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Abstract: In multiview data clustering, consistent or complementary information in the multiview
data can achieve better clustering results. However, the high dimensions, lack of labeling, and
redundancy of multiview data certainly affect the clustering effect, posing a challenge to multiview
clustering. A clustering algorithm based on multiview feature selection clustering (MFSC), which
combines similarity graph learning and unsupervised feature selection, is designed in this study.
During the MFSC implementation, local manifold regularization is integrated into similarity graph
learning, with the clustering label of similarity graph learning as the standard for unsupervised
feature selection. MFSC can retain the characteristics of the clustering label on the premise of
maintaining the manifold structure of multiview data. The algorithm is systematically evaluated
using benchmark multiview and simulated data. The clustering experiment results prove that the
MFSC algorithm is more effective than the traditional algorithm.

Keywords: multiview data clustering; unsupervised feature selection; similarity graph

1. Introduction

Various application types correspond to various network attributes that describe
individuals and groups from different perspectives. These networks are represented as
multiview feature spaces. For example, when uploading photos to Flickr, users are required
to offer labels and related text. In other words, photos can be represented by three view
feature spaces: photo content, label, and text description spaces.

Multiview data can integrate these view spaces and use correlation to obtain more
accurate network representations. Currently, multiview data are usually described in the
form of graphs, such as Gaussian function graphs, k nearest neighbor graphs [1], and
graphs based on subspace clustering [2,3]. For the selection of the correct neighborhood
size and the processing of points near the intersection of the subspace, subspace clustering
based on self-representation is superior to other graph-based representation methods. Nie
et al. developed a multiview clustering [4,5] algorithm that can perform spectral clustering
of an information network of multiple views by constructing a multiview similarity matrix.
The multiview clustering algorithm [6] proposed by Bickel et al. uses spherical k-means
multiview clustering. Pu et al. advanced the multiview clustering algorithm [7] based on
matrix decomposition, which regularizes the similarity matrix using multiview manifold
regularization, to merge the inherent and nonlinear structure of the network in every view.
The aforementioned methods provide an idea regarding the relationships between multi-
view data that improve clustering performance [8] by constructing multiview similarity
matrix clustering. However, the redundancy of multiview data has not yet been resolved.
In addition, the calculation for constructing a multiview similarity matrix is complicated
and unsuitable for large-scale multiview data.
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Feature selection [9] obtains the low-dimensional feature subspace representation of
the network by selecting features as well as removing noisy, irrelevant, and redundant
features to preserve the inherent data structure. This is an effective method for handling
large-scale high-dimensional networks. Most existing feature selection methods are based
on single-view networks. Recently, the focus of unsupervised feature selection research
has been on the study of multiview data. Zhang et al. [10] propose a formulation that
learns an adaptive neighbor graph for unsupervised multiview feature selection. This
formulation collaborates multiview features and discriminates between different views.
Fang et al. [11] propose a novel approach that incorporates both cluster structure and a
similarity graph. Their method utilizes multiview feature selection and an orthogonal
decomposition technique, which breaks down each objective matrix into a base matrix
and a clustering index matrix for each view. Cao et al. [12] present a cluster learning
guided multiview unsupervised feature selection, which unified subspace learning, cluster
learning, and feature selection into a framework. Tang et al. [13] propose a feature selection
method based on multiview data that aims to maintain diversity and enhance consensus
learning by utilizing cross-view local structures. Liu et al. [14] propose a framework for
guided unsupervised feature selection, which utilizes consensus clustering to generate
pseudo cluster indexes for the purpose of feature selection.

There are two modes of feature selection in multiview networks. One is the serial
mode, which is a feature selection method that seriates the connection multiview feature
space into a feature space and then selects the features. The other is the parallel mode,
which involves performing traditional feature selection on each view simultaneously. In
more detail, the serial mode ignores the differences between heterogeneous feature spaces,
so its performance is relatively poor. The parallel mode considers the correlation between
multiple view spaces with relatively better performance. Research on the unsupervised
feature selection of multiview data without labels poses a significant challenge. For the
traditional unsupervised feature selection method, the feature distribution selected by the
Laplacian score [15] method agrees with the sample distribution, which can perform a good
regional classification and reflect the inherent manifold structure of data. However, the
correlation between the features is not evaluated, resulting in the selection of redundant
features. In the MFSC method, spectral analysis retains the internal structure and L2,1 uses
feature selection coefficients to select the best features. Therefore, the selected features
retain the clustering structure of the data.

The MFSC algorithm proposed in this study makes the following contributions:

1. Compared with a single-view dataset that concatenates multiview data, the parallel
use of multiview datasets from real-world social media sites significantly improves
the accuracy of data representation.

2. In integrated subspace clustering and feature selection, the clustering label and repre-
sentative coefficient matrix are flow regularizations. Furthermore, to obtain a more
suitable feature selection matrix, the a priori of the manifold structure is embedded in
the feature selection model.

3. In the construction of the parallel mode multiview feature selection algorithm, noisy,
irrelevant, and redundant features are removed to preserve the inherent data structure
and improve the efficiency and quality of feature selection based on clustering, which
is more suitable for multiview data.

