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Abstract: Deep learning is one of the most exciting and promising techniques in the field of artificial
intelligence (AI), which drives AI applications to be more intelligent and comprehensive. However,
existing deep learning techniques usually require a large amount of expensive labeled data, which
limit the application and development of deep learning techniques, and thus it is imperative to
study unsupervised machine learning. The learning of deep representations by mutual information
estimation and maximization (Deep InfoMax or DIM) method has achieved unprecedented results
in the field of unsupervised learning. However, in the DIM method, to restrict the encoder to learn
more normalized feature representations, an adversarial network learning method is used to make
the encoder output consistent with a priori positively distributed data. As we know, the model
training of the adversarial network learning method is difficult to converge, because there is a
logarithmic function in the loss function of the cross-entropy measure, and the gradient of the model
parameters is susceptible to the “gradient explosion” or “gradient disappearance” phenomena, which
makes the training of the DIM method extremely unstable. In this regard, we propose a Wasserstein
distance-based DIM method to solve the stability problem of model training, and our method is
called the WDIM. Subsequently, the training stability of the WDIM method and the classification
ability of unsupervised learning are verified on the CIFAR10, CIFAR100, and STL10 datasets. The
experiments show that our proposed WDIM method is more stable to parameter updates, has faster
model convergence, and at the same time, has almost the same accuracy as the DIM method on the
classification task of unsupervised learning. Finally, we also propose a reflection of future research for
the WDIM method, aiming to provide a research idea and direction for solving the image classification
task with unsupervised learning.

Keywords: machine learning; deep learning; unsupervised learning; encoder network; mutual
information estimation

1. Introduction

Unsupervised learning is a machine learning (ML) training method, which is es-
sentially a statistical means to discover underlying structures or attributes on unlabeled
datasets. Since unsupervised learning methods have the advantage of training networks
without labeled data, it appears to be crucial for large-scale data collection and is of great
importance to facilitate the development of artificial intelligence.

In the past, the main unsupervised learning algorithms have been principal component
analysis methods [1], isometric mapping methods [2], locally linear embedding methods [3],
Laplace feature mapping methods [4], Hesse local linear embedding methods [5], and local
tangent space alignment methods [6]. However, for the high-dimensional data case, all
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these methods have some limitations. In recent years, the application of unsupervised
learning has achieved some success. the Generative Adversarial Networks (GANs) network
proposed by Goodfellow et al. [7] has achieved excellent results in the field of image
generation, and many research scholars have proposed variants of GAN networks based
on this [8], and these frameworks provide sample generation for unsupervised learning as
well as theoretical guidance for feature encoding and decoding [9]. Despite the striking
early successes in unsupervised representation learning using GANs, they have since been
superseded by self-supervision-based approaches.

At this stage, to the best of our knowledge, many unsupervised learning methods train
feature extractors by maximizing the Mutual Information (MI) between different views,
and these methods are rapidly closing the gap with supervised methods. The literature [10]
proposes the Deep InfoMax (DIM) method, which performs unsupervised representation
learning by maximizing the mutual information between the input and the output of
the deep neural network encoder. However, to solve the problem of estimating the MI,
the literature [11] proposed the Mutual Information Neural Network Estimator (MINE).
In some applications, MINE can be used to implement the training of GANs and to achieve
information bottlenecks, as well as supervised classification [12], among others. Based on
this, it has been argued that the success of MINE methods is not only attributed to the
properties of MI; they depend heavily on the structural choice of the feature extractor and
the parametric bias of the MI estimator employed [13]. The momentum contrast (MoCo)
proposed by He et al. [14] builds a dynamic dictionary with queues and moving average
encoders, thus facilitating contrastive unsupervised learning. Some researchers have also
validated its effectiveness by implementing a modification of SimCLR [15] in the MoCo
framework, which outperforms SimCLR and does not require large sample training [16].
Han et al. [17] proposed a novel self-supervised co-training method to improve the popular
infoNCE loss [18], and improved the model convergence speed.

Although the DIM method has achieved excellent results in classification tasks with
unsupervised learning, the party uses a cross-entropy-based method to measure the dis-
tance between the encoder’s output and the a priori positive-earthly distribution, and is
trained using the adversarial training method, which brings the encoder’s output closer
to the positive-earthly distribution, thus making the encoder’s output more regular. It
is well known that due to the presence of a logarithmic function in the loss function of
the cross-entropy measure, the learning of adversarial network is very unstable. This is
because, when calculating the gradient of the model parameters, it is very easy to have the
phenomena of “gradient explosion” and “gradient disappearance”, which is the reason
why the DIM method is extremely unstable in the training of the model. Meanwhile, it is
difficult to reach the Nash equilibrium point of model convergence for adversarial training,
which is a critical problem that is difficult to solve in generative adversarial networks.

To address the instability of the DIM method in training the model, first, we adopt
the difference between the output of the Wasserstein distance metric encoder and the prior
distribution as the loss of the prior discriminator based on the superiority of the Wasserstein
distance measure of the difference between the two high-dimensional random variables,
and this metric makes the training of prior discriminative networks more stable and the
model convergence faster. Secondly, for the training of the a priori discriminant network
in the DIM method, we do not need to use the adversarial training method to train the
sub-network, we directly use the loss value of the Wasserstein distance metric to calculate
the gradient of the parameters of the sub-network, and further training on the update of the
model parameters can be performed so that there is a breakthrough in this improvement
and the performance of the model is significant. Our proposed WDIM method is validated
on CIFAR10, CIFAR100, and STL10 datasets. The experiments show that the WDIM method
is more stable for model training and faster for model convergence. The main contributions
of this paper are as follows:
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1. To propose a method based on the Wasserstein distance metric to measure the differ-
ence between the output of the encoder and the a priori positive terrestrial distribution,
which is used as the loss of the a priori discriminator network.

