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Abstract: This paper introduces a novel three-parameter invertible bimodal Gumbel distribution,
addressing the need for a versatile statistical tool capable of simultaneously modeling maximum and
minimum extremes in various fields such as hydrology, meteorology, finance, and insurance. Unlike
previous bimodal Gumbel distributions available in the literature, our proposed model features a
simple closed-form cumulative distribution function, enhancing its computational attractiveness and
applicability. This paper elucidates the behavior and advantages of the invertible bimodal Gumbel
distribution through detailed mathematical formulations, graphical illustrations, and exploration of
distributional characteristics. We illustrate using financial data to estimate Value at Risk (VaR) from
our suggested model, considering maximum and minimum blocks simultaneously.

Keywords: Gumbel distribution; bimodality; extreme value theory; value at risk

1. Introduction

Bimodal heavy-tailed distributions are powerful analytical tools for capturing the
complex nature of phenomena subject to extreme events in hydrology, meteorology, in-
surance, reliability, and finance, among other disciplines. Two main features characterize
it. Firstly, it exhibits bimodality, meaning it has two distinct peaks or modes, indicating
the presence of two prominent regimes within the overall data set. Secondly, it has heavy
tails, which means a higher likelihood of occurrences of extreme values than with light tails
distributions.

Bimodal heavy-tailed distributions are related to René Thom’s catastrophe theory,
focusing on systems characterized by sudden, dramatic changes and a propensity for
extreme events, e.g., [1,2]. Catastrophe theory deals with situations where small parameter
changes can lead to abrupt shifts in the system’s state. This concept aligns with bimodal
distributions, where a system may switch between two states or regimes. The heavy-tailed
aspect of these distributions reflects the likelihood of rare, extreme events, mirroring the
focus of catastrophe theory on significant, sudden changes. Both concepts encapsulate
the unpredictability and uncertainty inherent in the systems they describe. Catastrophe
theory provides a mathematical framework for understanding these dynamics, which can
manifest statistically as bimodal, heavy-tailed distributions. This connection is especially
relevant in economics and finance, where catastrophic shifts and heavy-tailed distributions
are frequently observed. Essentially, the interplay between these concepts helps us to
understand and model systems where small inputs or changes can lead to significant,
unpredictable, and often extreme outputs or shifts.

Unlike standard bimodal distributions, these heavy-tailed versions give significant
weight to extreme events, allowing for a more accurate representation of systems where
outliers or “black swans” play a critical role. For example, one can perform inference
over tails of financial returns by fitting an appropriate limiting distribution over data that
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exceeds a fixed threshold, where the dual peaks in such a distribution can indicate states
or types of behavior within the system [3]. In addition, typically, a bimodal distribution
exhibits higher entropy compared to an unimodal distribution because two distinct modes
add complexity and unpredictability to the system. In this way, the concept of entropy
dovetails nicely with its inherent complexities, providing a quantitative lens through which
to assess and strategize based on this kind of data.

Meanwhile, under certain conditions, statistics of extreme events are described by
theoretical distributions. For example, the Gumbel, also known as the extreme value
or Fisher–Tippet type I distribution, is a limiting distribution for the maximum (or the
minimum) of a sufficiently large simple random sample. This result arises from the Fisher–
Tippett–Gnedenko theorem, which states that the normalized maximum of a sequence
of such random samples converges to one of three types of extreme value distribution:
Gumbel, Fréchet, or Weibull. The Gumbel case is suitable for some typical families of
populational distributions, such as logistic, Gaussian, and gamma.

Nevertheless, practical situations demand more, and therefore we find several general-
izations of Gumbel to make it more flexible, for example, the two-component extreme value
distribution or mixture of two Gumbel distributions [4], the exponentiated Gumbel [5], the
transmuted extreme value [6], the generalized Gumbel [7], the generalized three-parameter
Gumbel [8], the beta-Gumbel [9], the Kumaraswamy-Gumbel [10], and the exponentiated
generalized Gumbel [11]. However, some lead to non-identifiable models because of obser-
vationally equivalent parameterizations [12]. There are other closely related models such
as the exponentiated Gumbel Type-2 [13], the Kumaraswamy generalized exponentiated
Gumbel type-2 [14], the bimodal generalized extreme value (GEV) [15], and a bimodal
Gumbel distribution applied to environmental data [16]. However, the disadvantage of the
latter model is that its cumulated distribution function does not have a simple closed form.