The rest of this paper is organized as follows. Section 2 introduces the basic studies
related to the MFSC algorithm. Section 3 presents the MFSC model and its optimization
iterative process in detail, and it theoretically proves the convergence and complexity of the
algorithm. Section 4 reports the parameter sensitivity and performance analysis of MFSC
on typical datasets, as well as the results of comparison experiments with some single-view
or multiview feature selections. Section 5 presents the results of this study and the future
work.
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2. Related Studies
2.1. Multiview Subspace Representation

Let X(v) be the data sample node of the v-th view and S(v) be its representative
coefficient matrix. Each data point in the subspace union can be reconstructed effectively by
combining the other points in the dataset. Given the data X based on the group effect [16],
for representation coefficients Si and Sj of the samples, Xi and Xj are similar and so are Si
and Sj. The multiview representation of traditional sparse subspace clustering (MVSC) [17]
is defined as follows:

||X(v) − X(v)S(v)||2F, s.t.S(v) I = I, S(v)(i, i) = 0. (1)

MVSC can well capture the self-representation matrix in the multisubspace k-nearest

neighbor graph structure. Similar structure graph Z(v) = (S(v))T+S(v)

2 of the v-th view can
learn the multisubspace structure when there are noise, abnormal values, and damaged or
missing entries in the data.

2.2. Multiview Unsupervised Feature Selection

Most existing studies on multiview learning [18] assume that all views share the same
label space and that these views are related to each other through the label space. It is well
known that the main difficulty of unsupervised feature selection is the lack of class tags.
Consequently, the concept of a pseudo-class label is introduced to guide the development
of the framework using the relationship between views, which is defined as follows:

||(X(v))TW(v) − C||2F + α||W(v)||2,1, (2)

where the v-th view has a mapping matrix W(v) that assigns the pseudo-class label C to
the data points. Based on the assumption that the view is associated with the shared label
space, each pseudo-class label allocation matrix (X(v))TW(v) is approximated such that
it is close to the pseudo-class label matrix. The l2,1 norm [19] is added to Wi to ensure
sparseness in the Wi row and feature selection. In addition, the l2,1 norm is convex, making
the optimization easier.

2.3. Multiview Manifold Structure

The greater the similarity value of the two data points, the more similar the clusters. A
similar structure graph with k unconnected cluster subspaces can be directly learned and it
is defined as follows:

n

∑
i,j=1
||Ci,: − Cj,:||2FS(v)

ij = tr(CT L(v)C), (3)

where clustering label C ∈ Rn×k and Laplacian matrix L(v) = D(v) − (S(v))T+S(v)

2 . It is
known that MHOAR [20] points out that the properties of the L matrix of nonnegative
matrix S are shown in Theorem 1.

Theorem 1. The number of the eigenvalues 0 of normalized L is equal to the number of connected
subspaces of S. Therefore, rank(L) = n− k. According to the Ky Fan theorem [21], using σi(L)
to represent the i-th smallest eigenvalue of L, then σi(L) ≥ 0 and rank(L) = n− k. Therefore,
∑k

i=1 σi(L) = arg minC∈Rn×k ,CTC=Ik
tr(CT LC).

3. Proposed Model

This section contains an introduction to the MFSC model: an explanation of the itera-
tive optimization implementation process, algorithm, proof of convergence, and analysis of
algorithm complexity. An illustration of the MFSC model is shown in Figure 1. Multiview
unsupervised feature selection, similarity graph learning, and clustering index learning are
achieved in the parallel mode. MFSC reduces the redundancy and irrelevant influence of
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multiview data and uses the clustering index as the feature selection standard to ensure
that the clustering structure remains unchanged.

Figure 1. Overall framework based on the parallel mode in MFSC.

3.1. MFSC Model

Suppose the dataset X = {X(v) ∈ Rd(v)×n}m
v=1 denotes the data of the v-th view, d(v)

denotes the feature number of the v-th view, and n denotes the number of data. The feature
selection matrix is W(v) ∈ Rd(v)×k, the clustering label is C ∈ Rn×k, and the subspace
representation coefficient S(v) ∈ Rn×n, where k denotes the cluster number. The MFSC
model is defined as follows:

arg minS(v),C,W(v)

m

∑
v=1

u(v)(||(X(v))TW(v) − C||2F

+ ||X(v) − X(v)S(v)||2F + αtr(CT L(v)C)

+ β||W(v)||2,1)

s.t.CTC = Ik, S(v) I = I, S(v)(i, i) = 0,

(4)

where L(v) = D(v) − (S(v))T+S(v)

2 .
The model independently learns the S(v) of each view instead of directly using the S(v)

calculated by the kernel function. Using the similarity graph of self-representation learning
based on the manifold structure, the multisubspace structure of the data can be effectively
reflected. By integrating subspace similarity graph learning and feature selection, the
pseudo-class label C can capture the relationship between the views to obtain a robust
and clean pseudo-class label. Row sparsity is achieved by applying the l2,1 [22] constraint
to W(v). Figure 1 shows the feature selection based on the parallel mode that iteratively
updates the similarity matrix {S(v)}m

v=1, the feature selection matrix {W(v)}m
v=1, and the

pseudo label matrix C.