2. To adopt the method of the optimal transport path to estimate the Wasserstein distance,
which is not the same as the method of model parameter tailoring to estimate the
Wasserstein distance, and the experiments show that such an estimation computation
is more capable of reflecting the advantages of the Wasserstein distance, and the
estimated distance is more accurate and reliable.

3. For the training of the a priori discriminative network in the DIM method, we do not
need to use the method of adversarial training, we only need to minimize the distance
between the output of the coding network and the a priori positive distribution to
achieve the training of the a priori discriminative network, which makes the training
of the model more efficient, and the stability of the convergence of the model is higher.

The article describes the research work closely related to this paper in Section 2,
the DIM methodology in Section 3, the theory of the WDIM methodology in Section 4,
the experiments with the methodology in Section 5, and the conclusions and outlook in
Section 6.

2. Related Works

While supervised learning has made tremendous progress in the application of ma-
chine learning systems, unsupervised learning has not been as widely popularized and it
remains an important and challenging endeavor in artificial intelligence. Unsupervised
learning methods have the advantage of not requiring expensive labeled data to train
networks, which appears to be crucial for successfully collecting today’s large amount of
visual data, which are of great significance in promoting the development of AI. However,
the performance metrics of unsupervised networks have been lagging behind supervised
networks in practical applications, especially in the field of large-scale visual data recog-
nition. To narrow the performance gap between unsupervised learning and supervised
learning methods, many researchers and scholars have devoted themselves to unsuper-
vised network learning methods, and excellent research results have been achieved at
this stage. Unsupervised learning can be broadly categorized into unsupervised learning
methods based on feature encoding networks and unsupervised learning methods based
on clustering algorithms according to the differences in model learning methods.

Unsupervised learning methods based on feature encoding networks: many recent
unsupervised or self-supervised representation learning methods use the structure or
properties of the data themselves to automatically generate labels or features for model
training. By maximizing the mutual information (MI) between different views to train
feature extractors, these methods are rapidly closing the gap with supervised methods [19].
The autoencoders proposed in the literature [20] are a direct modification of the traditional
autoencoder structure, forming sub-networks for unsupervised representation learning.
In 2018, Deep InfoMax (DIM) proposed in the literature [10] is the most popular unsuper-
vised representation learning method. Unsupervised representation learning is performed
by maximizing the mutual information between the input and the output of the deep neural
network encoder. Based on the DIM method, Bachman et al. [21] proposed a method to
maximize the mutual information between feature information for the high-level factors
of multiple views of a shared environment. However, to address the problem of MI es-
timation, the literature [11] proposes the mutual information neural estimator (MINE),
which is linearly scalable in dimensionality and sample size. In some applications, the
MINE can be used to implement the training of GANs and be used for information bot-
tlenecks and supervised classification [22]. Based on this, the literature [13,23] argues that
the success of MINE methods is not only attributed to the properties of MI; they depend
heavily on the choice of feature extractor structure and the parameterization bias of the
employed MI estimator. He et al. [14] proposed momentum contrast (MoCo) for unsuper-
vised learning of visual representations. The method builds a dynamic dictionary with
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queues and moving average encoders, thus facilitating contrasted unsupervised learning,
and the representations learned by MoCo can be well transferred to downstream tasks.
The literature [24] verified its effectiveness by implementing a modification of SimCLR
in the MoCo framework, which outperforms SimCLR and does not require large training
batches. Han et al. [17] proposed a novel self-supervised co-training method to improve
the popular infoNCE loss, and the proposed method has comparable performance to other
self-supervised methods, while the training efficiency significantly improved.

Unsupervised learning methods based on clustering algorithms: Deep Clustering,
proposed by Caron et al. [25], is a clustering method that jointly learns neural network
parameters and the resulting feature clustering assignments and outperforms the current
state-of-the-art by a significant margin on all standard benchmarks. The literature [26]
describes a method for training embedding functions to maximize the local aggregation
metric, allowing similar data instances to move together in the embedding space while
allowing dissimilar instances to separate. In neural network training, “smoothing the
label/prediction distribution” has been shown to help prevent overconfidence in the model
and is essential for learning more robust visual representations [27]. The literature [28]
suggests learning image features by training convolutional networks (ConvNets) to be
applied to recognize 2D rotations of input images. Wu et al. [29] train neural net clas-
sifiers on annotated category-labeled datasets to be extended to unsupervised learning
environments and exceed the state-of-the-art by a large margin on the ImageNet dataset.
The literature [30] introduces the generalized data transformation framework, a framework
that allows the simultaneous injection of invariance and uniqueness into representations,
and applies it to representation learning in unlabeled videos [31], as well as in recurrent
neural networks, where there are also some excellent research results [32].

In recent years, to the best of our knowledge, the most dominant unsupervised
learning method, DIM [10], is one of the most effective unsupervised learning methods
based on feature encoding networks. DIM performs unsupervised representation learning
by maximizing the mutual information between the output of the hidden layer of the
encoder and the output of the encoder, a process referred to as global mutual information
maximization. At the same time, maximizing the location information of the feature map
of the hidden layer and the location information of the encoded vector of the output
incorporates the location knowledge from the input into the target, a process called local
mutual information maximization. Thus, the representational capability of the downstream
task is substantially improved. The features of the representation are further controlled
by matching the adversarial with the prior distribution. This method outperforms some
popular unsupervised learning methods, and DIM opens up new avenues for unsupervised
learning of representations. Currently, the research on DIM-based variant methods [21,33]
has become one of the hotter topics.

