
Citation: Han, L.; Yang, L.; Li, Z.; Wu,

J.; Du, Y.; Shen, X. Unlocking the Key

to Accelerating Convergence in the

Discrete Velocity Method for Flows in

the Near Continuous/Continuous

Flow Regimes. Entropy 2023, 25, 1609.

https://doi.org/10.3390/e25121609

Academic Editors: Antonio

M. Scarfone and Gianpiero Colonna

Received: 9 October 2023

Revised: 12 November 2023

Accepted: 28 November 2023

Published: 30 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Unlocking the Key to Accelerating Convergence in the Discrete
Velocity Method for Flows in the Near Continuous/Continuous
Flow Regimes
Linchang Han 1, Liming Yang 1,2,3,* , Zhihui Li 4,*, Jie Wu 1 , Yinjie Du 1 and Xiang Shen 5

1 Department of Aerodynamics, College of Aerospace Engineering, Nanjing University of Aeronautics and
Astronautics, Nanjing 210016, China; wuj@nuaa.edu.cn (J.W.)

2 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics
and Astronautics, Nanjing 210016, China

3 Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information
Technology, Nanjing 210016, China

4 National Laboratory for Computational Fluid Dynamics, China Aerodynamics Research and Development
Center, Beijing 100191, China

5 Department of Mechanical and Construction Engineering, Northumbria University,
Newcastle upon Tyne NE1 8ST, UK

* Correspondence: lmyang@nuaa.edu.cn (L.Y.); zhli0097@x263.net (Z.L.)

Abstract: How to improve the computational efficiency of flow field simulations around irregu-
lar objects in near-continuum and continuum flow regimes has always been a challenge in the
aerospace re-entry process. The discrete velocity method (DVM) is a commonly used algorithm for
the discretized solutions of the Boltzmann-BGK model equation. However, the discretization of
both physical and molecular velocity spaces in DVM can result in significant computational costs.
This paper focuses on unlocking the key to accelerate the convergence in DVM calculations, thereby
reducing the computational burden. Three versions of DVM are investigated: the semi-implicit
DVM (DVM-I), fully implicit DVM (DVM-II), and fully implicit DVM with an inner iteration of the
macroscopic governing equation (DVM-III). In order to achieve full implicit discretization of the
collision term in the Boltzmann-BGK equation, it is necessary to solve the corresponding macroscopic
governing equation in DVM-II and DVM-III. In DVM-III, an inner iterative process of the macroscopic
governing equation is employed between two adjacent DVM steps, enabling a more accurate predic-
tion of the equilibrium state for the full implicit discretization of the collision term. Fortunately, the
computational cost of solving the macroscopic governing equation is significantly lower than that of
the Boltzmann-BGK equation. This is primarily due to the smaller number of conservative variables
in the macroscopic governing equation compared to the discrete velocity distribution functions in
the Boltzmann-BGK equation. Our findings demonstrate that the fully implicit discretization of
the collision term in the Boltzmann-BGK equation can accelerate DVM calculations by one order of
magnitude in continuum and near-continuum flow regimes. Furthermore, the introduction of the
inner iteration of the macroscopic governing equation provides an additional 1–2 orders of magnitude
acceleration. Such advancements hold promise in providing a computational approach for simulating
flows around irregular objects in near-space environments.

Keywords: Boltzmann-BGK equation; discrete velocity method; convergence acceleration; fully
implicit; inner iteration

1. Introduction

The Boltzmann equation, being free from the limitations of continuum assumption,
provides a versatile tool for delineating the molecular transport phenomena that form the
bedrock of intricate gas dynamics studies [1,2]. However, the original collision term in
the Boltzmann equation involves complex fivefold integration in both molecular velocity
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space and solid angle, presenting a formidable challenge in solving it. To facilitate practi-
cal applications, several simplified collision models have been developed, including the
BGK model [3], the Shakov-BGK model [4], and the ES-BGK model [5], among others.
These models distill the fundamental and mean characteristics of the original collision
integral while providing physical realism [6,7]. Building upon the Boltzmann-BGK equa-
tion, numerous numerical algorithms have been devised to solve gas flow problems across
all flow regimes [8–13]. These algorithms offer convenience and efficiency in simulating
complex flows.

The Boltzmann-BGK equation, with its first-order partial derivative, can be easily
solved using numerical techniques commonly employed in conventional computational
fluid dynamics [14,15]. Within conventional DVM, the convective term is typically evalu-
ated using upwind schemes. These include the third-order upwind scheme [16], the second-
order scheme integrated with a slope limiter function [17], the essentially non-oscillatory
(ENO) scheme [18], the weighted essentially non-oscillatory (WENO) scheme [19], and
other similar methodologies. These approaches involve constructing an initial piecewise
constant distribution using the upwind scheme and directly computing the numerical flux
at the cell interface, relying on moments of the initial distribution function.

The computation process in the conventional DVM is straightforward, as each discrete
distribution function evolves independently. However, this approach introduces numerical
dissipation linked to the mesh size, stemming from the omission of collisional effects at the
cell interface. Consequently, a mesh size smaller than the mean free path of the molecules is
usually required [20]. Furthermore, in the conventional DVM, the time step size is typically
limited by the collision time when explicitly discretizing the collision term within the
Boltzmann-BGK equation. To overcome this limitation, implicit discretization has been
incorporated into the conventional DVM [21,22]. Nevertheless, due to the dependence of
the equilibrium state on macroscopic flow variables that are unknown at the new time
level, a semi-implicit scheme often becomes necessary for discretizing the collision term.
Mieussens pointed out that this semi-implicit discretization may considerably impede the
convergence rate, especially in near continuum and continuum flow regimes [23].

Within the realm of DVM, various multiscale approaches have been designed to pro-
vide accurate and efficient predictions of flows across the continuum, near-continuum, and
rarefied flow regimes. These methods aim to surmount the limitations tied to mesh size
and time step size in the conventional DVM by utilizing the multiscale local solution of
the Boltzmann-BGK equation for calculating numerical flux. Notable examples encompass
the unified gas kinetic scheme (UGKS) [24–26] and the discrete unified gas kinetic scheme
(DUGKS) [27–29]. The UGKS employs a local integral solution of the Boltzmann-BGK
equation in calculating the numerical flux, while the DUGKS adopts a local discrete charac-
teristic solution. By utilizing these multiscale techniques, it becomes possible to overcome
the limitation of requiring a mesh size smaller than the mean free path of molecules. Fur-
thermore, these multiscale approaches employ implicit discretization for the collision term,
thereby addressing the limitation of needing a time step size smaller than the collision time.