In this work, we put forward an invertible bimodal Gumbel distribution whose
cumulated distribution function has a simple closed form, making it more attractive for
computational procedures and more flexible in applications (Section 2). Our suggested
distribution allows us to model both maximum and minimum simultaneously, while the
classical Gumbel distribution describes only one of the extremes (maximum or minimum).

After discussing the maximum likelihood estimation of the parameters from simulated
data (Section 3), we illustrate our approach using two financial data sets to estimate
the value at risk (VaR) in Section 4. As we are interested in studying the probability
distribution’s tails, we perform the block maxima technique among the available tools
to find the appropriate cutoff. Instead of the usual power law distribution [3,17,18], we
suggest a bimodal Gumbel distribution as a candidate model to describe the tail behavior
of financial returns.

2. Main Results

Also known as type I extreme value distribution, the Gumbel distribution is one of the
limit distributions of normalized maximum (or minimum) statistics [19], belonging to the
class of the GEV distribution [20]. We denote the Gumbel random variable Y with a location
parameter µ ∈ R and a scale parameter σ > 0 as Y ∼ G(·; µ, σ). The forms of its probability
density function (PDF) and cumulative distribution function (CDF) are, respectively,

g(y; µ, σ) =
1
σ

exp
{
−
(y− µ

σ

)
− exp

[
−
(y− µ

σ

)]}
, ∀y ∈ R (1)

and

G(y; σ, µ) = exp
[
− exp

(
− y−µ

σ

)]
, ∀y ∈ R. (2)
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Let us introduce our suggested generalization of the Gumbel distribution left open
by [15] in the following way. Considering the transformation,

Tµ,δ(x) = x|x|δ + µ , x ∈ R, δ > −1, µ ∈ R, (3)

after plugging it into (1) and (2), we obtain the invertible bimodal Gumbel distribution X
with CDF and PDF given by, respectively,

FIBG(x; µ, σ, δ) = G
(
Tµ,δ(x); σ

)
= exp

{
− exp

[
− (x|x|δ) + µ

σ

]}
, x ∈ R (4)

and

fIBG(x; µ, σ, δ) =
1
σ
(δ + 1)|x|δ exp

{
−
( (x|x|δ) + µ

σ

)
− exp

[
− (x|x|δ) + µ

σ

]}
, (5)

where δ > 0 and µ ∈ R are shape parameters and σ > 0 is a scale parameter.
We shall denote it as X ∼ FIBG(·; µ, σ, δ) throughout this paper.
To illustrate the role of its parameters, Figure 1 depicts the effect of the shape parameter

δ. When δ = 0, the model (5) reduces to the unimodal Gumbel (1). The density becomes
bimodal for δ > 0, and the modes’ separation rises as δ increases. Figure 2 contrasts the PDF
shapes with negative and positive values of µ, illustrating its role as a location parameter
(left) or shape parameter (right). Finally, Figure 3 shows that σ remains the scale parameter.
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Figure 1. Density fIBG(x; 0, 1, δ), with δ ranging from −0.5 to 4. Bimodal distributions appear when
δ > 0, and we have the unimodal Gumbel if δ = 0.
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Figure 2. Density fIBG(·; µ, 1, δ), with µ ranging from − 0.5 to 2, δ = 0 or 1, and µ acting as a location
(a) or shape parameter (b).
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(a) X ∼ FGB(·; 0, σ, 0) (b) X ∼ FGB(·; 0, σ, 2)

Figure 3. Density fIBG(·; 0, σ, δ), with σ ranging from 1 to 4 and δ = 0 (unimodal, (a)) or 2 (bimodal,
(b)). In both cases, σ represents the scale parameter.