3.2. Optimization Calculation Process and Algorithm Representation

This section first introduces the effective implementation of the iterative method to
solve the optimization calculation in Equation (4). In the implementation process, W(v),
S(v), and C are updated iteratively to obtain the specific implementation process of the
MFSC algorithm.

Update W(v):
To effectively calculate the feature selection matrix W(v), irrelevant items S(v) and C

are fixed. The objection equation can be rewritten as follows:

J1(W(v)) = ||(X(v))TW(v) − C||2F + β||W(v)||2,1. (5)
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Given that this equation is nondifferentiable [19], the equation is transformed into:

J1(W(v)) = ||(X(v))TW(v) − C||2F + βtr((W(v))T D(v)W(v)), (6)

where D(v) denotes a diagonal matrix and the j-th diagonal element is D(v)(j, j) = 1
2||W(v)

j ||2
.

Calculation process:

∂J1(W(v))

∂W(v)
= 2X(v)(X(v))TW(v) − 2X(v)C

+ 2βD(v)W(v) = 0,
(7)

The updated rules for W(v) are as follows:

W(v) = (X(v)(X(v))T + βD(v))−1X(v)C. (8)

Update S(v):

Theorem 2. Given X = XZ, W = Z+ZT

2 , and L = D−W, then

tr(FT LF) =
1
2

tr(WP), (9)

with Pij = || fi − f j||22, where fi is the i-th row vector of matrix F.

To effectively calculate the clustering label C, irrelevant items W(v) and S(V) are fixed.
The objection equation can be rewritten as follows:

J2(S(v)) = ||X(v) − X(v)S(v)||2F + αtr(CT L(v)C)

+ ρ||IT − ITS(v)||2F
s.t. S(v)(i, i) = 0.

(10)

Based on the properties of the matrix trace tr(XTY) = tr(XYT) and Theorem 2, it is
known that P is a symmetric matrix; then,

tr(CT L(v)C) =
1
2

tr(WP)

=
1
2
(

1
2

tr(S(v)PT) +
1
2

tr((S(v))T P))

=
1
2

tr((S(v))T P),

(11)

where Pij = ||Ci − Cj||22. According to

||X(v) − X(v)S(v)||2F + ρ||IT − ITS(v)||2F
= ||[(X(v))T , p ∗ I]T − [(X(v))T , p ∗ I]TS(v)||2F,

(12)

suppose X(v)
1 = [(X(v))T , p ∗ I]T , so J2(S(v)) is equivalently expressed as follows:

J2(S(v)) = ||X(v)
1 − X(v)

1 S(v)||2F +
α

2
tr((S(v))T P)

s.t. S(v)(i, i) = 0.
(13)
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Given that tr((S(v))T P) = ∑i S(v)(i, :)P(:, i), where S(v)(i, :) denotes the i-th row vector
of S(v) and P(:, i) denotes the i-th column vector of P. Then,

||X(v)
1 − X(v)

1 S(v)||2F =

tr(X(v)
1 − X(v)

1 S(v))T(X(v)
1 − X(v)

1 S(v))

= ∑
i
(X(v)

1 (i, :)− X(v)
1 S(v)(i, :))

(X(v)
1 (i, :)− X(v)

1 S(v)(i, :))T .

(14)

Suppose X(v)
s = X(v)

1 − (X(v)
1 S(v) − X(v)

1 (:, i)S(v)(i, :)); then,

||X(v)
1 − X(v)

1 S(v)||2F = ||X(v)
s − X(v)

1 (:, i)S(v)(i, :)||2F
= tr((X(v)

s − X(v)
1 (:, i)S(v)(i, :))T(X(v)

s − X(v)
1 (:, i)S(v)(i, :)))

= tr((X(v)
s )TX(v)

s − (S(v)(i, :))T(X(v)
1 (:, i))TX(v)

s

− (X(v)
s )TX(v)

1 (:, i)S(v)(i, :)

+ (S(v)(i, :))T(X(v)
1 (:, i))TX(v)

1 (:, i)S(v)(i, :))

= tr((X(v)
s )TX(v)

s )− 2tr(S(v)(i, :)(X(v)
s )TX(v)

1 (:, i))

+ tr((X(v)
1 (:, i))TX(v)

1 (:, i)S(v)(i, :)(S(v)(i, :))T).

(15)

Subsequently, the objective vector expression for S(v)(i, :) is obtained as follows:

J2(S(v)(i, :)) =(X(v)
1 (:, i))TX(v)

1 (:, i)S(v)(i, :)(S(v)(i, :))T

− 2S(v)(i, :)(X(v)
s )TX(v)

1 (:, i)

+
α

2
S(v)(i, :)P(:, i).

(16)

Similarly, the objective vector expression can also be expressed in the following form.
There is only a constant difference between the two forms:

J2(S(v)(i, :)) =||(S(v)(i, :))T −
(X(v)

s )TX(v)
1 (:, i)

(X(v)
1 (:, i))TX(v)

1 (:, i)
||22

+
α

2
S(v)(i, :)P(:, i)

s.t. S(v)(i, :)(i) = 0.