In the scenario of UGKS, both the Boltzmann-BGK equation and the corresponding
macroscopic governing equation are concurrently addressed. On the one hand, this si-
multaneous solution allows for predicting the equilibrium state at the new time level
using solutions derived from the macroscopic governing equation. Gradoboev et al. [30]
and Bishaev and Rykov [31] employed the macroscopic governing equation to speed up
the calculation of some one-dimensional stationary problems. On the other hand, it also
facilitates a straightforward implementation of fully implicit discretization in the multiscale
approach. For example, Zhu et al. developed the implicit UGKS by employing the Lower-
Upper Symmetric Gauss-Seidel (LU-SGS) method to solve both equations [32]. Similarly,
Pan et al. constructed the implicit DUGKS [33]. Compared to their explicit counterparts,
these implicit schemes exhibit significant acceleration in computation speed, particularly in
near-continuum and continuum flow regimes.
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It is evident in the multiscale approaches that the Boltzmann-BGK equation governs
the solution in the rarefied flow regime, while the macroscopic governing equation takes
precedence in the near-continuum and continuum flow regimes. Building upon this
observation, an improved discrete velocity method (IDVM) was developed by integrating
the local solution of the Boltzmann-BGK equation into the calculation of the macroscopic
flux [34]. In the IDVM, the calculation of the numerical flux for the Boltzmann-BGK
equation remains the same as in the conventional DVM to preserve its inherent simplicity.
Additionally, by applying the LU-SGS method to address both the Boltzmann-BGK equation
and the macroscopic governing equation, a fully implicit IDVM was developed and verified
in all flow regimes.

To achieve faster convergence in the near-continuum and continuum flow regimes, the
concept of inner iteration was recently introduced into the macroscopic governing equation.
This approach allows for a more accurate prediction of the equilibrium state at the new
time level, thereby accelerating the convergence rate. Several examples of this technique
include the general synthetic iterative scheme (GSIS) [35], the multi-prediction implicit
scheme [36], the IDVM with inner iteration [37], and the general implicit iterative method
for UGKS [38]. Due to the significantly fewer number of conservative variables in the
macroscopic governing equation compared to the discrete velocity distribution functions
in the Boltzmann-BGK equation, the increase in computational cost for each outer loop
iteration is minimal. Consequently, the overall computational cost can be substantially
reduced by reducing the total number of iterations required for the outer loop.

Although several multiscale approaches have been developed to accelerate the conver-
gence in DVM, a systematic comparative study in this field is still lacking. In this work,
we aim to address this gap by focusing on the discrete velocity Boltzmann-BGK equation
and undertaking a comparative analysis of three distinct multiscale schemes for its solu-
tion. The first scheme is a multiscale semi-implicit DVM (DVM-I). This approach utilizes
the local discrete characteristic solution to calculate the numerical flux, addressing the
limitation of mesh size being smaller than the mean free path of molecules. Additionally,
it adopts a semi-implicit approach to discretize the collision term, thereby loosening the
constraint of the time step size. The second scheme is a multiscale fully implicit DVM
(DVM-II). Differing from DVM-I, DVM-II employs a fully implicit scheme to discretize
the collision term and introduces the corresponding macroscopic governing equation to
forecast the equilibrium state at the new time level. The third scheme is a multiscale
fully implicit DVM with inner iteration (DVM-III). In this scheme, an inner iteration is
incorporated to solve the macroscopic governing equation, aiming to enhance the accu-
racy of the predicted equilibrium state. To assess the performance of these multiscale
schemes, we conduct an asymptotic analysis and numerical experiments for flows in the
near-continuous/continuous flow regimes. By doing so, we aim to uncover the key factors
that facilitate convergence acceleration in DVM calculations.

2. Discrete Velocity Boltzmann-BGK Equation

The original Boltzmann equation, an integral-differential equation with a complex
collision term, poses significant challenges in practical engineering applications. In this
study, our focus is on the Boltzmann equation integrated with the BGK model [3]. This
amalgamation gives rise to the Boltzmann-BGK equation, which can be expressed as

∂ f
∂t

+ ξ·∇ f = Ω =
g− f

τ
(1)

where f represents the distribution function defined in the physical space x, the molecular
velocity space ξ, and the time t. Ω denotes the collision operator and τ is the collision time.
The equilibrium state, denoted by g, is defined as:

g =
ρ(

2πRgT
)3/2 exp

[
− c2

2RgT

]
(2)
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Here, ρ represents the density, T signifies the temperature, c = ξ− u stands for the molec-
ular thermal velocity vector, u denotes the mean flow velocity vector, c = |c| symbolizes
the magnitude of c, and Rg represents the gas constant. To solve Equation (1) using the
DVM, it is necessary to truncate and discretize the molecular velocity space into a series of
discrete velocity points. This discretization process results in

∂ fα

∂t
+ ξα·∇ fα = Ωα =

gα − fα

τ
, α = 1, · · · , NV (3)

where, NV represents the total number of discrete velocity points and the subscript α
denotes the index in the discrete velocity space.

With Equation (1), we can derive the corresponding macroscopic governing equation
of conservation laws through moment integration. By multiplying Equation (1) by the
microscopic conservative moment Ψ =

(
1,ξ, ξ2/2

)T and subsequently integrating the
resulting equation in the molecular velocity space, we can obtain:

∂W
∂t

+∇·F = 0 (4)

W = (ρ, ρu, ρE)T = 〈Ψ f 〉α = 〈Ψg〉α (5)

F =
(

Fρ, Fρu, FρE
)T

= 〈ξΨ f 〉α (6)

where, W and F represent the conservative flow variables and fluxes, respectively. The no-
tation 〈 f 〉α = ∑NV

fα defines the numerical quadrature of distribution functions across the
entire discrete molecular velocity space. As reported in previous studies [8,39], the conser-
vation with respect to the collision integral plays a crucial role in ensuring the stability and
accuracy of the DVM. However, the primary focus of this paper is to investigate the impact
of different discretization strategies for the collision term on the computational efficiency of
the DVM. To address the potential adverse effects caused by numerical quadrature errors,
we will employ a relatively large number of points in the discretization of the molecular
velocity space during the numerical tests.

3. Three Versions of DVM

To investigate the key factors that contribute to convergence acceleration in DVM
calculations, this section introduces and compares three versions of DVM. In these schemes,
similar to the DUGKS [27–29], the local discrete characteristic solution of the Boltzmann-
BGK equation is employed to calculate the numerical flux, addressing the limitation associ-
ated with mesh size. This local solution is obtained by integrating Equation (1) from tn = 0
to tn + ∆tp/2 along the characteristic line and approximating the collision term using the
trapezoidal rule. By doing so, we can obtain

fα

(
xij, h

)
=

2τ − h
2τ + h

fα

(
xij − ξαh, 0

)
+

h
2τ + h

(
gα

(
xij − ξαh, 0

)
+ gα

(
xij, h

))
(7)

where xij denotes the mid-point of the cell interface. h = ∆tp/2 signifies the half-time step
size and ∆tp stands for the physical time step used only for flux reconstruction to avoid
extrapolation, which is defined by

∆tp = σp
V

ξx,max∆Sx + ξy,max∆Sy
(8)

Here, ξx,max and ξy,max represent the maximum molecular velocities in the x- and y-
directions, respectively. V signifies the volume of the control cell. ∆Sx and ∆Sy are the
projected areas of the control volume in the y- and x-directions, respectively. σp is the
Courant–Friedrichs–Lewy (CFL) number, which is set as σp = 0.95.
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To fully determine the distribution function at the cell interface fα

(
xij, h

)
, it is essential

to pre-calculate the discrete distribution function at the surrounding point of the cell
interface fa

(
xij − ξαh, 0

)
, the equilibrium state at the surrounding point of the cell interface

gα

(
xij − ξαh, 0

)
, and the equilibrium state at the mid-point of the cell interface gα

(
xij, h

)
.