Some Distributional Characteristics

Modes 1. Straightforwardly from the concept of the modes of X ∼GB (·; µ, σ, δ), one can
find that they are the solution of the differential equation

T′′µ,δ(x)

[T′µ,δ(x)]2
=

1
σ
− e−

Tµ,δ(x)
σ

σ
, (6)

where

T′µ,δ(x) = (δ + 1)|x|δ (7)

and

T′′µ,δ(x) = sign(x) (δ + 1)δ|x|δ−1 , (8)

with sign(x) = x/|x| as the sign function.

Moments 2. We can write down the kth moment of X as

E(Xk) =
∫ ∞

−∞
xk fIBG(x)dx

=
∫ ∞

−∞
xkg(Tµ,δ(x), 0, µ)T′µ,δ(x)dx. (9)

By substitution y = T(x) and taking the inverse function T−1(y) = sgn(|y− µ|)|y− µ|
1

δ+1 ,
we can express (9) in terms of a unimodal Gumbel Y, as defined in (2) as

E(Xk) = E
(
|Y− µ|

k
δ+1 .I[µ,+∞)

)
+ (−1)kE

(
|Y− µ|

k
δ+1 .I(−∞,µ)

)
, (10)

where IA is the indicator function of an event A.

Moment-Generating Type Function 3. The moment-generating function (MGF) encapsu-
lates information about the distributional moments, being a helpful tool to characterize an
IBG random variable X. For our convenience, however, we consider its power transforma-
tion Xδ+1 and derive its MGF shown in (13) as follows. From its definition,

ϕX(t) = E(etXδ+1
) =

∫ ∞

−∞

etx1+δ

σ
e
−T(x)

σ e−e
−T(x)

σ T′(x)dx. (11)
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Considering the substitution y = e
−T(x)

σ and the expression T−1(ln y−σ) = sgn(| ln y−σ −
µ|)| ln y−σ − µ|

1
δ+1 , we can rewrite the integral (11) as being

ϕX(t) =
∫ e

µ
σ

0
et(−σ ln y−µ)e−ydy +

∫ ∞

e
µ
σ

e(−1)1+δt(µ+σ ln y)e−ydy

= e−tµ
∫ e

µ
σ

0
y−tσe−ydy + e(−1)1+δ(tµ)

∫ ∞

e
µ
σ

ytσ(−1)1+δ
e−ydy, (12)

that is,

ϕX(t) = e−tµΓ(1− tσ; e
µ
σ ) + etµ(−1)δ+1

γ(1 + (−1)δ+1tσ; e
µ
σ ), (13)

where

γ(a; x) =
∫ ∞

x
ta−1e−tdt and Γ(a; x) =

∫ x

0
ta−1e−tdt, (14)

are the upper and lower incomplete Gamma functions. Now, we can retrieve the moments
of Xδ+1 by taking derivatives of the cumulant-generating type function, CX = ln ϕX(t). As
usual, from the expansion ln z = (z− 1)− (z− 1)2/2 + (z− 1)3/3− . . . , we find

CX(t) = (E(etXδ+1
)− 1)− (E(etXδ+1

)− 1)2

2
+

(E(etXδ+1
)− 1)3

3
− . . . (15)

Thus, for example, we get the first two moments of Xδ+1 by taking the derivatives

d
dt

CX(t) |t=0 = E(Xδ+1) (16)

d2

dt2 CX(t) |t=0 = E(X2(δ+1))− [E(Xδ+1)]2..

To benchmark our result, if δ = 0, from (13) and (16), we find E(X) = σγ− µ and Var(X) =
σ2π2/6, because Γ(a; x) + γ(a; x) = Γ(a), where Ψ(x) = d ln(Γ(x))/dx = Γ′(x)/Γ(x),
Ψ(1) = γ is the Euler’s constant, and Ψ′(1) = π2

6 . Thus, we get the mean and variance of
the basic Gumbel model as expected, which confirms the accuracy of (13).