Although the DIM method achieves good unsupervised learning results, its model
training process is extremely unstable; therefore, the technique of a gradient penalty
on model parameters is used to make the model stable for training in the process of
DIM training, which fundamentally limits the learning ability of the network and is not
desirable. We conducted an in-depth study of the main reasons for the highly unstable
training of the DIM method, and we found that the features of the representation are
further controlled by matching the output of the encoder with the prior distribution in the
adversarial learning approach in the DIM method. We know that the learning of adversarial
networks is extremely unstable because of the presence of a logarithmic function in the
loss function of the cross-entropy inscription, which makes it easy to calculate the gradient
of the model parameters and the phenomenon of “gradient explosion”, which makes the
training of the prior discriminative network part of the DIM model extremely unstable.
Therefore, to characterize the loss function metric during the adversarial process, based on
the superiority of the Wasserstein distance measure of the difference between two random
variables [34], we propose the WDIM method, which can stabilize the training of the model
well and the model converges faster during the training process.
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The execution process of our proposed WDIM method is shown in Figure 1. Four main
sub-network models are trained in the WDIM method. The sub-network used for feature
extraction is called Eψ, also known as the encoder network. The a priori discriminative
network Dφ is the second sub-network, which takes the output of the feature extraction
network Eψ as the input, and hopes that the predicted output has the same distribution as
the a priori’s normal distribution, and its main purpose is to make the features extracted
by Eψ more normalized so that it is easy to implement the subsequent classification tasks.
The third sub-network is the global mutual information estimation network Tψ,ω1 , and we
hope that the output features of Eψ can contain more information about the more global
horizons of the inputs of Eψ. In the same principle, the fourth sub-network Tψ,ω2 , to get the
output features of Eψ to include more position information of the input of Eψ, incorporates
the knowledge of the position in the input into the objective, and learns more detailed
information such as local invariance of the input.

Figure 1. WDIM method model overview. Five main models are trained, which are the encoder
Eψ for deep feature learning, the prior discriminator Dφ, the global mutual information estimation
network Tψ,ω1 , and the local mutual information estimation network Tψ,ω2 .

3. DIM Method

Our WDIM method is improved on top of the DIM method. Therefore, in this subsec-
tion, we first give the construction procedure of the loss function of the DIM method and
qualitatively analyze the main reasons for the instability of the training model of the DIM
method in the next section.

3.1. Loss Function of DIM Method

In the DIM method, the optimal representation of the feature extraction network
EΨ(·) on the training data is obtained by optimizing the loss function Equation (6). In the
DIM method, the lower bound of mutual information is expressed as follows through the
Donsker–Varadhan representation [35]:

I(X, Y) := DKL(J‖M) ≥ Î (DV)
ω (X, Y) := EJ[Tω(x, y)]− log EM

[
eTω(x,y)

]
(1)

where the random variables X and Y denote the training dataset, and the encoding vector
set, respectively. In particular, note that X is used as the middle layer feature of the
encoder in achieving the approximate estimation of the mutual information. I(X, Y)
denotes the mutual information between the random variables X and Y, J denotes the joint
distribution function of X and Y, M denotes the product of the edge distribution functions of
X and Y, and DKL(J‖M) denotes the KL−divergence between J and M. Tω(x, y) denotes
the neural network with (x, y) sample pairs as the input and ω as the parameter, and
Î (DV)

ω (X, Y) denotes the lower bound of the Donsker–Varadhan representation of the
mutual information between X and Y.
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For the representation of global mutual information estimation, this is achieved by
optimizing the following function:(

ω̂1, ψ̂
)

G = arg max
ω1,ψ

Îω1

(
X; Eψ(X)

)
(2)

where Eψ(X) denotes the encoding vector of the encoder output with input X and parame-
ter ψ, Îω1(·) denotes the global mutual information estimator with parameter ω1, and the
global mutual information maximization is denoted by

(
ω̂1, ψ̂

)
G. In the process of optimiza-

tion, the maximization estimate of Î(DV)
ω (X, Y) is rewritten as Jensen−Shannon divergence

(JSD) representation with an upper bound since DKL(‖‖M) has no upper exact bound.

Î JSD
ω,ψ
(
X; Eψ(X)

)
:= EP

[
−sp

(
−Tψ,ω

(
x, Eψ(x)

))]
− EP×P̃

[
sp
(
Tψ,ω

(
x′, Eψ(x)

))]
(3)

where sp(·) denotes the softplus function and sp(z) = log(1 + ez).
(

x, Eψ(x)
)

denotes
the positive sample pair and

(
x′, Eψ(x)

)
denotes the negative sample pair. P denotes the

probability distribution of the random variable X, and P̃ denotes the probability distribution
of the negative sample.

Based on the representation of global mutual information estimation, the same repre-
sentation of local mutual information estimation can be obtained.

(
ω̂2, ψ̂

)
L = arg max

ω2,ψ

1
M2

M2

∑
i=1
Î JSD

ω2,ψ

(
C(i)

ψ ; Eψ(X)
)

(4)

where M2 denotes the number of features of a certain hidden layer, C(i)
ψ denotes the i-th

feature of the hidden layer, Î JSD
ω2,ψ(·) denotes the local mutual information estimator with

parameter ω2, and the local mutual information maximization is denoted by
(
ω̂2, ψ̂

)
L.

In variational self-encoders [36], it is more desirable that the encoded vectors obey a
priori the standard normal distribution, which is beneficial to make the encoding space
more regular and even to decouple features for subsequent learning. Therefore, the DIM
algorithm also wants to add this constraint, only, here, the adversarial regularized repre-
sentation is used.