For the calculation of fa
(
xij − ξαh, 0

)
and gα

(
xij − ξαh, 0

)
, a second-order interpolation

scheme employing van Leer’s slope limiter is utilized. Taking φ to represent either fa or gα,
we can obtain:

φ
(
xij − ξαh, 0

)
=

{
φL(xij, 0

)
− hξα·∇φ(xi, 0)L(φ, xi), nij·ξ ≥ 0

φR(xij, 0
)
− hξα·∇φ

(
xj, 0

)
L
(
φ, xj

)
, nij·ξ < 0

(9)

where φL and φR represent the interfacial states of φ at the left and right sides, respectively.
∇φ(xi, 0) and ∇φ

(
xj, 0

)
denote the derivatives of φ at the left and right cells. L(φ, xi) and

L
(
φ, xj

)
are the corresponding slope limiter functions.

For the calculation of gα

(
xij, h

)
, the macroscopic flow variables at the cell interface are

required. This can be achieved by computing the conservative moments on both sides of
Equation (7), which yields:

W
(
xij, h

)
=

2τ − h
2τ + h

〈
Ψ f
(
xij − ξαh, 0

)〉
a +

h
2τ + h

{〈
Ψg
(
xij − ξαh, 0

)〉
a + W

(
xij, h

)}
(10)

The above equation can be rearranged as follows

W
(
xij, h

)
=

2τ − h
2τ

〈
Ψ f
(
xij − ξαh, 0

)〉
a +

h
2τ

〈
Ψg
(
xij − ξαh, 0

)〉
a (11)

Since fa
(
xij − ξαh, 0

)
and ga

(
xij − ξαh, 0

)
have been obtained previously, W

(
xij, h

)
as

well as gα

(
xij, h

)
can be computed explicitly.

Once the local discrete characteristic solution of the Boltzmann-BGK equation at the
cell interface is determined, calculating the numerical fluxes for both the Boltzmann-BGK
equation and the corresponding macroscopic governing equation becomes straightforward.
This facilitates the evolution of both the discrete distribution functions and the conservative
variables. In the following subsection, three different strategies are employed to advance
the evolution of these quantities.

3.1. Semi-Implicit DVM (DVM-I)

The first multiscale approach is the semi-implicit DVM, similar to the work of Yang
and Huang [18], where the equilibrium state in the collision term is calculated using the
flow variables at the current time level, while other parts of the Boltzmann-BGK equation
are discretized implicitly. This leads to the following discretized equation:

f n+1
α − f n

α

∆tn + ξα·∇ f n+1
α =

gn
α − f n+1

α

τn (12)

where ∆t represents the time step size for the evolution of the distribution function, de-
termined by the CFL condition. But different from Equation (8), the CFL number for the
calculation of ∆t can be chosen larger than one to attain faster convergence. Integrating
Equation (12) over a control volume Vi, we can obtain a finite volume discretization of the
Boltzmann-BGK equation as follows:

Vi
∆tn

i

(
f n+1
i,α − f n

i,α

)
+ ∑

j∈N(i)
nij·ξαSij f n+1

ij,α =
Vi
τn

i

(
gn

i,α − f n+1
i,α

)
(13)

where N(i) is the set of neighboring cells of the cell i, Sij stands for the area of the interface
shared by the cells i and j, and nij signifies the unit normal vector of the shared interface
pointing from cell i to cell j.
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By introducing the incremental ∆ f n
i,α = f n+1

i,α − f n
i,α into Equation (13), we can obtain:(

Vi
∆tn

i
+

Vi
τn

i

)
∆ f n

i,α + ∑
j∈N(i)

nij·ξαSij∆ f n
ij,α = RHSn

i,α (14)

with the right-hand side of:

RHSn
i,α =

Vi
τn

i

(
gn

i,α − f n
i,α
)
− ∑

j∈N(i)
nij·ξαSij f n

ij,α (15)

Since the distribution function at the cell interface has been determined by Equation (7),
the right-hand side of Equation (14) can be calculated explicitly. For the reconstruction of
∆ f n

ij,α, the first-order upwind scheme is employed, i.e.,

∆ f n
ij,α =

1
2

(
∆ f n

i,α + ∆ f n
j,α

)
+

1
2

sign
(
nij·ξα

)(
∆ f n

i,α − ∆ f n
j,α

)
(16)

where sign
(
nij·ξα

)
is the sign function, sign

(
nij·ξα

)
= 1 for nij·ξα ≥ 0 and sign

(
nij·ξα

)
= −1

for nij·ξα < 0. Substituting Equation (16) into Equation (14) and applying the LU-SGS
method to solve the resultant equation [40], the incremental ∆ f n

i,α can be obtained by the
following forward and backward sweepings:

Dn
i,α∆ f

n
i,α +

1
2 ∑

j∈L(i)

(
nij·ξα −

∣∣nij·ξα

∣∣)Sij∆ f
n
j,a = RHSn

i,α (17)

Dn
i,α∆ f n

i,α +
1
2 ∑

j∈U(i)

(
nij·ξα −

∣∣nij·ξα

∣∣)Sij∆ f n
j,a = Dn

i,α∆ f
n
i,α (18)

with:
Dn

i,α =
Vi

∆tn
i
+

Vi
τn

i
+

1
2 ∑

j∈N(i)

∣∣nij·ξα

∣∣Sij

where L(i) is the subset of N(i) with elements less than i, while U(i) is the subset of
N(i) with elements larger than i. ∆ f

n
i,α denotes the intermediate result of the forward

sweep. Upon obtaining the incremental ∆ f n
i,α, the discretized distribution function can

be updated by f n+1
i,α = f n

i,α + ∆ f n
i,α and the macroscopic flow variables can be obtained by

Equations (5) and (6).