(17)

Let (X(v)
s )T X(v)

1 (:,i)

(X(v)
1 (:,i))T X(v)

1 (:,i)
= Q(v)(:, i). Suppose the subscript of the vector is k; then, if k = i,

(S(v)(i, :))T(k) = 0, otherwise solve the following equation:

J2(S(v)(i, :)(k)) =((S(v)(i, :))T(k)−Q(v)(:, i)(k))2

+
α

2
S(v)(i, :)(k)P(:, i)(k),

(18)

According to dJ2(S(v)(i,:)(k))
dS(v)(i,:)(k)

= 0 , the solution is as follows:
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(S(v)(i, :))T(k) =



Q(v)(:, i)(k)− αP(:,i)(k)
4 ,

i f Q(v)(:, i)(k) > αP(:,i)(k)
4 ;

Q(v)(:, i)(k) + αP(:,i)(k)
4 ,

i f Q(v)(:, i)(k) < αP(:,i)(k)
4 ;

0, otherwise.

(19)

Update C:
To effectively calculate the clustering label C, W(v) and S(V) are fixed, and irrelevant

items are ignored. The optimization formula can be rewritten as follows:

J3(C) =
m

∑
v=1

u(v)(||(X(v))TW(v) − C||2F + αtr(CT L(v)C)),

s.t.CTC = Ik, C ≥ 0.

(20)

To remove the orthogonal constraint, a penalty term p||CTC− Ik||2F is added to function
(20). The following optimization functions are available:

m

∑
v=1

u(v)(||(X(v))TW(v) − C||2F + αtr(CT L(v)C))

+ ρ||CTC− Ik||2F, s.t.C ≥ 0.

(21)

The Lagrangian operator φ is introduced to remove the inequality constraints and the
following Lagrangian function is obtained:

ω(C, φ) =
m

∑
v=1

u(v)(||(X(v))TW(v) − C||2F + αtr(CT L(v)C))

+ ρ||CTC− Ik||2F − tr(φTC).

(22)

Take ω(C, φ) to the derivative of C, then:

∂ω(C, φ)

∂C
=

m

∑
v=1

u(v)(−2(X(v))TW(v) + 2C + 2αL(v)C)

+ 4ρC(CTC− Ik)− φ = 0.

(23)

Thus, φ is obtained as follows:

φ =
m

∑
v=1

u(v)(−2(X(v))TW(v) + 2C + 2αL(v)C)

+ 4ρC(CTC− Ik).

(24)

Based on the Karush–Kuhn–Tucker condition [23] φijCij = 0, the following equation
is obtained:

(
m

∑
v=1

u(v)(−2(X(v))TW(v) + 2C + 2αL(v)C)

+ 4ρC(CTC− Ik))ijCij = 0.

(25)

The following update formulas are obtained:

Cij =
(∑m

v=1 u(v)((X(v))TW(v)) + 2ρC)ij

(∑m
v=1 u(v)(C + αL(v)C) + 2ρCCTC)ij

Cij. (26)
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After updating C, C must be regularized to ensure that it satisfies the following
constraint: CTC = Ik.

3.3. Convergence

Theorem 3. The iterative optimization process J1(W(v)) automatically reduces the objective func-
tion value until it converges.

Proof. The first term of J1(W(v)) : Ω(X(v), W(v), C) = ||(X(v))TW(v)−C||2F and its Hessian
matrix value is:

∂2Ω(X(v), W(v), C)
∂(W(v))2

= 2X(v)(X(v))T ≥ 0. (27)

Therefore, J1(W(v)) is convex; that is,

Ω(X(v), W(v)
(t+1), C) ≤ Ω(X(v), W(v)

(t) , C). (28)

The second term of J1(W(v)):Φ(W(v)) = ||W(v)||2,1 = ∑l(v)
i=1

√
∑k

j=1(W
(v)
ij )2 = ∑l(v)

i=1 ||W
(v)
i ||2

and its Hessian matrix value is

∂2tr((W(v))T D(v)W(v))

∂(W(v))2
= 2D(v) ≥ 0. (29)

Therefore,
Φ(W(v)

t+1) ≤ Φ(W(v)
t ). (30)

Then, J1(W(v)
(t+1)) ≤ J1(W(v)

(t) ). The proof is completed.

Theorem 4. The iterative optimization process of Algorithm 1 automatically reduces the value of
the objective function (4) until it converges.