(φ̂, ψ̂)P = arg min
ψ

arg max
φ
D̂φ

(
V‖Uψ,P

)
= EV

[
log Dφ(y)

]
+ EP

[
log
(
1− Dφ

(
Eψ(x)

))]
(5)

where V denotes the standardized normal distribution and Dφ is a neural network dis-
criminator with parameter φ. Uψ,P denotes the edge distribution that pushes the samples
from distribution P. The full loss of the optimization objective of the DIM method is the
weighted sum of the three loss functions of Equations (2), (4), and (5), as follows:

Loos = arg max
ω1,ω2,ψ,φ

(
αÎ JSD

ω1,ψ
(
X; Eψ(X)

)
+

β

M2

M2

∑
i=1
Îω2,ψ

(
Xi; Eψ(X)

))
+ arg min

ψ
arg max

φ
γD̂φ

(
V‖Uψ,P

) (6)

where α denotes the weight of the global mutual information loss term, β denotes the weight
of the local mutual information loss term, and γ denotes the weight of the a priori loss term.
In the objective function of the DIM algorithm, Equation (6), the third term (φ̂, ψ̂)P contains
a log(·) function, which makes the adversarial training suffer from a serious “gradient
explosion” phenomenon. To be able to dissect this phenomenon qualitatively, we will
quantitatively analyze the root cause of the instability of the training model in the DIM
method in the next section.
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3.2. Stability Analysis of DIM Method

In this section, we analyze in detail the main reasons for the instability of the model
trained by the DIM method, which employs Equation (5) to measure the distance between
the a priori n-tai distribution and the feature vector as the loss of the a priori discriminator,
at which point there are a series of problems with the stability of the model training.
Equation (5) is essentially a cross-entropy loss, and the purpose of optimizing the loss
function is to hope that the true sample Dφ(y)→ 1 and the false sample Dφ

(
Eψ(x)

)
→ 0

so that the output of the feature extraction network Eψ(x) obeys the a priori nontrivial
distribution V. Subsequently, the a priori discriminative network is trained using the
adversarial training method, and the adversarial training method suffers from “gradient
explosion” or “gradient vanishing" phenomena [37].

Gradient explosion: as shown in Figure 2, in (a), when Dφ(y)→ 0, loss→ −∞, there
is a “gradient explosion” phenomenon, which leads to the failure of model training to con-
verge. In (b), when Dφ

(
Eψ(x)

)
→ 0, the loss→ −∞, which also leads to the phenomenon

of “gradient explosion”, which then leads to the failure of model training convergence.
In (c), the optimal confidence obtained by optimizing Equation (5) is theoretically found
at the intersection of loss1, loss2, and Con f idence. However, since the alternating training
model may not be able to find the Nash equilibrium point, we urgently need to reconstruct
a more stable optimization function to replace Equation (5), so as to ensure that the training
model of the DIM method can provide a stable gradient computation, as well as to ensure
that the training process will not appear as the phenomenon of a “gradient explosion”.

(a) (b) (c)

Figure 2. Quantitative analysis of the stability of the training model for the DIM method.

Gradient vanishing: the most common methods to measure the difference between
two distributions are KL−divergence and J−divergence. However, there are still serious
problems with the distances measured by these methods. For one, for any two probability
distributions P(x) and Q(y), since DKL(P‖Q) 6= DKL(Q‖P), the distance measured by
KL−divergence does not satisfy the definition of distance in a practical sense. To solve the
asymmetry problem of KL−divergence, JS−divergence with symmetric property is pro-
posed to measure the distance between two distributions, so the KL−divergence measure is
discarded in many machine learning algorithms and the JS−divergence measure is adopted
instead. Second, in terms of the range of values of distance, DJS(P‖Q) ∈ [0, log 2], when
P(x) = Q(y), DJS(P‖Q) = 0. Therefore, theoretically speaking, JS−divergence is indeed a
feasible method to measure the distance between two distributions. However, this is not
the practice case as the dimensional catastrophe problem caused by multidimensional data
makes the distribution P(x) and the distribution Q(y) not always have overlapping regions
in the probability density space, DJS(P‖Q) ≡ log 2. This is fatal to the use of stochastic
gradient descent to optimize the objective function because the gradient computation
provided by the objective function with constant log 2 is equal to 0, which leads to the
phenomenon of “gradient disappearance” and, therefore, the model parameters cannot
be updated.

Through the above analysis, there are “gradient explosion” and “gradient disappear-
ance” phenomena in the process of training models by the DIM method, and it is difficult
to converge the adversarial training model to the “Nash equilibrium”. For this reason,
we need to improve Equation (5) so that the training model can converge stably, and at
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the same time, discard the loss function of the cross-entropy measure, which we find is
unnecessary. In the next subsection, we describe our proposed WDIM method in detail.

4. WDIM Method

In this subsection, we focus on two objectives. First, we propose an improvement
to Equation (5) based on the Wasserstein distance, which solves the “gradient explosion”
phenomenon of training a priori discriminators. The second is to learn an encoder with
good generalization ability and better characterization ability. We propose a decoupled
learning method called intermediate layer features, which allows different filters to learn a
more efficient class of feature representations, thus separating different types of features.
Therefore, to lead to the computation of the distance between the output of the encoding
vector and the output of the prior distribution used in our method, we first introduce the
computation of the Wasserstein distance approximation estimate.

4.1. Approximate Estimation Method of Wasserstein Distance

To measure the difference between two distributions and, at the same time, to solve the
“gradient disappearance” phenomenon of the JS−divergence measure distance, the method
of estimating the distance between two distributions based on the Wasserstein distance is
proposed [37], and we give the Wasserstein distance definition and its approximate optimal
estimation algorithm.

Wasserstein distance definition: let Π(P, Q) be the set of all possible joint probability
distributions for the combination of two probability distributions P(x) and Q(y), and for
any joint probability distribution γ(x, y) in the set, the distance d(x, y) of the sample pair
(x, y) ∼ γ distribution is defined as follows:

W(P, Q) = inf
γ∼Π(P,Q)

∫∫
γ(x, y)d(x, y) = inf

γ∼Π(P,Q)
E(x,y)∼γ[d(x, y)] (7)

where d(x, y) is the cost function. For each possible joint distribution γ, a sample x and y can
be obtained by sampling (x, y) ∼ γ from it and calculating the cost d(x, y) between the pair,
so the expectation E(x,y)∼γ[d(x, y)] of the sample to the cost under that joint distribution
γ can be calculated. The lower bound that can be taken for the expectation value in all
possible joint distributions is the Wasserstein distance.