3.2. Fully Implicit DVM (DVM-II)

Unlike the semi-implicit DVM, the fully implicit DVM calculates the equilibrium state
within the collision term using the predicted solution from the corresponding macroscopic
governing equation at the new time level. This strategy has found widespread use in
the development of the fully implicit scheme, culminating in the following discretized
Boltzmann-BGK equation [32–34]

f n+1
α − f n

α

∆tn + ξα·∇ f n+1
α =

ĝn+1
α − f n+1

α

τn (19)

Following the solution process of Equation (12), Equation (19) can be expressed as: Vi
∆tn

i
+

Vi
τn

i
+

1
2 ∑

j∈N(i)

∣∣nij·ξα

∣∣Sij

∆ f n
i,α +

1
2 ∑

j∈N(i)

(
nij·ξα −

∣∣nij·ξα

∣∣)Sij∆ f n
j,a = RHSn

i,α (20)
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with the right-hand side given by:

RHSn
i,α =

Vi
τn

i

(
ĝn+1

i,α − f n
i,α

)
− ∑

j∈N(i)
nij·ξαSij f n

ij,α (21)

Equation (20) can be easily solved using the LU-SGS method. However, before we
proceed to solve this equation, it is necessary to determine the predicted equilibrium
state ĝn+1

i,α .
As we know, the macroscopic governing equation can be derived from the Boltzmann-

BGK equation through moment integration. By multiplying Equation (19) by the micro-
scopic conservative moment Ψ =

(
1,ξ, ξ2/2

)T and subsequently integrating the resulting
equation across the molecular velocity space, we can derive:

Ŵn+1 −Wn

∆tn +∇·F̂n+1
= 0 (22)

By introducing the incremental ∆Ŵn
= Ŵn+1 −Wn and integrating Equation (22)

over a control volume Vi, we can obtain:

Vi
∆tn

i
∆Ŵn

i = −R̂n+1
i = − ∑

j∈N(i)
nij·F̂

n+1
ij Sij (23)

To solve the aforementioned equation, it is necessary to linearize the residual term
R̂n+1

i into the following form:

R̂n+1
i = Rn

i + ∆R̂n
i = ∑

j∈N(i)

〈
nij·ξΨ f n

ij

〉
α
Sij + ∑

j∈N(i)

∂Rn
i

∂Wn
j

∆Wn
j (24)

Since the distribution function at the cell interface has been determined by Equation (7),
the first term on the right-hand side of Equation (24) can be calculated explicitly.

For the calculation of the last term of Equation (24), the Euler equations-based flux
splitting method is adopted:

∑
j∈N(i)

∂Rn
i

∂Wn
j

∆Wn
j =

1
2 ∑

j∈N(i)

[
nij·
(

∆Fn
c,i + ∆Fn

c,j

)
+ rn

ij

(
∆Wn

i − ∆Wn
j

)]
Sij (25)

where,
∆Fn

c,j = Fc

(
Wn

j + ∆Wn
j

)
− Fc

(
Wn

j

)

rn
ij =

(∣∣∣nij·un
ij

∣∣∣+ cn
s,ij

)
+ max

(
4

3ρn
ij

,
γ

ρn
ij

)
µn

ij

Pr
∣∣xj − xi

∣∣
Here, Fc = (ρu, ρuu + pI, (ρE + p)u)T denotes the convective flux of the macroscopic
governing equation, cs represents the sound speed, γ signifies the specific heat ratio, Pr
stands for the Prandtl number, and xi and xj represent the centroids of cell i and cell j,
respectively. By substituting Equations (24) and (25) into Equation (23) and applying the
LU-SGS method to solve the resultant equation [40], we can obtain:

Dn
i ∆Wn

i +
1
2 ∑

j∈L(i)

[
nij·∆Fn

c,j − rn
ij∆Wn

j

]
Sij = −Rn

i (26)

Dn
i ∆Ŵn

i +
1
2 ∑

j∈U(i)

[
nij·∆Fn

c,j − rn
ij∆Ŵn

j

]
Sij = Dn

i ∆Wn
i (27)
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where Dn
i = Vi

∆tn
i
+ 1

2 ∑
j∈N(i)

rn
ijSij and ∆Wn

i represent the intermediate result of the forward

sweep. Once the incremental ∆Ŵn
i is obtained, the predicted conservative variables can be

calculated by Ŵn+1
= Wn + ∆Ŵn and the predicted equilibrium state can be computed by

substituting Ŵn+1 into Equation (2).

3.3. Fully Implicit DVM with Inner Iteration (DVM-III)

In DVM-II, it is observed that both the Boltzmann-BGK equation and the correspond-
ing macroscopic governing equation iterate only once at each time step. In the near-
continuum and continuum flow regimes, the macroscopic governing equation tends to
approach the Navier–Stokes equation. However, the flux Jacobian of the macroscopic
governing equation is approximated using the Euler equations-based flux splitting method,
which might lead to inaccuracies in predicting the equilibrium state. To enhance the
accuracy of the predicted equilibrium state in the near-continuum and continuum flow
regimes, similar to prior studies [35–38], an inner iteration is introduced to solve the macro-
scopic governing equation. To achieve this goal, a time derivative term with respect to the
pseudo-time variable η is added on the left-hand side of Equation (23) as follows:

Vi
∂Ŵn+1

i
∂η

+
Vi

∆tn
i

(
Ŵn+1

i −Wn
i

)
= −

(
Rn

i + ∆R̂n
i

)
(28)

In DVM-III, the flux Jacobian of the macroscopic governing equation ∆R̂n
i is calculated

by taking the difference between the fluxes of the Navier–Stokes equation at the current
time level and the new time level. This can be expressed as:

∆R̂n
i = ∑

j∈N(i)
nij·
(

F̂n+1
ij − Fn

ij

)
Sij ≈ ∑

j∈N(i)
nij·
(

F̂n+1
ij,NS − Fn

ij,NS

)
Sij (29)

where Fn
ij,NS and F̂n+1

ij,NS represent the numerical fluxes of the Navier–Stokes equation at
the current time level and the new time level, respectively. This equation signifies that
the accurate difference in the numerical fluxes of the macroscopic governing equation,
computed using the distribution function, is estimated by the disparity in numerical fluxes
of the Navier–Stokes equation. This approximation is considered more reasonable than the
Euler equations-based flux splitting method, particularly in the context of near-continuum
and continuum flow regimes [36–38].

By discretizing the time derivative of Equation (28) with the backward Euler scheme
and substituting Equation (29) into the resultant equation, we can obtain:(

Vi

∆ηn+1,m
i

+
Vi

∆tn
i

)
∆Ŵn+1,m

i + ∑
j∈N(i)

nij·∆F̂n+1,m
ij,NS Sij = −R̂n+1,m

i (30)

with:
R̂n+1,m

i = Rn
i + ∑

j∈N(i)
nij·
(

F̂n+1,m
ij,NS − Fn

ij,NS

)
Sij +

Vi
∆tn

i

(
Ŵn+1,m

i −Wn
i

)
(31)

Here, ∆Ŵn+1,m
i = Ŵn+1,m+1

i − Ŵn+1,m
i and ∆F̂n+1,m

ij,NS = F̂n+1,m+1
ij,NS − F̂n+1,m

ij,NS represent the
increments in the predicted conservative variable vector and the flux vector of the Navier–
Stokes equation at the pseudo-time level m of the inner iteration.