Proof. Other variables are fixed such that the objective function J1(W(v)) is related to
W(v). Theorem 3 proves that, under the update rule, the objective value of J1(W(v)) is
automatically reduced:

J(S(v), C, W(v)
t+1) ≤ J(S(v), C, W(v)

t ). (31)

Given the other fixed variables, the objective function J2(W(v)) is related to S(v). Then,

the Hessian matrix of J2(W(v)) is ∂2 J2(S(v))

∂(S(v))2 = 2(X(v)
1 )TX(v)

1 ≥ 0, which is a positive semi-

definite matrix. Therefore,

J(S(v)
t+1, C, W(v)) ≤ J(S(v)

t , C, W(v)). (32)

Fix other variables and update C; the Hessian matrix of the objective function J3(C) is

2L̃(v) ≥ 0, where L̃(v) = aL(v) + I. Thus,

J(S(v), Ct+1, W(v)) ≤ J(S(v), Ct, W(v)). (33)

The proof is complete.
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Algorithm 1 MFSC FOR CLUSTERING

Require: {X(v)}m
v=1, {u(v)}m

v=1, k, α, β
Ensure: ACC, NMI

for v=1 to m do
initialize {S(v)}m

v=1, {W(v)}m
v=1, and C

end for
while not convergence do

for v=1 to m do
update {W(v)}m

v=1 according to Equation (8)
update {S(v)}m

v=1 according to Equation (19)
update C according to Equation (26)

end for
end while
for v = 1 to m do

Sort each feature for X(v) according to ||W(v)||2F in descending order and select the
top- f ranked ones;
X_new = [X_new, X(v)

f ]

end for
kmeans clustering for X_new ;
Calculate ACC and NMI

3.4. Complexity Analysis

In this section, the time complexity of the three subproblems in the optimization model
is calculated:

In subproblem J1(W(v)), term X(v)(X(v))T requires O(n(d(v))2) and its inverse ma-
trix requires O(n(d(v))3). The time complexity of term (X(v)(X(v))T + βD(v))−1X(v)C is
O(d(v)× n× k). Therefore, the total time complexity of the subproblem is O(∑m

v=1(n(d
(v))2 +

n(d(v))3 + d(v) × n× k)).
In subproblem J2(S(v)), each row of S(v) requires matrix multiplication and the

time complexity is O(n2d(v)). Therefore, the total time complexity of the subproblem
is O(∑m

v=1 n3d(v)).
In subproblem J3(C), the calculation of term (X(v))TW(v) requires O(d(v) × n× k),

and the calculation of terms L(v)C and CCTC requires O(n2k). The total time complexity is
O(∑m

v=1(d
(v) × n× k + n2 × k)).

4. Experiment

This section conducts an evaluation experiment on the MFSC algorithm using some
kinds of benchmark multiview datasets and its performance is compared with those of
other related algorithms.

4.1. Dataset

The evaluation experiment of the MFSC algorithm was conducted on 5 real multiview
datasets: news dataset 3sources, paper dataset Cora, information retrieval and research
dataset CiteSeer, website dataset BBCSport, and blog website dataset BlogCatalog. Table 1
summarizes the 5 datasets. In addition, the specific information is as follows:

1. 3sources The news dataset comes from three online news sources: BBC, Reuters, and
Guardian. All articles are placed within the text. Out of a total of 948 articles from
three sources, 169 are adopted. It is noteworthy that each article in the dataset has a
main theme.

2. Cora The paper dataset contains a total of 2708 sample points, which are divided
into 7 categories. Each sample point is a scientific paper. A paper comprises a 1433-
dimensional word vector.
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3. CiteSeer The papers in the information retrieval and research dataset are divided into
six categories, containing a total of 3312 papers, and records the citation or citation
information between the papers. Through sorting, 3703 unique words are obtained.

4. BBCSport The website dataset comes from 544 dataset points of the BBC sports
website, including sports news related to 5 subject areas (athletics, cricket, football,
rugby, and tennis) and 2 related views.

5. BlogCatalog BlogCatalog is the social blog directory which manages the bloggers and
their blogs. The data consists of 10,312 articles, divided into 6 categories, each article
with two views: blog content and its related tags.

Table 1. Statistical table of typical datasets.

3sources Cora CiteSeer BBCSport BlogCatalog

the number of vertexes 169 2708 3312 544 10,312

the number of classes 6 7 6 5 6

the number of views 3 2 2 2 2

view V1 V2 V3 V1 V2 V1 V2 V1 V2 V1 V2

the number of features 3560 3631 3068 1433 2708 3703 3312 3183 3203 6115 5764

4.2. Benchmark Method

MFSC is compared with the following algorithms.

1. LapScore (the Laplacian score function) selects features with strong separability, where
the distribution of feature vector values is consistent with the sample distribution,
thereby reflecting the inherent manifold structure of the data.

2. Relief is a multiclass feature selection algorithm. The larger the weight of the feature,
the stronger the classification ability of the feature. Features with weights less than a
certain threshold are removed.

3. MCFS [24] (a multiclustering feature selection) algorithm uses the spectral method
to preserve the local manifold topology and selects features using a method that can
preserve the clustering topology.

4. PRMA [7] (probabilistic robust matrix approximation) is a multiview clustering algo-
rithm with robust regularization matrix approximation. Powerful norm and manifold
regularization are used for regularization matrix factorization, making the model
more distinguishable in multiview data clustering.