In machine learning, it is very difficult to compute the distance between two distribu-
tions by sampling. Therefore, the Wasserstein distance needs to be approximated using the
optimal transport path of Sinkhorn’s algorithm [38]. Sinkhorn’s algorithm encourages the
transport of most of the low-traffic paths. Therefore, entropy regularization is introduced
to penalize sparse paths, and the Wasserstein distance is further approximated using im-
mobile point iterations to estimate the Wasserstein distance. In Algorithm 1, we give the
motionless point approximation estimation algorithm for the Wasserstein distance, which
we call WDAA.

In WDAA, P(i,j) = uiKi,jvj, ∀(i, j) ∈ [n]× [m],P(i,j)denotes the regularized Kantorovich
problem, where Ci,j denotes the cost of transferring a unit mass from ai to bj, and (i, j)
denotes the matrix subscript in the cost matrix C. P = diag(u)K diag(v), (u, v) ∈ Rn

+× Rm
+,

Ki,j = e−Ci,j/ε. ε is the regularization factor whose magnitude determines the strength of the
regularization effect. And the vectors u and v are the variables to be required by Sinkhorn’s
algorithm by adding the mass conservation conditions for optimal transport a = u� Kv
and b = v�

(
KTv

)
, where � is the Hadamard product of the vectors. Therefore, we can

solve for u, v by iterative means solving for u, v. At each step, u is updated first, then
v is updated, and eventually, the iterations converge, so the following iterative equation
is obtained:

ut+1 =
a

Kvt + ut, vt+1 =
b

KTut+1 + vt (8)

The Wasserstein distance approximation is solved using the optimal transport Sinkhorn
algorithm, which, according to Equation (8), is essentially an iterative approximation using
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an immobile point equation, and the process of solving the immobile point equation is a
Coordinate Ascend. In Figure 3a, we give the one-dimensional case, using the Coordinate
Ascend method to solve ut+1 and vt+1 in the one-dimensional case. From the figure, we
can see that, first, the variables u0 and v0 are initialized randomly. Second, u1 is updated
with u0 and v0 according to the first equation of Equation (8), and after obtaining u1, v1 is
updated with u1 according to the second equation of Equation (8). ut and vt are obtained
after finitely alternating many iterations, ut+1 is updated with vt, ut+1 to update vt+1,
and then we obtain ut+1 and vt+1, which are the optimal approximate solutions. Finally,
using the ut+1 and vt+1 obtained from the above solution, the cost matrix C is updated
to obtain the Wasserstein distance approximation to calculate the distance between any
two distributions.

Algorithm 1 Wasserstein distance approximation algorithm (WDAA)

Input: Input any two probability distributions P(x), Q(y), the maximum number of itera-
tions Max_iter, and the control threshold Err_thresh of the coordinate ascent method.

1: Initialization u0, v0

2: C ← Cost_Matrix(P(x), Q(y)) //Calculate the cost matrix C
3: K ← e−C/ε

4: a← u0 � Kv0,b← v0 �
(
KTu0)

5: t← 0
6: while t < Max_iter do
7: ut+1 ← a

Kvt + ut, vt+1 ← b
KTut+1 + vt

8: if sum
(
abs
(
ut+1 − ut)) ≤ Err_thresh then

9: u∗ ← ut+1

10: v∗ ← vt+1

11: break
12: end if
13: t← t + 1
14: end while
15: Wd ← D(C, u∗, v∗)

In Figure 3b, we discretize the representation P(x) and Q(y) such that
XP(x),Q(x) =

(
Pi, Qj

)
, i, j ∈ [0, C], and

(
Pi, Qj

)
is a pairwise two-dimensional vector taking

values in [0, 1] at a step of 0.25, which can represent our constructed two-dimensional
distribution, where C denotes the total number of pairwise two-dimensional vectors. Using
the definition principle of XP(x),Q(x), we can define YP(x),Q(x) = XP(x),Q(x) in the same
way. With the above representations of XP(x),Q(x) and YP(x),Q(x), we can represent the
Wasserstein distance visualization between the two-dimensional probability distributions
P(x) and Q(y) in the three-dimensional space. It can be seen that, firstly, the Wasserstein
distance between the probability distributions P(x) and Q(y) obtains a maximum value
of 1 when

(
Pi, Qj

)
= (0, 0) and

(
Qj, Pi

)
= (1, 1), or

(
Pi, Qj

)
= (1, 1) and

(
Qj, Pi

)
= (0, 0).

Secondly, the Wasserstein distance between the probability distributions XP(x),Q(x) and
YP(x),Q(x) plane diagonally. When XP(x),Q(x) = YP(x),Q(x), the Wasserstein distance between
the probability distributions P(x) and Q(y) obtains the minimum value 0. Thirdly, for other
values of the probability distributions P(x) and Q(y), the Wasserstein distance between
the probability distributions P(x) and Q(y) is obtained to belong between (0, 1).

In order to approximate the Wasserstein distanceWd between Eψ(x) and Dφ

(
Eψ(x)

)
in Equation (5), the Wasserstein distance approximation algorithm is given in Algorithm 1.
The Wasserstein distance has an upper-certainty bound on the measure of the distance
between any two distributions when Eψ(x) ∈ [0, 1] and Dφ

(
Eψ(x)

)
∈ [0, 1]. Therefore,

the Wasserstein distance measure of the distance between any two distributions can avoid
the “gradient explosion” phenomenon during the training of the model, and the Wasserstein
distance measure of the distance between two distributions does not depend on whether
the distributions have overlapping regions. The Wasserstein distance measure between two
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distributions does not depend on whether there is an overlap between the distributions.
Therefore, we will improve the difference measure between Eψ(x) and Dφ

(
Eψ(x)

)
in

Equation (5) based on the Wasserstein distance in the next section.