During the inner iteration process, as the solution converges, the values of ∆Ŵn+1,m
i

and ∆F̂n+1,m
ij,NS tend to approach zero. Thus, the Euler equations-based flux splitting method

can be employed to calculate the flux Jacobian in the inner iteration,
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∑
j∈N(i)

nij·∆F̂n+1,m
ij,NS Sij =

1
2 ∑

j∈N(i)

[
nij·
(

∆F̂n+1,m
c,i + ∆F̂n+1,m

c,j

)
+ rn+1,m

ij

(
∆Ŵn+1,m

i − ∆Ŵn+1,m
j

)]
Sij (32)

where ∆F̂n+1,m
c,j = Fc

(
Ŵn+1,m

j + ∆Ŵn+1,m
j

)
− Fc

(
Ŵn+1,m

j

)
. Substituting Equation (32) into

Equation (30), we can derive:

Gn+1,m
i ∆Ŵn+1,m

i +
1
2 ∑

j∈N(i)

[
nij·∆F̂n+1,m

c,j − rn+1,m
ij ∆Ŵn+1,m

j

]
Sij = −R̂n+1,m

i (33)

with:
Gn+1,m

i =
Vi

∆ηn+1,m
i

+
Vi

∆tn
i
+

1
2 ∑

j∈N(i)
rn+1,m

ij Sij

Equation (33) can be easily resolved through the LU-SGS method [40]. At the beginning
of the inner iteration, the initial values of the conservative variables and fluxes are set as
Ŵn+1,m=1

i = Ŵn
i and F̂n+1,m=1

ij,NS = Fn
ij,NS. At the conclusion of the inner iteration, we can set

Ŵn+1
i = Ŵn,m=M

i , where M signifies the iteration number of the inner iteration and it is
chosen as 50 in this work. In addition, for simplicity, the time step size in the pseudo-time
level is chosen as ∆ηn+1,m

i = ∆tn
i .

3.4. Comparison of Three Schemes

The three schemes mentioned above all entail calculating the numerical flux using the
local discrete characteristic solution of the Boltzmann-BGK equation. Additionally, they
employ either a semi-implicit or fully implicit scheme to discretize the collision term. This
allows for a mesh size unrestricted by the mean free path of molecules and a time step
size not limited by the collision time. The primary distinction among these schemes lies
in how they incorporate the solution of the macroscopic governing equation. In DVM-II,
the solution of the macroscopic governing equation is introduced, while in DVM-III, an
inner iteration is used to solve the macroscopic governing equation. However, considering
that the computational cost of solving the macroscopic governing equation is significantly
lower than that of the Boltzmann-BGK equation, the increased computational cost of
DVM-II and DVM-III in each time step for evolving the discrete distribution function is
negligible. In this subsection, we will qualitatively compare the three schemes in terms of
the collisionless limit and continuum limit. For convenient comparison, let us rewrite the
evolution equations of the three schemes as follows:

In DVM-I, only the evolution equation of the distribution function is involved. This
equation can be written as:

f n+1
i,α =

∆tn
i

τn
i + ∆tn

i
gn

i,α +
τn

i
τn

i + ∆tn
i

f n
i,α −

τn
i ∆tn

i
τn

i + ∆tn
i

1
Vi

∑
j∈N(i)

nij·ξαSij f n+1
ij,α (34)

In DVM-II, both the evolution equations of the distribution function and the macro-
scopic conservative variables are involved. These equations can be expressed as:

f n+1
i,α =

∆tn
i

τn
i + ∆tn

i
ĝn+1

α +
τn

i
τn

i + ∆tn
i

f n
i,α −

τn
i ∆tn

i
τn

i + ∆tn
i

1
Vi

∑
j∈N(i)

nij·ξαSij f n+1
ij,α (35)

Ŵn+1
= Wn − ∆tn

Vi

 ∑
j∈N(i)

〈
nij·ξΨ f n

ij

〉
α
Sij + ∑

j∈N(i)

∂Rn
i

∂Wn
j

∆Wn
j

 (36)
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∑
j∈N(i)

∂Rn
i

∂Wn
j

∆Wn
j =

1
2 ∑

j∈N(i)

[
nij·
(

∆Fn
c,i + ∆Fn

c,j

)
+ rn

ij

(
∆Wn

i − ∆Wn
j

)]
Sij (37)

In DVM-III, the evolution equations of the distribution function and the macro-
scopic conservative variables maintain the same forms as Equations (35) and (36),
with the distinction that the flux Jacobian is calculated by the disparity of fluxes of
Navier–Stokes equation:

∑
j∈N(i)

∂Rn
i

∂Wn
j

∆Wn
j = ∑

j∈N(i)
nij·
(

F̂n+1
ij,NS − Fn

ij,NS

)
Sij (38)

Note that, in DVM-II and DVM-III, the predicted equilibrium state ĝn+1
α is calculated

from the solution of the macroscopic governing equation Ŵn+1.

(1) Collisionless limit

In the collisionless limit, where the collision time is significantly larger than the time
step size, τ � ∆t, the evolution equation of the discrete distribution function for all three
schemes can be simplified as follows:

f n+1
i,α = f n

i,α −
∆tn

i
Vi

∑
j∈N(i)

nij·ξαSij f n+1
ij,α (39)

This simplification disregards any equilibrium state and can be considered as a solution
to the following collisionless Boltzmann equation.

∂ fα

∂t
+ ξα·∇ fα = 0 (40)

For DVM-II and DVM-III, even though the evolution of macroscopic conservative
variables is involved, the predicted equilibrium state does not directly impact the evolution
of the discrete distribution function. Hence, all three schemes can provide reasonable
results in the collisionless limit.

(2) Continuum limit

In the continuum limit, where the collision time is significantly less than the time
step size, τ � ∆t, the evolution equations of the discrete distribution function for DVM-I,
DVM-II, and DVM-III can be respectively simplified as follows:

For DVM-I:

f n+1
i,α = gn

i,α −
τn

i
Vi

∑
j∈N(i)

nij·ξαSij f n+1
ij,α (41)

For DVM-II and -III:

f n+1
i,α = ĝn+1

α −
τn

i
Vi

∑
j∈N(i)

nij·ξαSij f n+1
ij,α (42)

It can be observed that the effective time step size for the evolution of the discrete
distribution function is the collision time. However, the initial values (the predicted
equilibrium state) differ among the three schemes. A more accurate initial value leads to a
faster convergence rate.

In order to achieve a more precise predicted equilibrium state, the evolution equation
of the predicted macroscopic conservative variables (as shown in Equation (36)) is intro-
duced in DVM-II and DVM-III. It is evident that the effective time step size of Equation (36)
is much larger than the collision time in this scenario. This implies that the macroscopic
governing equation takes precedence in the continuum limit. Consequently, the flow field



Entropy 2023, 25, 1609 11 of 28

can be accurately described by the Navier–Stokes equation in this regime. Naturally, DVM-
III yields a more accurate predicted equilibrium state compared to DVM-II since the flux
Jacobian is calculated using the Navier–Stokes equation in this method.