Quantiles 4. Sampling by the inverse transform is a basic method with which to generate
a pseudo-random variate of X, based on its quantile function of FIBG. While the bimodal
Gumbel model introduced previously by [16] does not provide a simple way to perform
this method, our suggested model (5) yields a simple expression for the quantile function.
Since X is an absolutely continuous random variable, denoting the cumulative probability
as the standard uniform random variable FIBG(xq; µ, σ, δ) = q ∼ U[0, 1], we obtain the
random quantile function as

Xq = F−1
IBG(q) =


(
−σ ln(− ln(q))− µ

) 1
1+δ , q > e−e−

µ
σ ,

−
(

µ + σ ln(− ln(q))
) 1

1+δ , q < e−e−
µ
σ .

(17)

Entropy 5. The differential entropy of the bimodal Gumbel distribution X ∼ FIBG(·; µ, σ, δ) =
G(Y(Tµ,δ(.), σ)), where Y ∼ G(., σ) denotes the basic Gumbel distribution, is given by
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H(X) = −
∫ ∞

−∞
f IBG(x; µ, σ, δ) ln[ f IBG(x; µ, σ, δ)]dx

=
∫ ∞

−∞
g(Tµ,δ(x); σ)

{
exp

[
−

Tµ,δ(x)
σ

]
+

Tµ,δ(x)
σ

+ ln

(
T′µ,δ(x)

σ

)}
T′µ,δ(x)

σ
dx

=
∫ ∞

−∞
g(Tµ,δ(x); σ) exp

[
−

Tµ,δ(x)
σ

]T′µ,δ(x)

σ
dx +

∫ ∞

−∞
g(Tµ,δ(x); σ)

Tµ,δ(x)
σ

T′µ,δ(x)

σ
dx

+
∫ ∞

−∞
g(Tµ,δ(x); σ) ln

(
T′µ,δ(x)

σ

)
T′µ,δ(x)

σ
dx, (18)

where g is the PDF of Y, as defined in (2). By substituting y = T(x) in (18), we obtain

H(X) =
1
σ

∫ ∞

−∞
exp

[
− y

σ

]
g(y)dy +

1
σ2

∫ ∞

−∞
yg(y)dy

+
1
σ

∫ ∞

−∞
ln
(

δ + 1
σ

)
g(y)dy +

1
σ

∫ ∞

−∞
ln
(
|y− µ|

δ
δ+1

)
dy

= 1 +
γ

σ
+ ln

(
δ + 1

σ

) 1
σ

+ ln
(

E|Y− µ|
δ

δ+1

)
. (19)

3. Parameter Estimation

This section discusses the maximum likelihood (ML) estimation method to estimate
the vector parameters Θ = (µ, σ, δ). Let x1, . . . , xn be realizations independent copies of a
random variable with PDF as defined in (5). The log-likelihood function is

l(Θ; x1, x2, . . . , xn) =
n

∑
i=1

ln f (xi; Θ)

= n ln(δ + 1)− n ln σ + δ
n

∑
i=1

ln |xi| −
∑n

i=1 xi|xi|δ + µ

σ
(20)

−
n

∑
i=1

e−
xi |xi |

δ+µ
σ .

This log-likelihood function is well-defined across the entire parameter space and is contin-
uous and differentiable for the vector parameters. Additionally, the family of distributions
FIBG is identifiable, meaning different parameters should lead to distinct probability distri-
butions, ensuring a unique maximum for the likelihood function.

Ahmad et al. (2010) [21] showed the identifiability of the finite mixture of Gum-
bel distributions; in particular, the family of a Gumbel component FG = {G : G =
G(., µ, σ) as (2)} is identifiable. Based on this, we have that the IBG family, FIBG = {FIBG :
FIBG(., µ, σ, δ) as (4)}, is identifiable. It must be proven that

FIBG(x; µ1, σ1, δ1) = FIBG(x; µ2, σ2, δ2) if and only if µ1 = µ2, σ1 = σ2, δ1 = δ2.