5. GMNMF [17] (graph-based multiview nonnegative matrix factorization) is a mul-
tiview nonnegative matrix decomposition clustering algorithm involving intrinsic
structure information among multiview graphs.

6. SCFS [3] (subspace clustering-based feature selection) is an unsupervised feature
selection method based on subspace clustering that maintains a similarity relation by
learning the representation of the low-dimensional subspace of samples.

7. JMVFG [11] (joint multiview unsupervised feature selction and graph leaning) pro-
posed a unified objective function that can simultaneously learn clustering structure,
and global and local similarity graphs.

8. CCSFS [12] (consensus cluster structure guided multiview unsupervised feature selec-
tion) unifies subspace learning, clustering learning, consensus learning, and unsuper-
vised feature selection into one optimization framework for mutual optimization.

4.3. Evaluation Metrics

ACC (Accuracy) is used to compare the obtained cluster labels cluster_labeli with the
real cluster labels truth_labeli. The ACC is defined as follows:

ACC =
∑(cluster_labeli == truth_labeli)

m
, (34)



Entropy 2023, 25, 1606 11 of 19

where m denotes the total number of data samples.
NMI (Normalized Mutual Information) is the mutual information entropy between

the obtained and real cluster labels; it is defined as follows:

NMI =
∑K

i=1 ∑K
i=1 ni,jlog(

nṅi,j
ninj

)√
(∑K

i=1 nilog( ni
n ))(∑

K
j=1 njlog(

nj
n ))

, (35)

where ni denotes the sample number of cluster Ci (1 ≤ i ≤ K) and ni,j denotes the sample
number in both cluster Ci and category Cj.

4.4. Parameter Setting

The MFSC algorithm has two main parameters α and β. In the experiment, the parame-
ter range of α is set to {10−3, 10−2, 0.1, 1, 10, 102, 104} and that of β is set to {10−6, 10−3, 10−2,
1, 10, 102, 104}. The correlation coefficient of the 3sources data is u = {0.3, 0.3, 0.4} and
the other data views are the two-view data, with the correlation coefficient defined as
follows u = {0.5, 0.5}. The value range of f eature# (feature selection number) is set
to {100, 200, 300, 400, 500}. Due to the large scale of BlogCatalog dataset, its range is
f eature# ∈ {500, 1000, 1500, 2000, 2500}. Considering that the clustering method k-means
usually converges to a local minimum, it is necessary to repeat each experiment 20 times
and report the average performance.

4.5. Results of Multiview Clustering

Tables 2 and 3 show the ACC and NMI values of the different feature selection and
multiview clustering methods. To determine the impact of the benchmark feature selection
method on clustering, this experiment first merges the results of multiview feature selection
into new data and then executes k-means. The final value is the average value of the
clustering of different feature selection values. Based on the experimental results, MFSC
performs well on both ACC and NMI, which proves the effectiveness of the algorithm.

Table 2. ACC of different methods on typical datasets.

3sources Cora CiteSeer BBCSport BlogCatalog

LapScore 0.36 0.3 0.32 0.39 0.55

RelieF 0.42 0.27 0.31 0.42 0.59

MCFS 0.55 0.29 0.27 0.47 0.54

PRMA 0.54 0.26 0.36 0.37 0.56

GMNMF 0.46 0.25 0.26 0.45 0.57

SCFS 0.65 0.4 0.34 0.45 0.56

JMVFG 0.64 0.35 0.44 0.42 0.52

CCSFS 0.54 0.3 0.4 0.45 0.5

MFSC 0.69 0.39 0.38 0.48 0.54
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Table 3. NMI of different methods on typical datasets.

3sources Cora CiteSeer BBCSport BlogCatalog

LapScore 0.18 0.27 0.3 0.15 0.32

RelieF 0.35 0.25 0.5 0.32 0.4

MCFS 0.48 0.27 0.28 0.24 0.29

PRMA 0.49 0.24 0.34 0.42 0.31

GMNMF 0.4 0.29 0.56 0.51 0.33

SCFS 0.54 0.35 0.4 0.6 0.47

JMVFG 0.45 0.3 0.51 0.57 0.42

CCSFS 0.31 0.34 0.41 0.56 0.4

MFSC 0.58 0.3 0.42 0.78 0.45

4.6. Parameter Analysis

To achieve peak clustering performance, we tune parameters α, β, and f eature#. Thus,
we alter their values to see how they affect the ACC and NMI of clustering for 3sources
data, Cora data, CiteSeer data, BBCSport data and BlogCatalog data.

Figures 2–4 show the clustering experiment results of parameters α, β, and f eature# in
the 3sources dataset.

Figure 2 shows the change description of α, β, and the clustering indexes ACC and
NMI in 3source. The average value is taken as the final result. Based on the ACC and
NMI results in 3source, the MFSC algorithm is sensitive to parameters α and β. When
parameter α is small, the performance of ACC is relatively high. When parameter β is large,
the performance of NMI is relatively high.

(a) (b)

Figure 2. (a) ACC values of parameter α and parameter β for 3sources data. (b) NMI values of
parameter α and parameter β for 3sources data.