4. Numerical Examples

In this section, we perform a numerical investigation to evaluate the performance of
the three schemes and uncover the key to accelerating convergence in DVM calculations.
The evaluation encompasses six diverse test examples with varying Knudsen/Reynolds
numbers, effectively covering a broad spectrum of flow regimes. These examples include
Couette flow, heat transfer between parallel plates, force-driven Poiseuille flow, lid-driven
cavity flow, flow around a NACA0012 airfoil, and flow in a planar microchannel. All
computations are carried out on a PC equipped with an Intel(R) Xeon(R) Gold 6226R
CPU operating at 2.9 GHz. No parallelization techniques are employed during these
computations.

4.1. Case 1: Couette Flow

The first test case involves the Couette flow, consisting of two vertically positioned
plates situated at xL = 0 and xR = 1. Both plates have the same temperature of T0 = 1 and
different constant vertical velocities: vL = −0.25 for the left plate and vR = 0.25 for the
right plate. The Maxwellian diffuse boundary condition is employed for the left and right
boundaries, while the periodic boundary condition is adopted for the upper and lower
boundaries. The Knudsen number for this case is defined as:

Kn =

√
πµ0

ρ0
(
2RgT0

)1/2L0

(43)

where ρ0 = 1 is the reference density, L0 = xR − xL denotes the reference length, µ0
represents the reference viscosity, and Rg = 0.5 signifies the specific gas constant. The
dynamic viscosity is determined using the following intermolecular interaction model:

µ = µ0

(
T
T0

)w
(44)

with the viscosity index w = 0.81. In the simulation, we consider five different Knudsen
numbers: Kn = 0.001, 0.01, 0.1, 1, and 10. The physical space is discretized non-uniformly
into 100 cells in the x-direction and 5 cells in the y-direction. For the discretization of the
molecular velocity space, we use the Gauss–Hermite quadrature with 28 × 28 mesh points
for the cases of Kn = 0.001, 0.01, and 0.1. In the cases of Kn = 1 and 10, we utilize the
Newton–Cotes quadrature with 101 × 101 mesh points uniformly distributed in the range
of [−6, 6] × [−6, 6].

The converged velocity and temperature distributions along the x-direction are shown
in Figure 1, demonstrating good agreement among DVM-I, DVM-II, and DVM-III. Figure 2
compares the convergence history of the three schemes. It is evident that, in the rarefied
flow regime, all three schemes converge similarly. However, in the near-continuum and
continuum flow regimes, the DVM-III achieves the fastest convergence, followed by the
DVM-II, while the DVM-I exhibits slower convergence. This indicates that the fully im-
plicit discretization of the collision term is pivotal for accelerating convergence in DVM
calculations, and a more accurate prediction of the equilibrium state leads to a faster con-
vergence rate. The quantitative comparison of the computational cost of the three schemes
is tabulated in Table 1. Since the computational cost of solving the macroscopic governing
equation is significantly lower than that of the Boltzmann-BGK equation, DVM-II achieves
approximately one order of magnitude acceleration compared to DVM-I. Additionally,
DVM-III achieves an additional order of magnitude acceleration compared to DVM-II.
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Table 1. Computational cost (hours) of DVM-I, DVM-II, and DVM-III for Couette flow with different
Knudsen numbers.

Kn 0.001 0.01 0.1 1 10

DVM-I 13.120 0.396 0.0269 0.208 0.391
DVM-II 1.404 0.274 0.0225 0.219 0.412
DVM-III 0.0608 0.0258 0.0237 0.214 0.409

Ratio 1 9.34 1.44 1.20 0.95 0.95
Ratio 2 215.79 15.35 1.14 0.97 0.96

Note: “Ratio 1” represents the speed-up ratio of DVM-II over DVM-I, while “Ratio 2” represents the speed-up
ratio of DVM-III over DVM-I.

4.2. Case 2: Heat Transfer between Two Parallel Plates

The second test case involves heat transfer between two stationary parallel plates.
The geometry configuration and mesh in the physical space for this test case are the
same as those in the first test case. The left plate is maintained at a fixed temperature of
TL = 0.75, while the right plate is kept at a fixed temperature of TR = 1.25. The Knudsen
number is determined by Equation (43) with the reference density of ρ0 = 1 and reference
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temperature of T0 = 1, and the dynamic viscosity is calculated using Equation (44) with the
viscosity index w = 0.81. In the simulation, we consider five different Knudsen numbers:
Kn = 0.001, 0.01, 0.1, 1, and 10, which cover all the flow regimes. For each Knudsen number,
the molecular velocity space discretization follows the same strategy as that in the first
test case.

Figure 3 illustrates a comparison of the converged density and temperature distribu-
tions along the x-direction obtained using DVM-I, DVM-II, and DVM-III. The results from
all three schemes show good agreement with each other, indicating that these multiscale
approaches can provide reasonable results across different flow regimes. To further ana-
lyze the convergence behavior, Figure 4 presents a comparison of the convergence history.
Similar to the first test case, DVM-III demonstrates the fastest convergence among the three
schemes. This can be attributed to its ability to provide more accurate predictions of the
equilibrium state in the discretization of the collision term. As a result, DVM-III achieves
approximately 1–2 orders of magnitude acceleration compared to DVM-I and about one
order of magnitude acceleration compared to DVM-II, as shown in Table 2.
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Table 2. Computational cost (hours) of DVM-I, DVM-II, and DVM-III for heat transfer between two
parallel plates with different Knudsen numbers.

Kn 0.001 0.01 0.1 1 10

DVM-I 8.550 0.320 0.0224 0.160 0.314
DVM-II 0.903 0.182 0.0237 0.169 0.331
DVM-III 0.0323 0.0269 0.0248 0.164 0.333

Ratio 1 9.47 1.76 0.95 0.95 0.95
Ratio 2 264.71 11.90 0.90 0.98 0.94

Note: “Ratio 1” and “Ratio 2” have the same definitions as provided in Table 1.