Indeed, from (4)

exp
{
− exp

[
− x|x|δ1 + µ1

σ1

]}
= exp

{
− exp

[
x|x|δ2 + µ2

σ2

]}
. (21)

Since FG is identifiable, then µ1 = µ2 and σ1 = σ2. Thus, the Equation (21) is valid if and
only if

|x|δ1 − |x|δ2 = 0,
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which only happens when δ1 = δ2, for any x ∈ R.
The ML estimates µ̂, σ̂, δ̂ are the solution of the system of likelihood equations

∂l(Θ; x)
∂µ

= −n
σ̂
+

1
σ̂

n

∑
i=1

e−
xi |xi |

δ̂+µ̂
σ̂ = 0; (22)

∂l(Θ; x)
∂σ

= −n
σ̂
−

n

∑
i=1

σ̂−2(xi|xi|δ̂ + µ̂)−
n

∑
i=1

σ̂−2(xi|xi|δ̂ + µ̂)e−(xi |xi |δ̂+µ̂)σ̂−1
= 0; (23)

∂l(Θ; x)
∂δ

= n
δ̂+1

+ ∑n
i=1 ln |xi| − 1

σ̂ ∑n
i=1 xi|xi|δ̂ ln ∑n

k=1 xk |xk |δ̂
σ̂

+e
µ̂
σ̂ ∑n

i=1 e−
xi |xi |

δ̂

σ̂

(∑n
j=1 xj |xj |δ̂

σ̂

)
ln ∑n

k=1 xk |xk |δ̂
σ̂ = 0. (24)

After algebraic manipulations, we get the unique closed-form solution for estimating µ,

µ̂ = σ̂ ln
∑n

i=1 e−
xi |xi |

δ̂

σ̂

n
. (25)

However, the estimates σ̂ and δ̂ must be obtained numerically.

Numerical Performance of ML Estimates

Now, we perform a Monte Carlo study to assess the performance of maximum likeli-
hood estimators µ̂, σ̂ and δ̂ in terms of their means, mean squared errors (MSE), biases, and
standard errors (SE). We defined a set of 9 parameter vectors, θ1, . . . , θ9, with µ ∈ {−1, 0, 1},
δ ∈ {0, 2, 4}, and σ = 1, for three sampling scenarios: n = 50, 100, and 1000. For each of
the 27 combinations between parameters and sample scenarios, we took 100 Monte Carlo
replications using the software R (version 3.4.1) to get the empirical sampling distributions
of µ̂, σ̂, and δ̂. We generate the Monte Carlo variates of X ∼ FGB(·; µ, σ, δ) through the
inverse transform method with the quantile Function (17).

Tables 1–3 depict the empirical expected values, bias, MSE, and SE of the ML estimators
of the IBG model. Figures 4–6 illustrate the empirical behavior of the MSE vs n. Overall,
the MSE decreases as the sample size increases, confirming the optimal properties of ML
estimators from the statistical inference theory. In this study, we did not face numerical
problems in estimating these parameters.

Table 1. Means, biases, mean squared errors (MSE), and standard errors (SE) of the estimated
parameters from 100 Monte Carlo replications of samples with n = 50.

θ True Mean Bias MSE SE

µ −1 −1.00952 −0.00952 0.02163 0.1475
θ1 σ 1 0.97492 −0.02507 0.02765 0.1653

δ 0 0.01114 0.01114 0.01554 0.1248
µ −1 −1.03142 −0.03142 0.03419 0.1831

θ2 σ 1 1.02366 0.02366 0.02592 0.1600
δ 2 2.05863 0.05863 0.12062 0.3440
µ −1 −0.99788 0.00211 0.02748 0.1666

θ3 σ 1 0.96513 −0.03486 0.02763 0.1634
δ 4 3.91971 −0.08028 0.34339 0.5834
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Table 1. Cont.

