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Abstract: This work focuses on exploring the properties of past Tsallis entropy as it applies to order
statistics. The relationship between the past Tsallis entropy of an ordered variable in the context of
any continuous probability law and the past Tsallis entropy of the ordered variable resulting from a
uniform continuous probability law is worked out. For order statistics, this method offers important
insights into the characteristics and behavior of the dynamic Tsallis entropy, which is associated
with past events. In addition, we investigate how to find a bound for the new dynamic information
measure related to the lifetime unit under various conditions and whether it is monotonic with respect
to the time when the device is idle. By exploring these properties and also investigating the monotonic
behavior of the new dynamic information measure, we contribute to a broader understanding of
order statistics and related entropy quantities.

Keywords: order statistics; past Tsallis entropy; Shannon entropy; past lifetime; (n− i+1)-out-of-n structure

1. Introduction

The mathematical study of the storage, transmission, and quantification of information
is known as information theory. The field of applied mathematics lies at the intersection
of statistical mechanics, computer science, electrical engineering, probability theory, and
statistics. A foundational method for determining the level of uncertainty in random events
is provided by information theory. Its applications are many and are outlined in Shannon’s
influential work [1]. Entropy is an important parameter in information theory. The degree
of uncertainty regarding the value of a random variable or the outcome of a random process
is measured by entropy. For example, determining the outcome of a fair coin toss provides
less information (lower entropy and lower uncertainty) than determining the outcome
of a dice roll where six equally likely outcomes are obtained. Relative entropy, the error
exponent, mutual information, and channel capacity are some other important metrics in
information theory. Source coding, algorithmic complexity theory, algorithmic information
theory, and information-theoretic security are important subfields of information theory.

Applications of the basic concepts of information theory include channel coding/error
detection and correction and source coding/data compression. The development of the
Internet, the compact disk, the viability of cell phones, and the Voyager space missions
have all benefited greatly from its influence. Statistical inference, cryptography, neurobi-
ology, perception, linguistics, thermophysics, molecular dynamics, quantum computing,
black holes, information retrieval, intelligence, plagiarism detection, pattern recognition,
anomaly detection, and even the creation of art are other areas where the theory has
found application.

Probability theory and statistics form the basis of information theory, in which quan-
tifiable data is usually expressed in the form of bits. Information measures of distributions
associated with random variables are a frequent topic of discussion in information theory.
Entropy is a crucial metric that serves as the basis for numerous other measurements.
The information measure of a single random variable can be quantified thanks to entropy.
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Mutual information, which is defined as a measure of the joint information of two random
variables and can be used to characterize their correlation, is another helpful idea. The first
number sets a limit on the rate at which the data generated from independent samples with
the given distribution can be successfully compressed. It is a property of the probability
distribution of a random variable. The second number, which represents the maximum rate
of reliable communication over a noisy channel in the limiting case of long block lengths,
is a property of the joint distribution of two random variables when the joint distribution
determines the channel statistics.

When analyzing a random variable (rv) X that is non-negative and has a cumulative
distribution function (cdf) F(x), which is continuous, and a probability density function
(pdf) f (x), the Tsallis entropy of order α is an important measure, which is elucidated in [2]
as follows:

Hα(X) = kα

[∫ ∞

0
( f (x))αdx− 1

]
, (1)

where kα = 1/(1− α) with α > 0, α 6= 1. Note that Hα(X) = kα[E( f α−1(F−1(U)))− 1]
in which F−1(u) represents the right-continuous inverse of F and U is a random number
(according to the uniform distribution) from the unit interval. The Tsallis entropy can yield
nonpositive values in general, but appropriate choices of α can ensure non-negativity. It is
worth noting that as α approaches one, H(X) converges to the Shannon differential entropy
as E(− ln f (X)), thereby signifying an important relationship.