4.3. Case 3: Force-Driven Poiseuille Flow

This test case involves the flow of a fluid between two infinite parallel plates separated
by a distance of L0 = 1 in the y-direction. The plates maintain a temperature of T0 = 1 at
the reference temperature. In the force-driven Poiseuille flow, an external force is imposed
in the x-direction. Consequently, the Boltzmann-BGK equation is modified as follows:

∂ fα

∂t
+ ξα·∇ fα =

gα − fα

τ
+ Fα,x (45)

where Fα,x denotes the force term. In the context of the Maxwellian distribution function,
Fα,x can be expressed as:

Fα,x = −G
∂gα

∂ξα,x
= G

ξα,x − ux

RgT
gα (46)

Here, ξα,x stands for the x-component of the discrete molecular velocity, ux denotes the
x-component of the mean flow velocity, and G represents the magnitude of the external
acceleration. With the external force, the corresponding modified macroscopic governing
equation is as follows:

∂W
∂t

+∇·F = S (47)

where S = (0, G, 0, uG)T is the source term.
In this test example, the Knudsen number is calculated by Equation (43) with the

reference density of ρ0 = 1 and the dynamic viscosity is determined using Equation (44)
with the viscosity index w = 0.5. The apparent gas permeability is introduced to quantify
the simulation results, which is defined as:

κ =
Kn√
πGL2

0

∫ L0

0
udy (48)

In the simulation, we consider Knudsen numbers ranging from Kn = 10−4 to 10.
The magnitude of the external acceleration is set as follows: G = 10−5 for the cases of
10−4 ≤ Kn < 10−3, G = 10−4 for the cases of 10−3 ≤ Kn < 10−2, G = 10−3 for the cases
10−2 ≤ Kn < 10−1, and G = 10−2 for the cases 10−1 ≤ Kn. The physical space is discretized
uniformly into 40 cells in the y-direction and 5 cells in the x-direction. For the discretization
of the molecular velocity space, we utilize the Gauss–Hermite quadrature with 8 × 8 mesh
points and 28 × 28 mesh points for the cases of Kn < 10−2 and 10−2 ≤ Kn < 1, respec-
tively. For the cases of 1 ≤ Kn ≤ 10, we employ the Newton–Cotes quadrature with
101 × 101 mesh points uniformly distributed in the range of [−4, 4] × [−4, 4].

Figure 5 presents a comparison of the apparent gas permeability for force-driven
Poiseuille flow with different Knudsen numbers using DVM-I, DVM-II, DVM-III, and
DUGKS [41] as a reference. The results demonstrate that all three schemes yield consistent
results with the reference data, indicating their accuracy as multiscale approaches. To
evaluate the computational efficiency of the schemes, we analyze the convergence history
of the apparent gas permeability for Kn = 0.0001, 0.001, 0.01, and 0.1, as shown in Figure 6.
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It is evident that DVM-III exhibits faster convergence compared to DVM-I and DVM-II.
Specifically, for the case of Kn = 0.0001, DVM-III achieves approximately five and two
orders of magnitude faster convergence compared to DVM-I and DVM-II, respectively.
Even in the slip flow regime (Kn = 0.01), DVM-III still demonstrates an approximate two
orders of magnitude faster convergence compared to DVM-II. These findings confirm that
a more accurate prediction of the equilibrium state in the collision term discretization leads
to a faster convergence rate in DVM calculations.
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4.4. Case 4: Lid-Driven Cavity Flow

In this subsection, we will simulate the two-dimensional lid-driven cavity flow, which
introduces a non-trivial dimension compared to the previous test examples. The square
cavity with an edge length of L0 = 1 remains stationary, except for the top wall that moves
with a velocity of uW = 0.15. All walls are maintained at a fixed temperature equal to
the reference temperature of T0 = 1. The simulation considers three different Knudsen
numbers: Kn = 0.075, 1 and 10, as well as two different Reynolds numbers: Re = 100 and
1000. For the cases with Kn = 0.075, 1, and 10, the dynamic viscosity is computed using
Equation (44) with the viscosity index w = 0.81 and the reference dynamic viscosity µ0 is
determined by the Knudsen number:

Kn =
16µ0

5ρ0
(
2πRgT0

)1/2L0

(49)

For the cases with Re = 100 and 1000, the dynamic viscosity µ is directly calculated by
the Reynolds number:

µ =
ρ0uW L0

Re
(50)

Additionally, the computational domain is uniformly discretized into 50× 50 cells for
the cases with Kn = 0.075, 1 and 10, while it is divided into 150× 150 cells for the cases
with Re = 100 and 1000. Regarding the discretization of the molecular velocity space, the
Newton–Cotes quadrature with 101× 101 points uniformly distributed in the range of
[−4, 4]× [−4, 4] is employed for the test cases with Kn = 1 and 10. The Gauss–Hermite
quadrature with 28× 28 points is utilized for the test case with Kn = 0.075, and the Gauss–
Hermite quadrature with 8× 8 points is used for the test cases with Re = 100 and 1000.

The comparisons of density, temperature, the x-component of heat flux, and the y-
component of heat flux contours for lid-driven cavity flow with Knudsen numbers of
0.075, 1, and 10 are displayed in Figures 7–9, respectively. The results obtained from all
three schemes (DVM-I, DVM-II, and DVM-III) exhibit good agreement, indicating their
capability to accurately capture the flow behavior across different regimes. Figure 10
provides a quantitative comparison of the velocity profiles along the vertical and horizontal
central lines of the cavity for the three schemes, along with the results of UGKS [42]
and the numerical results of Ghia et al. [43] as reference data. Once again, the results
obtained from all three schemes closely align with the reference data, further supporting
the applicability of these multiscale approaches in the different flow regimes. To assess the
convergence performance, Figure 11 compares the convergence history for lid-driven cavity
flow with different Knudsen/Reynolds numbers. Additionally, Table 3 quantitatively
compares the computational cost among the three schemes. Clearly, DVM-III exhibits the
fastest convergence rate among the three schemes, achieving approximately 1–2 orders
of magnitude faster convergence compared to DVM-I. This observation confirms that the
accuracy in predicting the equilibrium state for the collision term’s discretization plays a
critical role in accelerating convergence in DVM calculations.

Table 3. Computational cost (hours) of the DVM-I, DVM-II, and DVM-III for lid-driven cavity flow
with different Knudsen/Reynolds numbers.

Re/Kn 1000 100 0.075 1 10

DVM-I 275.478 12.109 0.0705 0.498 0.613
DVM-II 9.102 3.873 0.0766 0.526 0.648
DVM-III 0.370 0.285 0.0234 0.541 0.666

Ratio 1 30.27 3.127 0.92 0.95 0.95
Ratio 2 744.53 42.488 3.01 0.92 0.92

Note: “Ratio 1” and “Ratio 2” have the same definitions as provided in Table 1.
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4.5. Case 5: Flow around a NACA0012 Airfoil

This test case involves the flow around a NACA0012 airfoil with a Mach number
of Ma = 0.2 and an angle of attack of AoA = 10 degrees. The temperature of the airfoil
is maintained at the reference temperature of T0 = 1. The Knudsen number is defined
by Equation (43) using the reference density of ρ0 = 1 and the normalized airfoil chord
length of L0 = 1, and the dynamic viscosity is determined using Equation (44) with the
viscosity index w = 0.81. Consequently, the relationship between the Knudsen number,
Mach number, and Reynolds number can be expressed as:

Kn =
Ma
Re

√
γπ

2
(51)
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In the simulation, we consider three different Reynolds numbers: Re = 5, 50, and 500.
The computational domain extends up to a distance of 25L0 from the center of the airfoil
and is discretized using an unstructured mesh comprising 16,042 triangular cells. On the
airfoil surface, we place 200 discrete points. For the discretization of the molecular velocity
space, we employ the Gauss–Hermite quadrature with a mesh of 28 × 28 mesh points.