(a) Coordinate ascent method (b) Wasserstein distance

Figure 3. Visualization of the approximate solution of the Wasserstein distance between any two
distributions P(x) and Q(y).

4.2. Priori Discriminative Loss of WDIM Method

When training the prior discriminator in the DIM approach, the main focus is on
optimizing Equation (5) to train the model to satisfy the indistinguishability between the
encoding vector Eψ(x) and the prior distribution y. In Section 3.2, we analyze in detail that
the essence of the optimization Equation (5) is to learn the indistinguishability between
the coding vector Eψ(x) and the prior distribution y using the idea of adversarial learning.
At the same time, we also analyze that the adversarial learning prior discriminator is
undesirable because the process of training the model is prone to “gradient explosion”
and “gradient disappearance”, resulting in poor stability of the training model and thus
difficulty in converging.

To solve the problem of “gradient explosion” and “gradient disappearance” of the
DIM method, we need to construct a more stable objective function to guide the training of
the prior discriminator and discard the loss function of the cross-entropy metric. Based on
the superior performance of the Wasserstein distance measure of variability between any
two distributions in Section 4.1, Equation (5) will be rewritten based on the Wasserstein
distance in our WDIM method. Therefore, we propose the method based on the Wasserstein
distance to approximate the distance between Eψ(x) and Dφ(x) in Equation (5), which is
rewritten as follows:

(ω̂, ψ̂)P = arg min
ψ,φ

WDAA
(

Dφ(y), Dφ

(
Eψ(x)

))
(9)

where the x samples are derived from the training data distribution P and the y samples
are derived from the standard orthogonal distribution V.

The prior discriminant network in the WDIM method is trained by optimizing the
objective function Equation (9), thus providing an effective loss value. Thus, the prior
discriminator cannot distinguish whether the input comes from the coding vector Eψ(x)
or from the y of the prior distribution, thus achieving that the output vector Eψ(x) of the
encoder obeys the prior distribution as much as possible, and this more regular coding
vector facilitates feature decoupling for learning of downstream tasks. Finally, the complete
objective function of our WDIM method is given as follows:

Loos = arg max
ω1,ω2,ω3,ψ,φ,θ

(
αÎ JSD

ω1,ψ
(
X; Eψ(X)

)
+

β

M2

M2

∑
i=1
Îω2,ψ

(
Xi; Eψ(X)

))
+ arg min

ψ,φ
γWDAA

(
Dφ(y), Dφ

(
Eψ(x)

)) (10)
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Compared with the full objective function Equation (10) of the DIM method, we only
improve the calculation of the loss value of the prior discriminator part and do not add
additional calculations. However, this improvement makes the training of the WDIM
method more stable than that of the DIM method, without the problems of “gradient
explosion” and “gradient disappearance”. The adversarial training allows the distribution
of the coding vector Eψ(x) to converge consistently to the prior distribution V.

In Algorithm 2, we give the complete pseudo-code of the WDIM method for training
the model, where the estimation of global mutual information and local mutual informa-
tion is implemented using the “negative sampling” method. In the encoder network, we
convolve the input data x0 to obtain the intermediate feature x, and then pass x through
the back part of the encoder network to obtain the coding vector Eψ(x). In the prior
discriminatorDφ(·), a batch of samples y with Eψ(x) is randomly sampled from the prior
distribution as the input to Dφ(·), and Dφ(y) and Dφ

(
Eψ(x)

)
are output, respectively.

When Dφ(y) ≈ Dφ

(
Eψ(x)

)
, we have reason to believe that the encoding vector Eψ(x) ap-

proximately obeys the prior distribution, so that Eψ(x) is indistinguishable from y. The core
work of the WDIM method is to estimate the mutual information between the hidden layer
x and the encoding vector Eψ(x). Therefore, in the global mutual information, estimator
Tψ,ω1(·) first x is passed through a convolutional network that splices the spreading vec-
tor with Eψ(x) on the batch to obtain the positive sample pair

(
x, Eψ(x)

)
. To obtain the

negative sample pair
(
x′, Eψ(x)

)
, we randomly disorder x′ in batch x.

Algorithm 2 WDIM algorithm

Input: epochs, η, α, β, and γ.
1: W← {ω1, ω2, ψ, φ} Combined parameters and random initialization.
2: i← 1
3: while i < epochs do
4: A batch of

{
xi

0
}B

i=1 ∼ Pdata ,is sampled, and thus the intermediate features{
xi}B

i=1,
{

yi}B
i=1 ∼ N (0, 1) of the encoder are obtained. Positive and negative sample

pairs
(

xi, Eψ

(
xi)) and

((
xi)′, Eψ(x)

)
for estimating global mutual information are ob-

tained by prediction processing. The positive and negative sample pairs
(

C(i)
ψ , Eψ

(
xi))

and
((

C(i)
ψ

)′
, E′ψ

(
xi)) of the estimated local mutual information are likewise obtained.