θ True Mean Bias MSE SE

µ 0 0.00145 0.00145 0.02113 0.1461
θ4 σ 1 0.99965 −0.00034 0.01646 0.1289

δ 0 0.03047 0.03047 0.01316 0.1111
µ 0 0.00339 0.00339 0.02363 0.1544

θ5 σ 1 1.00572 0.00572 0.01401 0.1188
δ 2 2.14749 0.14749 0.14933 0.3589
µ 0 −0.02841 −0.02841 0.02129 0.1438

θ6 σ 1 0.97091 −0.02908 0.01374 0.1141
δ 4 4.00093 0.00093 0.26488 0.5172
µ 1 0.95417 −0.04582 0.02859 0.1636

θ7 σ 1 0.98530 −0.01469 0.01918 0.1384
δ 0 0.00560 0.00560 0.01242 0.1118
µ 1 0.96207 −0.03792 0.02218 0.1447

θ8 σ 1 1.04081 0.04081 0.02338 0.1481
δ 2 2.10659 0.10659 0.17084 0.4013
µ 1 0.93990 −0.06009 0.05954 0.2376

θ9 σ 1 0.97762 −0.02237 0.12103 0.3489
δ 4 3.96419 −0.03580 0.91265 0.9594

Table 2. Means, biases, mean squared errors (MSE), and standard errors (SE) of the estimated
parameters from 100 Monte Carlo replications of samples with n = 100.

θ True Mean Bias MSE SE

µ −1 −0.98025 0.01974 0.01280 0.1120
θ1 σ 1 0.98180 −0.01819 0.01146 0.1060

δ 0 −0.00898 −0.00898 0.00780 0.0883
µ −1 −0.99734 0.00265 0.01532 0.1243

θ2 σ 1 0.99027 −0.00972 0.01188 0.1091
δ 2 2.01504 0.01504 0.06759 0.2608
µ −1 −0.99937 0.00062 0.01558 0.1254

θ3 σ 1 0.97695 −0.02304 0.01185 0.1069
δ 4 3.9113 −0.08860 0.13284 0.3553

θ4 µ 0 −0.02087 −0.02087 0.01232 0.1095
σ 1 0.99485 −0.00514 0.00724 0.0854
δ 0 0.02235 0.02235 0.00722 0.0824
µ 0 −0.01413 −0.01413 0.01182 0.1083

θ5 σ 1 0.98941 −0.01058 0.00694 0.0830
δ 2 2.06691 0.06691 0.07194 0.2610
µ 0 −0.00765 −0.00765 0.01211 0.1103

θ6 σ 1 0.99801 −0.00198 0.00713 0.0848
δ 4 4.05904 0.05904 0.16391 0.4025
µ 1 0.94706 −0.05293 0.01350 0.1039

θ7 σ 1 0.98666 −0.01333 0.00964 0.0977
δ 0 −0.02825 −0.0282 0.00588 0.0717
µ 1 0.96052 −0.03947 0.014831 0.1157

θ8 σ 1 1.01628 0.01628 0.01126 0.1053
δ 2 1.99650 −0.00349 0.06319 0.2526
µ 1 0.98981 −0.01018 0.01102 0.1050

θ9 σ 1 0.99397 −0.00602 0.00709 0.0844
δ 4 4.02093 0.02093 0.11929 0.3464
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Table 3. Means, biases, mean squared errors (MSE), and standard errors (SE) of the estimated
parameters from 100 Monte Carlo replications of samples with n = 1000.

θ True Mean Bias MSE SE

µ −1 −0.99837 0.00162 0.00149 0.0388
θ1 σ 1 0.99413 −0.00586 0.00104 0.0319

δ 0 −0.00209 −0.00209 0.00072 0.0269
µ −1 −0.99906 0.00093 0.00130 0.0362

θ2 σ 1 1.00507 0.00507 0.00088 0.0293
δ 2 2.01457 0.01457 0.00540 0.0724
µ −1 −0.99417 0.00582 0.00110 0.0328

θ3 σ 1 0.99574 −0.00425 0.00091 0.03016
δ 4 3.99378 −0.00621 0.01433 0.1201
µ 0 −0.00232 −0.00232 0.00134 0.0367