In situations involving the analysis of the random lifetime X of a newly introduced
system, Hα(X) is commonly used to quantify the unsureness inherent in a fresh unit.
Despite this, there are cases where operators know the age of the system. To be more
specific, assume that they are aware that the system has been in use during an interval time
with a length t. Then, they can calculate the amount of uncertainty in the residual lifetime
after t, i.e., Xt = [X− t | X > t], so that X stands for the original lifetime of the system. In
such cases, the conventional Tsallis entropy Hα(X) does not provide the desired insight.
Therefore, a novel quantity, the Tsallis entropy for the residual lifetime of the device of the
lifetime unit under consideration, is introduced to address this limitation as follows:

Hα(X; t) = kα

[∫ ∞

0
f α
t (x)dx− 1

]
= kα

[∫ ∞

t

(
f (x)
S(t)

)α

dx− 1
]

, (2)

in which ft(x) = f (x+t)
S(t) represents the pdf of Xt. The term S(t) corresponds to the reliability

function (rf) of X. The new dynamic information quantity takes into account the system’s
age and provides a more accurate measure of uncertainty in scenarios where this temporal
information is available. Several recent studies have contributed to the generalization of
the new measure, as discussed in Nanda and Paul [3], Rajesh and Sunoj [4], Toomaj and
Agh Atabay [5], and the references therein.

Uncertainty is a pervasive feature found in various systems in nature, which is in-
fluenced by future events and even past events. This has led to the development of an
interdependent concept of entropy that encapsulates the amount of uncertainty induced by
incidents in the past. The past entropy is different from the residual entropy, in which the
quantification of uncertainty is regarded to be influenced by events in the future. The study
of entropy for past events and the relevant applications that have arisen have been accom-
plished by many researchers. The works carried out by Di Crescenzo and Longobardi [6]
and Nair and Sunoj [7] have shed light on this topic. The research carried out by Gupta et
al. [8] on the aspects and use of past entropy for order statistics was helpful in this area. In
particular, they studied and performed stochastic comparisons between the entropy of the
remaining lifetime of a lifespan and the entropy of the past lifetime of the lifespan, where
the lifespan was quantified with respect to an ordered random variable.
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Consider an rv X and assume it signifies the system’s lifetime. The pdf of
Xt = [t − X|X < t] is ft(x) = f (t − x)/F(t), in which x ∈ (0, t). Now, the past Tsal-
lis entropy (PTE) as a function of t, the time of an observation of past failure of the system,
is recognized by (see, e.g., Kayid and Alshehri [9])

Hα(X; t) = kα

[∫ t

0
f α
t (x)dx− 1

]
, (3)

for every t ∈ (0,+∞). We emphasize that Hα(X; t) has a wide range of possible values,
from negative infinity to positive infinity. In the context of system failures, Hα(X; t) serves
as a metric to quantify the uncertainty related to the inactivity time of a system, especially
if it has experienced a failure at time t.

Extensive research has been conducted in the literature to explore Tsallis entropy’s nu-
merous characteristics and statistical uses. For detailed insights, we recommend the work of
Asadi et al. [10], Nanda and Paul [3], Zhang [11], Maasoumi [12], Abe [13], Asadi et al. [14],
and the sources provided in these works. These sources provide comprehensive discussions
on the topic and offer a deeper understanding of Tsallis entropy in various contexts.