Figure 3 shows the change description of parameter α and f eature# and the values
of clustering indexes ACC and NMI from 3source. In most cases, when the parameter
α = 0.001, the ACC and NMI of the MFSC exhibit better performance in the feature selection
dimension, which shows the importance of capturing the multiview manifold structure
and embedding it into the feature selection model.

Figure 4 shows the change description of parameter β and feature number and the
clustering performance ACC and NMI values from 3source. It can be concluded that the
MFSC is sensitive to the selected feature number. As the value of feature selection increases,
the ACC and NMI increase. In most cases, when the parameter β = 10,000, the ACC and
NMI of the MFSC exhibit better performance. To ensure the sparsity of matrix W, the
larger the value of the feature selection, the greater the importance and the stronger the
clustering performance.
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(a) (b)

Figure 3. (a) ACC values of parameter α and parameter f eature# for 3sources data. (b) NMI values
of parameter α and parameter f eature# for 3sources data.

(a) (b)

Figure 4. (a) ACC values of parameter β and parameter f eature# for 3sources data. (b) NMI values
of parameter β and parameter f eature# for 3sources data.

Figures 5–7 show the clustering results of parameters α, β, and f eature# in the Cora
dataset.

Figure 5a shows that the ACC is insensitive to parameter α and insensitive to parameter
β on interval β ∈ [0.000001, 0.001] or β ∈ [0.01, 1, 10, 100, 10000]. Figure 5b shows that the
NMI is insensitive to parameter α but is sensitive to parameter β. When β ≥ 1, the NMI
value is larger.

(a) (b)

Figure 5. (a) ACC values of parameter α and parameter β for Cora data. (b) NMI values of parameter
β and parameter f eature# for Cora data.

Figure 6 shows the clustering results of parameter α and f eature# in Cora dataset. As
depicted in Figure 6a, when parameters α and f eature# increase, the ACC value increases.
In Figure 6b, f eature# is sensitive to NMI value, while the overall relative value of f eature#
is larger and the NMI value is larger.
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(a) (b)

Figure 6. (a) ACC values of parameter α and parameter f eature# for Cora data. (b) NMI values of
parameter β and parameter f eature# for Cora data.

Figure 7 depicts the clustering results of parameters β and f eature# in the Cora dataset.
As depicted in Figure 7a, for β ≤ 0.01, the ACC increases as f eature# increases; otherwise,
for β > 0.01 the ACC value remains basically unchanged. Figure 7b shows that, when
f eature# = 100 and 500, the NMI value is larger.

(a) (b)

Figure 7. (a) ACC values of parameter β and parameter f eature# for Cora data. (b) NMI values of
parameter β and parameter f eature# for Cora data.

Figures 8–10 show the clustering results of parameters α, β, and f eature# in CiteSeer
dataset. Figure 8a shows that the ACC is insensitive to parameters α and β, but Figure 8b
shows that the NMI is insensitive to parameters α ∈ {0.001, 0.01, 1, 10, 100} and β ∈
{0.01, 0.1, 1, 100}; when the two parameters are larger or smaller, the NMI value exhibits a
small fluctuation.

(a) (b)

Figure 8. (a) ACC values of parameter α and parameter β for CiteSeer data. (b) NMI values of
parameter α and parameter β for CiteSeer data.

Figure 9 shows the clustering results of parameters α and f eature# in the CiteSeer
dataset. As illustrated in Figure 9a, the magnitude of the ACC value difference is 0.05 and
the ACC is insensitive to parameter α. For f eature# = 300, the ACC has better performance.
As shown in Figure 9b, the NMI is slightly sensitive to parameters α and β. For α = 1,
when f eature# = 200, a larger NMI is achieved.
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(a) (b)

Figure 9. (a) ACC values of parameter α and parameter f eature# for CiteSeer data. (b) NMI values
of parameter α and parameter f eature# for CiteSeer data.

Figure 10 shows the clustering results of parameters β and f eature# in the CiteSeer
dataset. As demonstrated in Figure 10a, the magnitude of the ACC value difference is 0.05
and the ACC is insensitive to parameter β. In general, the NMI performance is better when
β ∈ {0.001, 0.01, 1}. The ACC performance is stabler when f eature# > 200. Figure 10b
shows that the NMI results are almost insensitive to parameter β and f eature# in the
CiteSeer dataset. When β = 0.001, the NMI result is greater.

(a) (b)

Figure 10. (a) ACC values of parameter β and parameter f eature# for CiteSeer data. (b) NMI values
of parameter β and parameter f eature# for CiteSeer data.

Figures 11–13 show the clustering experiment results of parameters α, β, and f eature#
in the BBCSport dataset.

Figure 11a shows that the ACC is insensitive to parameters α and β in the BBCSport
dataset. Figure 11b shows that the NMI is insensitive to parameter α but the NMI changes
slightly when β ≥ 1. However, the NMI results have a peak when β = 1.

(a) (b)

Figure 11. (a) ACC values of parameter α and parameter β for BBCSport data. (b) NMI values of
parameter α and parameter β for BBCSport data.