θ4 σ 1 1.00226 0.00226 0.00069 0.02643
δ 0 0.00303 0.00303 0.00076 0.0277
µ 0 −0.00322 −0.00322 0.00094 0.0307

θ5 σ 1 0.99633 −0.00366 0.00062 0.0248
δ 2 2.01715 0.01715 0.00587 0.0751
µ 0 −0.00824 −0.00824 0.00114 0.0330

θ6 σ 1 1.00379 0.00379 0.00065 0.0254
δ 4 4.01962 0.01962 0.01519 0.1223
µ 1 0.99310 −0.00689 0.00136 0.0365

θ7 σ 1 0.99649 −0.00350 0.00107 0.0327
δ 0 −0.00116 −0.00116 0.00080 0.0284
µ 1 0.95857 −0.04142 0.00253 0.0286

θ8 σ 1 0.99516 −0.00483 0.00104 0.0320
δ 2 1.96530 −0.03469 0.00929 0.0904
µ 1 0.99638 −0.00361 0.00133 0.0365

θ9 σ 1 1.00135 0.00135 0.00108 0.0330
δ 4 4.00819 0.00819 0.01701 0.1308
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Figure 4. MSE from Monte Carlo replications of samples with n ranging from 50 to 1000, for θ̂1, θ̂2,
and θ̂3.
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Figure 5. MSE behavior of θ̂4, θ̂5 and θ̂6. MSE from Monte Carlo replications of samples with n
ranging from 50 to 1000, for θ̂4, θ̂5, and θ̂6.
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Figure 6. MSE from Monte Carlo replications of samples with n ranging from 50 to 1000, for θ̂7, θ̂8,
and θ̂9.

4. Application

We use two financial data sets taken from https://finance.yahoo.com (accessed on
1 December 2021) to illustrate the applicability of the invertible bimodal Gumbel model.
The first is the daily stock prices of Petrobras (PETR4), quoted in US dollars, from 1 March
2000 to 10 January 2021, totaling 5, 465 observations. The other is the daily exchange rate of
the Brazilian real against the US dollar (USD/BRL) from 12 January 2003 to 15. October
2021, totaling 4, 223 data points. We aim to get the value-at-risk (VaR) of these data, a
common measure of financial risk. It denotes the maximum loss incurred on a portfolio
over a specific time horizon with a given confidence level 1− α [22]. It is expressed in
probabilistic terms as

VaRα(Xt) = inf{x ∈ R : F(x) ≥ α}, (26)

where F(x) is the cumulative distribution function (CDF) of a real random variable Xt
observed at time t ∈ {0, 1, 2, . . .}, and 0 < α < 1 is a small prespecified probability.
Particularly, in our study, the time horizon comprises the totality of data in each discrete
time series. Moreover, as Xt is an absolutely continuous random variable with an invertible
CDF, we can write

xα = VaRα(Xt) = F−1(1− α),

where F−1 denotes the inverse function of F, and xα is the α−quantile of Xt. As usual, Xt
means the log return of prices, that is,

Xt = ln Pt − ln Pt−1, (27)

where Pt is a price at time t.
Table 4 summarizes descriptive statistics for PETR4 and USD/BRL returns. The return

averages are close to zero, and the proximity between the absolute values of the first and
third quartiles indicates the possible symmetry of the data, except for the possible extreme
values suggested by the maximum (PETR4) and minimum (USD/BRL) statistics. Indeed,
Figures 7 and 8 depict extreme returns, some of them due to the COVID-19 event. In the
critical period of the pandemic, Petrobras shares plummeted 57% due to low demand for
petroleum products (Figure 7). As for the exchange rate USD/BRL, the effect was the
opposite: the American dollar became more expensive than the Brazilian real because
of various political and economic reasons. Furthermore, in these data sets, we observe
extreme positive (PETR4) and negative (USD/BRL) values that stand out significantly from
the rest of the observations.

https://finance.yahoo.com
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Table 4. Descriptive statistics.