In this paper, our main goal is to scrutinize the traits of PTE in terms of ordered
variables. We focus on X1, . . . , Xn, as n identical random variables, which are independent
and follow F. The order statistic refers to the ordering of these sample values in ascending
order so that Xi:n represents the ith ordered variable. These statistics have important roles
in various areas of probability and statistics, as they allow for the description of probability
distributions, the evaluation of the fit of data to certain models, the quality control of prod-
ucts or processes, the analysis of the reliability of systems or components, and numerous
other applications. For a thorough understanding of the theory and applications of order
statistics, we recommend the comprehensive review by David and Nagaraja [15]. The de-
gree of predictability of an ordered random variable is usually related to its distribution; the
entropy of this random variable can actually access this property. It is worth exploring the
quantification of information for ordered random variables, including order statistics as a
general class of statistics relevant to survival analysis and systems engineering. Aspects of
information for order statistics have garnered significant attention from researchers in the
literature. Several studies have explored various information properties associated with or-
der statistics. For instance, Wong and Chen [16] demonstrated that the discrepancy among
the mean entropy of ordered variables and the empirical entropy remains unchanged.
They further established that, for distributions which are symmetric, the entropy of ordered
variables exhibits symmetry around the median. Park [17] established some relations to ac-
quire the entropy of ordered variables. Ebrahimi et al. [18] studied the information features
of ordered random variables using Shannon entropy and the Kullback–Leibler distance.
Similarly, Abbasnejad and Arghami [19] and Baratpour and Khammar [20] obtained similar
results for the Renyi and Tsallis entropy of ordered random variables, respectively. Despite
these efforts, the Tsallis entropy of the past lifetime of ordered variables has not been
considered in literature thus far. It is commonly known that the past Tsallis entropy can be
used to measure the amount of information that can be gleaned from historical observations
in order to improve the forecasts of future events. This motivates us to investigate aspects
of the Tsallis entropy of the past lifetime distribution of order statistics. By building upon
existing research, our study aims to contribute significantly to this area by examining the
behaviors of past Tsallis entropy examples for ordered variables. By highlighting previ-
ous studies and emphasizing the gap in the literature regarding the investigation of past
Tsallis entropy examples in order statistics, we establish the significance and novelty of
our research.

The current work’s outcomes are organized as follows: In Section 2, we derive the
representation of PTE for order statistics denoted as Xi:n, which is arisen from a sample
taken from an arbitrary distribution recognized by cdf F. We express this PTE on the basis
of the PTE for ordered variables from a sample selected according to the law of uniform
probability. We derive upper and lower bounds to approximate the PTE, since equations
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with exact solutions for the PTE of order statistics are frequently unavailable for many
statistical models. We provide several illustrative examples to demonstrate the practicality
and usefulness of these bounds. In addition, we scrutinize the monotonicity of the PTE
for the extremum of a sample provided that some convenient conditions are satisfied. We
find that the PTEs of the extremum of a random sample exhibit monotonic behavior as the
sample’s number of individuals rises. However, we counter this observation by presenting
a counterexample that demonstrates the nonmonotonic behavior of PTE for Xi:n based on
n. To further analyze the monotonic behavior, we examine the PTE of order statistics Xi:n
with respect to the index of order statistics i. Our results show that the PTE of Xi:n does not
change monotonically with i.

“ In what follows in the paper, the notations “≤st” and “≤lr” will be used to indicate
the usual stochastic order and the likelihood ratio order, respectively. For a more detailed
discussion on definitions and properties of these stochastic orders, the reader can refer to
Shaked and Shanthikumar [21]. ”

2. Past Tsallis Entropy of Order Statistics

Here, we acquire an expression that relates the PTE of the ordinal statistic to the PTE of
an ordered random variable based on a set of values that are randomly generated according
to the law of uniform probability. Let us consider the pdf and the rf of Xi:n denoted as
fi:n(x) and Fi:n(x), respectively, where i = 1, . . . , n. We have the following relationships:

fi:n(x) =
1

B(i, n− i + 1)
(F(x))i−1(S(x))n−i f (x), x > 0, (4)

Fi:n(x) =
n

∑
k=i

(
n
k

)
(F(x))k(S(x))n−k, x > 0, (5)

in which B(a, b) represents the complete beta function (see [15] for more details). Addition-
ally, the cdf of Xi:n, i.e., the function Fi:n, is derived as

Fi:n(x) =
BF(x)(i, n− i + 1)

B(i, n− i + 1)
, (6)

where Bx(a, b) represents the lower incomplete beta function. Hereafter, we shall write
Y ∼ Bt(a, b) to specifiy that the rv Y follows a beta distribution truncated on [0, t], which
has density

fY(y) =
1

Bt(a, b)
ya−1(1− y)b−1, 0 ≤ y ≤ t. (7)