Figure 12a shows the clustering ACC of parameters α and f eature# in the BBCSport
dataset. The magnitude of the ACC value difference in this figure is 0.05, and the ACC is
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insensitive to parameter α and f eature# in BBCSport dataset. Comparatively, it has high
ACC with f eature# ≥ 400 and 0.1 ≤ a ≤ 10. Figure 12b shows the clustering NMI of
parameters α and f eature# in the BBCSport dataset. When f eature# ≤ 200, the results of
NMI are insensitive to parameters α and f eature#. NMI increases first and then decreases
with parameter α. When f eature# > 200, NMI has a greater value when a = 0.1 and
f eature# = 300 and 400.

(a) (b)

Figure 12. (a) ACC values of parameter α and parameter f eature# for BBCSport data. (b) NMI values
of parameter α and parameter f eature# for BBCSport data.

Figure 13a shows the clustering ACC of parameters b and and f eature# in the BBCSport
dataset. The magnitude of ACC value difference in this figure is 0.05, and the ACC is
insensitive to parameters β and f eature# in the BBCSport dataset. Comparatively, it has
high ACC with f eature# ≥ 300 and a = 10,000. Figure 13b shows the clustering NMI of
parameters b and f eature# in the BBCSport dataset. NMI is sensitive to f eature#, and NMI
has a greater value when f eature# ≥ 300 and b ≥ 100.

(a) (b)

Figure 13. (a) ACC values of parameter β and parameter f eature# for BBCSport data. (b) NMI values
of parameter β and parameter f eature# for BBCSport data.

Figures 14–16 show the clustering results of parameters α, β, and f eature# in BlogCat-
alog dataset.

Figure 14a shows that ACC is insensitive to α but, when β = 1000, its performance is
better. Figure 14b shows the NMI performance for parameters α and β. NMI is not very
sensitive to α and β, and, when β is larger and α is smaller, NMI is relatively larger.

Figure 15a shows the ACC performance with parameters α and f eature#. When
f eature# = 1500 and α > 10, the ACC performance is better. Figure 15b shows the NMI
decrease with parameter f eature# and NMI is not sensitive to α. Figure 15 indicates that
higher f eature# is not necessarily better for BlogCatalog data.
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(a) (b)

Figure 14. (a) ACC values of parameter α and parameter β for BlogCatalog data. (b) NMI values of
parameter α and parameter β for for BlogCatalog data.

(a) (b)

Figure 15. (a) ACC values of parameter α and parameter f eature# for BlogCatalog data. (b) NMI
values of parameter α and parameter f eature# for BlogCatalog data.

Figure 16 shows that β is sensitive to ACC and NMI, and f eature# is sensitive to
clustering performance. In Figure 16a, when f eature# ≥ 1500 and β ≥ 1, the ACC is better.
In Figure 16b, NMI increases with parameter β; when β ≥ 10, NMI has a greater value.

(a) (b)

Figure 16. (a) ACC values of parameter β and parameter f eature# for BlogCatalog data. (b) NMI
values of parameter β and parameter f eature# for BlogCatalog data.

Parameter sensitivity remains a challenging and unsolved problem in feature selection.
This experiment analyzes the sensitivity of parameters α, β, and f eature#. We performed
similar parameter sensitivity analyses for the data sources. The results show that MFSC is
almost insensitive to parameters α and β for ACC performance. This shows the importance
of capturing the multiview manifold structure embedded in the feature selection model.
However, the MFSC is sensitive to f eature#. This is because the network size affects the
number of feature selections.

4.7. Convergence Analysis

The convergence effects of the datasets are shown in Figure 17. In addition, the
convergence effect of the remaining data is similar. Based on the experimental results, the
convergence effect is relatively good. The objective function increases as the number of
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convergences increases and quickly reaches a constant convergence value regardless of the
initial objective value.

(a) (b) (c)

(d) (e)

Figure 17. MFSC convergence curves. (a) 3sources; (b) Cora; (c) CiteSeer; (d) BBCSport; (e) BlogCatalog.

5. Conclusions and Future Work

This study proposes a multiview clustering-guided feature selection algorithm for
multiview data, which integrates subspace learning and feature selection, and embeds the
norm of manifold regularization. This feature selection algorithm reduces the influence of
redundancy and the irrelevant matrix of the multiview data. In addition, clustering is used
as the standard for feature selection. This algorithm can perform feature selection to ensure
that the clustering structure remains unchanged. It is noteworthy that the complementary
contribution of each view is fully considered. The optimization process is calculated and
theoretically analyzed, and experiments are performed using a multiview dataset. It can be
concluded that the algorithm is effective and superior to many existing feature selection
algorithms or multiview clustering algorithms.

Although our method achieves good clustering performance, on the one hand, we
mainly consider social network data, while other types of multimodal data graph structures
are not considered. On the other hand, some parameters need to be manually adjusted.
Recently, deep learning has demonstrated excellent feature extraction capabilities in mul-
tiview data, such as images and natural languages. In the future, we will study how to
integrate deep learning and the MFSC model to process multiview data and accurately
describe semantic information.
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