Stock Minimum 1st
Quartile Median Mean 3rd

Quartile Maximum

PETR4 −0.3523667 −0.0137843 0.0000000 0.0003036 0.0138190 0.7203695
USD/BRL −0.3148314 −0.0056746 0.0000000 0.0001515 0.0060800 0.0966945
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Figure 7. PETR4 Prices (left) and PETR4 log returns (right).
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Figure 8. USD/BRL Prices (left) and USD/BRL log returns (right).

Now, we perform the block maxima and minima method to extract extreme values
from our data. Let X1, . . . Xn be a random sample of log returns following X ∼ FIBG. Based
on its realized values {xt}n

t=1, we organize it into T non-overlapping sub-samples of length
N, where T means the integer part of n/N, resulting in T data blocks of size N. We choose
N to cover natural periods (e.g., a week or month) so that the new sub-sample is IID. Now,
we take the maximum and the minimum over each N-history. We define the jth sub-sample
of maximum and minimum as

Mj = max{x(j−1)N+1, . . . , xjN}, (28)

and

mj = min{x(j−1)N+1, . . . , xjN}, (29)

for j = 1, . . . , T. This results in a new sample of size 2T, consisting of maxima and minima,

{Yt}2T
t=1 = {mt, Mt}T

t=1. (30)

For our case, N = 15 is a block length providing IID sub-samples based on the
Ljung–Box test for serial independence with a significance level of 5%. The left panels of
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Figures 9 and 10 depict the series of extreme PETR4 and USD/BRL returns extracted from
the blocks, while the left ones show the bimodal form of their distributions.

Thus, we fit these empirical distributions of extreme returns using our suggested
invertible bimodal Gumbel model, FIBG(x; θ), with parameters µ, σ, and δ. Table 5 shows
their maximum likelihood estimates. Figure 11 depicts the fitted model against the corre-
sponding distribution of the extracted extreme returns, indicating that the IBG is suitable
for simultaneously describing minima and maxima extreme returns.
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Figure 9. PETR4 sub-sample {Yt}70
t=1: Extremes obtained from the blocks (left) and histogram (right).
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Figure 10. USD/BRL sub-sample {Yt}70
t=1: Extremes obtained from the blocks (left) and his-

togram (right).

Figure 11. Histogram versus fitted distribution: PETR4 (left) and USD/BRL (right).

Finally, Table 6 presents the estimated VaR for α = 10%, 5%, and 1%. As we are
dealing with the logarithmic returns, to make these VaR values more understandable, we
may consider that the maximum return of the stock is exp VaR− 1. Thus, for example,
over a 15-day period, we do not expect a return greater than 7.4% for PETR4 and 2.6% for
USD/BRL with a confidence of 90%.
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Table 5. ML estimates of θ = (µ, σ, δ) and their respective standard error (SE).

Stock µ̂ σ̂ δ̂

PETR4 0.000009962 0.000089877 1.246255323
SE 0.0000071 0.0000003 0.0000083

USD/BRL 0.000016486 0.000099908 1.31295954
SE 0.0000007 0.0000001 0.0000027

Table 6. Estimated VaRα from (17).

Stock 10% 5% 1%
PETR4 0.07166153 0.07835825 0.09003984

USD/BRL 0.02594245 0.0295429 0.03612925

5. Conclusions

This paper introduced and examined the IBG distribution as an extension of the
classical Gumbel distribution. We addressed the limitations of the unimodal Gumbel by
proposing a model capable of simultaneously representing both maximum and minimum
extremes, enhancing its applicability and versatility. The mathematical formulations ac-
companied by illustrative figures elucidate the characteristics and behavior of the proposed
distribution, emphasizing its advantages in terms of computational efficiency and flex-
ibility. We presented its distributional properties, including mode, moment-generating
functions, and entropy. In our illustration, we performed the maximum and minimum
blocks technique to obtain serial independent data for the VaR estimation through the
ML method, offering a novel perspective on modeling extremes through the lens of the
invertible bimodal Gumbel distribution.
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