Figures 12–14 present the density, u-velocity, v-velocity, and pressure contours for
flows around a NACA0012 airfoil at Reynolds numbers of 5, 50, and 500, respectively.
The results obtained by the DVM-I, DVM-II, and DVM-III are found to be consistent with
each other. Figures 15–17 compare the pressure coefficient and skin friction coefficient
distributions along the airfoil surface for the cases of Re = 5, 50, and 500. These figures also
include numerical results obtained using the Navier-Stokes equation with a conventional
CFD scheme [44]. It is observed that the results obtained by DVM-I, DVM-II, and DVM-III
align well with each other and show good agreement with the results from the Navier–
Stokes equation for the case of Re = 500. However, for the cases of Re = 5 and 50, there are
deviations between the results obtained by the three schemes and those from the Navier–
Stokes equation due to the rarefaction effect. In Figure 18, we compare the convergence
history of the three schemes at different Reynolds numbers. It is evident that DVM-III
exhibits faster convergence compared to the other two schemes. Specifically, for the case
of Re = 500, there is an acceleration of approximately one order of magnitude compared
to DVM-I.

4.6. Case 6: Flow in a Planar Microchannel

The last test example focuses on the flow in a planar microchannel, which has been
previously investigated by Titarev [45,46]. The configuration of this test case is illustrated
in Figure 19 and consists of a left reservoir with pressure p1 and temperature T1, a right
reservoir with pressure p2 and temperature T2, and a channel with the aspect ratio of
l/a = 10, where l represents half of the length and a represents half of the width. In
our simulation, p1/p2 = 1.1 and T1/T2 = 1 are considered. To compare our results with
those obtained by Titarev [45,46], we calculate the collision time using τ = 1/δ, where δ
is a rarefaction parameter that is inversely proportional to the Knudsen number. In the
simulation, we examine six different values of δ: 0.01, 0.1, 1, 10, 100, and 1000. Note that
δ = 1000 corresponds to the continuum flow regime, which poses a challenge for DVM-I to
efficiently achieve convergence and was not tested in the work of Titarev [45,46].
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Figure 17. Comparison of pressure coefficient (a) and skin friction coefficient (b) distributions along
the airfoil surface for flow around a NACA0012 airfoil with Re = 500.

To quantitatively compare the simulation results with the reference data provided by
Titarev [45,46], the non-dimensional mass flow rate is introduced

Mp = − 2l
p2 − p1

M, (52)

with:

M =

√
2RgT0

ap0

∫ a

0
ρ(0, y)u(0, y)dy, (53)

where p0 = (p1 + p2)/2 and T0 = (T1 + T2)/2 represent the reference pressure and ref-
erence temperature, respectively. In the simulation, the physical space is discretized by
5501 quadrilateral cells, and the molecular velocity space is discretized by the Gauss–
Hermite quadrature with a mesh of 28 × 28 mesh points for δ ≤ 100 and 8 × 8 mesh points
for δ ≤ 1000.
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Figure 19. Geometry and computational mesh in the physical space for flow in a planar microchannel.

Figure 20 illustrates the convergence history for the flow in a planar microchannel with
different rarefaction parameters. In this figure, we only display the convergence history
obtained by DVM-I, DVM-II, and DVM-III for the cases of δ ≥ 1, since the convergence
rates of the three schemes are identical for the cases of δ = 0.01 and 0.1. It is evident that
DVM-III exhibits the fastest convergence, followed by DVM-II, while DVM-I converges at
a slower rate. Particularly for the case of δ = 1000, both DVM-II and DVM-III achieve a
significant acceleration of convergence by two orders of magnitude compared to DVM-I.
Furthermore, Table 4 presents the non-dimensional mass flow rates obtained by the three
schemes, alongside the reference data provided by Titarev [46]. Basically, the simulation
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results demonstrate good agreement with the reference data, validating the accuracy of all
three schemes.
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Table 4. Mass flow rate for flow in a planar microchannel with different rarefaction parameters.

δ 0.01 0.1 1 10 100 1000

DVM-I 2.69 2.58 2.79 8.01 48.1 88.4
DVM-II 2.69 2.58 2.79 8.01 47.7 88.2
DVM-III 2.69 2.59 2.80 8.12 48.6 88.3

Titarev [46] 2.69 2.58 2.77 7.99 47.8 -

5. Conclusions

In this study, three versions of multiscale DVM are compared to investigate the key
factor in accelerating convergence in DVM calculations. To ensure accuracy across different
flow regimes, particularly in the near-continuum and continuum flows, these approaches
use the local discrete characteristic solution of the Boltzmann-BGK equation to calculate the
numerical flux at the cell interface, similar to the DUGKS. The first version, DVM-I, employs
a semi-implicit scheme to discretize the collision term. It approximates the equilibrium
state using its current time step value. On the other hand, DVM-II and DVM-III utilize a
fully implicit scheme to discretize the Boltzmann-BGK equation, including the collision
term. In these versions, the equilibrium state is predicted based on the solution of the
corresponding macroscopic governing equation. Notably, DVM-III introduces an inner
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iteration of the macroscopic governing equation between adjacent DVM steps, leading to a
more accurate prediction of the equilibrium state for the fully implicit discretization of the
collision term.

To investigate the key factor in accelerating convergence in DVM calculations, simula-
tions have been conducted on six benchmark cases, including Couette flow, heat transfer
between two parallel plates, force-driven Poiseuille flow, lid-driven cavity flow, flow around
a NACA0012 airfoil, and flow in a planar microchannel. By considering the collisional effect
in the calculation of the numerical flux at the cell interface, all three multiscale approaches
(DVM-I, DVM-II, and DVM-III) yield reasonable results in good agreement. Concerning
computational efficiency, DVM-III exhibits the highest efficiency in near-continuum and
continuum flow regimes, followed by DVM-II, while DVM-I shows a lower efficiency. This
indicates that the fully implicit discretization of the collision term plays a crucial role in
accelerating convergence in DVM computations. Additionally, the more precise prediction
of the equilibrium state resulted in a higher convergence rate. These findings provide
valuable insights into the development of efficient and accurate multiscale approaches for
simulating flows around irregular objects in near-space environments [47,48]. However, it
is crucial to acknowledge that for practical applications, parallel implementation becomes
necessary due to the substantial computational cost associated with the DVM. Employing
multicore calculations alongside the LU-SGS scheme can significantly impact convergence.
Furthermore, implementing parallelization for DVM-II and DVM-III, where resolving the
macroscopic governing equation is required, poses greater challenges compared to DVM-I.
Developing parallel versions for these schemes will be addressed in future work.
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