt.
That is, Mt is equal to the transpose of Ñt. In addition, we have the following expression

SC|ψt〉 = |ψt+1〉 =
n

∑
x=1

dx

∑
i=1

αx, fx(i)(t + 1)|x〉p| fx(i)〉c (A8)

Thus, for each x ∈ {1, . . . n} and r ∈ {1, . . . dx} we can derive a recurrence relationship
between the elements of Nt and Nt+1 as follows

αx, fx(r)(t + 1) = α̃ fx(r),x(t) (A9)

This completes the proof.
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Appendix C. Some Probability Profiles of UBCRW, Fourier and Grover Walks

Figure A2 depicts the probability profiles of QWs performed on a two-layered multiplex
network in which each layer possesses a different coin. The walker is initiated from a randomly
chosen node. According to Figure A2, one can easily identify that the impact of the coin
operator used on the top layer, from which the walk is initiated, becomes dominant over the
whole multilayer network irrespective of the coin operator used in the bottom layer.

Figure A3 presents the probability profiles of the unbiased CRW, the standard Fourier
walk, and the Fourier walk subjected to the broken links decoherence model on two-
layer multiplex networks. By comparing the probability profile of the unbiased CRW
(Figure A3a) with the mean probability distributions of the Fourier walk subjected decoher-
ence (Figure A3c,d), one can observe that, Figure A3a,d closely resemble each other more
than Figure A3a,c.

Appendix D. Probability Profiles of UBCRW on Six Different Multiplex Networks

Figure A4 shows the probability of finding the unbiased classical walker on six differ-
ent synthetic two-layered multiplex networks with 100 nodes.

Figure A4. Illustrates the probability of finding the unbiased classical walker on the top layer (red
solid line) and the bottom layer (blue dotted line) of six different two-layered multiplex networks,
each consisting of 100 nodes. The top and bottom layers of each multiplex network are constructed
from combinations of scale-free (SF), complete (CP), and star networks with 50 nodes. For the case of
SF-SF, two different scale-free networks are chosen. The UBCRW is initiated from vertex 1, and for
each time step up to 100 steps, the probability of finding the walker on a given layer is calculated by
summing the probabilities of finding the walker at each node corresponding to that layer.
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