5: (φ̂, ψ̂)p ← 1
B ∑Bi=1 WDAA

(
Dφ

(
yi), Dφ

(
Eψ

(
xi)))

6:
(
ω̂1, ψ̂

)
G ←

1
B ∑Bi=1

[
−sp

(
−Tψ,ω1

(
xi, Eψ

(
xi)))]− 1

B ∑Bi=1

[
sp
(

Tψ,ω1

((
xi)′, Eψ

(
xi)))]

7:
(
ω̂2, ψ̂

)
L ←

1
M2 ∑M2

i=1

[
−sp

(
−Tψ,ω2

(
C(i)

ψ , Eψ

(
xi)))]

− 1
M2 ∑M2

i=1

[
sp
(

Tψ,ω2

((
C(i)

ψ

)′
, Eψ

(
xi)))]

8: Loss← γ(φ̂, ψ̂)p −
(
α
(
ω̂1, ψ̂

)
G + β

(
ω̂2, ψ̂

)
L

)
9: ∇W← ∂ Loss /∂W //Calculation gradients

10: W←W+ η Adam(W,∇W) //Update parameters
11: i← i + 1
12: end while

Such processing is efficient and necessary for the “negative sampling” estimation
method. In the local mutual information estimator Tψ,ω2(·), to estimate the local mutual
information between x and Eψ(x), Eψ(x) is extended so that the extended Eψ(x) has the
same dimensions as Cψ, thus forming feature vectors of feature channel size at the points of
the output feature matrix. Therefore, by using the chaotic order on the batch, the positive

sample pair
(

C(i)
ψ , Eψ(x)

)
and the negative sample pair

((
C(i)

ψ

)′
, E′ψ(x)

)
can be obtained

to obtain the outputs Tψ,ω2

(
C(i)

ψ , Eψ(x)
)

and Tψ,ω2

((
C(i)

ψ

)′
, Eψ(x)

)
, respectively.
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5. Experiments

To give comparative experiments with fairness, we choose PyTorch as the experimental
platform, and uniformly give the same network model and hyper-parameter settings in the
DIM method and WDIM method, except for the different algorithms.

5.1. Network Parameters

According to the architecture of our proposed WDIM method, as shown in Figure 1, we
give the settings of each sub-network model parameter in the whole network architecture
and the initialization parameter settings in the algorithm.

Setting of sub-network model parameters: the first sub-network responsible for feature
extraction is the encoder network E. This sub-model is always present during the training
process of combining the sub-network models, and in Table 1, we ignore the symbolic
representation of this sub-network, which consists of four convolutional layers and one
flatten layer, in the process of the representation of the abbreviated symbols. The second
sub-network model is the a priori discriminative network D, which is responsible for
restricting the output of the encoder network E to move closer to a positive-too distribution,
making the output of the encoder network more regular. The third sub-network is the
global mutual information maximization network model G. This network consists of two
convolutional layers and two fully connected layers, which are used to limit the output
of the second layer of encoder E to maximize the global mutual information between
the output layers. The fourth sub-network is the local mutual information maximization
network model L, which consists of three convolutional layers and is used to limit the local
mutual information maximization between the output of the second layer of the encoder E
and the output layer.

Table 1. Comparison of DIM and WDIM methods for classification experiments on CIFAR10, CI-
FAR100, and STL10 datasets.

Model
CIFAR10 CIFAR100 STL10

conv fc(1024) fc(64) conv fc(1024) fc(64) conv fc(1024) fc(64)

DIM(G) 52.20% 52.84% 43.17% 27.68% 24.35% 19.98% 42.03% 30.82% 28.09%
DIM(DV) 72.66% 70.60% 64.71% 48.52% 44.44% 39.27% 69.15% 63.81% 61.92%
DIM(JSD) 73.25% 73.62% 66.96% 48.13% 45.92% 39.60% 72.86% 70.85% 65.93%
WDIM(GC) 53.42% 51.72% 42.89% 29.24% 24.88% 20.14% 46.72% 41.01% 36.46%
WDIM(LC) 72.22% 71.83% 65.26% 44.51% 44.12% 39.02% 68.47% 65.46% 62.56%
WDIM(GPC) 56.57% 54.89% 44.15% 31.18% 24.04% 19.08% 44.93% 39.93% 35.45%
WDIM(LPC) 72.21% 70.41% 65.89% 45.13% 44.76% 39.97% 66.51% 65.44% 64.66%
WDIM(LGPC) 70.67% 69.06% 64.71% 40.23% 39.06% 37.54% 63.33% 62.68% 61.23%

It should be noted that C in Table 1 denotes the classification network, which is
designed after the whole network has been trained with the WDIM method. Taking
WDIM(LGPC) as an example for the illustration of the network training process, the training
data enter the feature extraction network to obtain the extracted feature vectors, and the loss
value of the global mutual information maximization network G is calculated according to
Equation (2). Similarly, the loss value of local mutual information maximization network L
is calculated according to Equation (4). Calculate the loss value of the a priori discriminative
network according to Equation (9), and finally train the whole network model by combining
the networks E, G, L, and P according to Equation (10) to obtain the feature vectors, which
at this time are obtained with unsupervised training. After obtaining the feature vectors,
the feature vectors are used as inputs to the classification network C for the classification
task. At this point, we can prove the effectiveness of the WDIM method for extracting
features from the accuracy of the experiment.

Initialization parameter settings in the algorithm: in Algorithm 1, P(x) denotes the
output of the classification network, i.e., the predicted value of the model, Q(y) denotes
the labels of the training data, the maximum number of iterations max_iter = 100, and the
error threshold err_thresh = 0.1. In Algorithm 2, the maximum number of iterations
epochs = 420, the batch size batch_size = 64, learning rate η = 0.001, loss weight α = 0.5
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for the global mutual information maximization network, β = 1.0 for the local mutual
information maximization network, and γ = 0.1 for the a priori discriminative network.

We analyze the training stability of the models and the comparative experiments in
the unsupervised classification scenario for the DIM and WDIM methods on three public
datasets, CIFAR10, CIFAR100, and STL10.

5.2. Comparison of Model Training Stability

In Section 3.2, we quantitatively analyze the main reasons for the instability of the
DIM method training model from a theoretical point of view and rewrite the optimization
objective function Equation (5) of the DIM method based on the Wasserstein distance
in Section 4.2, to obtain Equation (9). For improving the stable training of the model,
the significance of such an improvement is derived from theoretical analysis. We have
reason to believe that in our WDIM method, the training process of the prior discriminator
does not result in the phenomenon of “gradient explosion”, and “gradient disappearance”
does not occur in our WDIM method.

We compare the training models of the DIM method and WDIM method on CIFAR10,
CIFAR100, and STL10 datasets, and find that the loss value of the training model of the
DIM method always appears as “nan” when the batch_size < 64, which leads to the
phenomenon of the “gradient explosion” that we mentioned. Therefore, after repeating
the experiment several times, we chose one successful training of the DIM method as a
comparative experiment. As can be seen in Figure 4a, the loss value of the DIM method in
the first 50 epochs on the public dataset CIFAR10 shows large fluctuations, but the training
of the model still converges in the end. On the contrary, in our WDIM method, the loss
value has been in a slowly decreasing state, and the model training is very stable and
eventually performs as well as the DIM method. In addition, on the CIFAR100 dataset,
as shown in Subfigure (b), the training of the DIM method still has some fluctuations, while
our method still maintains a relatively stable training pattern, and it is obvious that our
WDIM method maintains a highly significant level of training models. As can be seen in
Subfigure (c), due to the small number of training samples in the STL10 dataset, in this case,
the gradient direction found in the optimization process is somewhat different from the
optimal gradient direction, so both methods have some fluctuations in the process of model
training, but such fluctuations do not affect the final convergence of the model. The loss
fluctuation calculated by our method is smaller and always smaller than the loss value of
the DIM method. This fully reflects that the WDIM method is more capable of providing
effective gradient training and faster convergence. In terms of overall performance, our
method WDIM performs at least as well as the DIM method on the basis that the DIM
method can train the model stably, and more importantly, the WDIM method consistently
performs very well on the training model.

(a) (b) (c)

Figure 4. Comparison of the loss value curves of the DIM method and the WDIM method for training
models on the datasets CIFAR10, CIFAR100, and STL10.

By comparing the stability of the trained models of the DIM method and the WDIM
method on the CIFAR10, CIFAR100, and STL10 datasets, it can be found that the DIM
method only supports the training process of large batches because, in the prior discrimina-
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tor training of the DIM method using the adversarial training method there is a “gradient
explosion” phenomenon. Large batches of training samples can alleviate the loss value
tends to 0 or 1, and thus can stabilize the model training. Our WDIM method does not
suffer from “gradient explosion” from the principle. The experiments show that the WDIM
method performs as well as the DIM method under the conditions of stable training of the
DIM method. Therefore, we can believe that the WDIM method is very significant and
advantageous in the stability of the training model.

5.3. Comparative Accuracy of Unsupervised Learning Classification

We give the symbolic descriptions in Table 1, where “conv” denotes the output features
of the last convolutional layer of the feature extraction network, “fc(1024)” denotes that the
dimension of the feature vector output by the feature extraction network is 1024 dimensions,
and “fc(64)” denotes that the dimension of the feature vector output by the feature extraction
network is 64 dimensions. L is for the local mutual information maximization network, G
is for the global mutual information maximization network, P is for a priori discriminant
network, and C is for the classification network. For the downstream classification task,
we give the comparative experiments of the DIM method and the WDIM method on
the publicly available datasets CIFAR10, CIFAR100, and STL10, and the experimental
results are shown in Table 1. Among them, the DIM method trains the DIM(G), DIM(DV),
DIM(JSD), and DIM(infoNCE) models with the iteration step epoch = 1000, and our WDIM
methods WDIM(GC), WDIM(LC), WDIM(GPC), WDIM(LPC), and WDIM(LGPC) models
with iteration step epoch = 420. From the iteration step epoch, our method requires fewer
training iteration steps than the DIM method training iteration steps.

During the experiments, we first make sure that the DIM method can train the model
stably, and then make a comparison. From the results of the classification experiments, our
WDIM method has the advantage of faster convergence of the training model; however,
the experimental accuracy of our proposed WDIM method is sometimes lower than that of
the DIM method, and it is not always bad, and we analyze that the main reason may be
due to the difference in the structure of the model, the different hyper-parameter settings,
and other different reasons. During our experiments, the number of times we trained our
model epoch = 420, is based on this number of training rounds, while the epoch used by
the DIM method = 1000, as the conclusion of the model convergence in Figure 4. At the
same time, we also further train our network model many times, and there will be about
a 1–2.5% difference with DIM. It is not difficult to understand that there will always be
some difference in each time of model training, e.g., the WDIM(GC) in the STL10 dataset is
higher than that in the DIM method by 4.69%. But we feel that such a difference is objective.

6. Conclusions

In this paper, a DIM method based on mutual information maximization is studied in
depth. It is found that the cross-entropy loss function used in this method suffers from the
phenomena of “gradient explosion” and “gradient vanishing” during the training process,
which is the root cause of unstable model training and slow model convergence. In this
regard, the WDIM method based on Wasserstein distance is proposed to solve the above
problems. The cross-entropy calculation loss is discarded in the WDIM method, and the
distance between the output of the Wasserstein distance metric encoder and the prior
distribution is used as the loss value for training the prior discriminant network. We have
validated the unsupervised classification task on several public datasets, and the theoretical
study and experimental results show that the proposed WDIM method is more stable in
updating the model parameters and the model converges faster, among other advantages.

With the above theoretical studies, future thoughts extend the application of the WDIM
method to datasets with deeper network models and more complex training datasets.
Further thoughts to carry out feature decoupling in machine learning as well as feature
non-interpretability using mutual information as a theoretical basis. The purpose is to
provide a reference for researchers to re-conceptualize unsupervised interpretable machine
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learning, aiming to provide a research idea and research direction for the new generation
of AI model training.
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