In our context, we are concerned with the analysis of Tsallis entropy, which is measured
by the cdf or pdf of the rv Xi:n. In this way, one quantifies the strength of the uncertainty
induced by [t− Xi:n|Xi:n ≤ t] in terms of how predictable the elapsed time since the failure
time of a system is. In the reliability literature, (n− i + 1)-out-of-n structures have proven
to be very useful for modeling the life lengths of typical systems. In such systems, the
functionality is guaranteed only if at least (n− i + 1) of the n units or constituents in the
system are operational. A system with separate component lifetimes is headed in this way.
Furthermore, a consistent distribution of the component lifetimes is assumed. The lifetime
of the components in the system is denoted by X1, X2, . . . , Xn. The lifetime of the system is
determined by the ordered rv Xi:n, where the value of i is the position of the order statistic.
When i = 1, this corresponds to a serial system, while i = n represents a parallel system.
In the context of (n− i + 1)-out-of-n structures that have experienced failures before time
t, the PTE of Xi:n serves as a measure of entropy associated with the past lifetimes of the
system. This dynamic entropy measure provides system designers with valuable insights
into the entropy of the lifetime of systems with (n− i + 1)-out-of-n structures operating at
a given time t.
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To increase the computational efficiency, we introduce a lemma that establishes the
relationship the PTE of ordered uniformly distributed rvs has with the beta function in
its imperfect form. From a practical perspective, this link is essential, since it makes
the computation of PTE easier. Since it only requires a few simple computations, the
demonstration of this lemma—which flows immediately from the definition of PTE—is not
included here.

Lemma 1. Suppose we have drawn a random sample of size n from (0, 1) according to the law of
uniform probability. Let we arrange the sample values in ascending order, where Ui:n is the ith order
statistic. Then,

Hα(Ui:n; t) =
1
ᾱ

[
Bt(αiᾱ, 1 + nα− iα)

Bα
t (i, 1 + n− i)

− 1
]

, 0 < t < 1,

for all α > 0, α 6= 1, with ᾱ = 1− α.

This lemma provides researchers and practitioners with a useful tool to work out
the PTE of the ordered variables of a sample adopted from uniform distribution. The
computation can be conveniently performed via the imperfect beta function. In Figure 1,
the plot of Hα(Ui : n; t) is exhibited for various amounts of α, where i takes the values
1, 2, · · · , 5, and the total number of observations is n = 5. The figure illustrates that there is
no inherent monotonic relationship between the order statistics. The next theorem shows
how the PTE of the order statistic Xi:n is related to the PTE of the order statistic calculated
for a uniform distribution.

−1.25

−1.00

−0.75

−0.50

−0.25

0.00 0.25 0.50 0.75 1.00
t

H
α(

X
i:n

, t
)

i = 1 i = 2 i = 3 i = 4 i = 5

α = 0.2

−200

−100

0

0.00 0.25 0.50 0.75 1.00
t

H
α(

U
i:n

, t
)

i = 1 i = 2 i = 3 i = 4 i = 5

α = 2

Figure 1. Amounts of Hα(Ui:n; t) for α = 0.2 (left console) and α = 2 (right console ) for various
choices of 0 < t < 1.

Theorem 1. The past Tsallis entropy of Xi:n, for all α ∈ (0,+∞), α 6= 1, can be expressed as
follows:

Hα(Xi:n; t) =
1
ᾱ

[
(ᾱHα(Ui:n; F(t)) + 1)E[ f α−1(F−1(Yi))]− 1

]
, t ∈ (0,+∞), (8)

so that Yi ∼ BF(x)(αi + ᾱ, 1 + α(n− i)).

Proof. Remember that kα = 1/(1− α). By making the change in variables as u = F(x),
based on the formulas given in (2), (4), and (6), we obtain:
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Hα(Xi:n; t) = kα

[∫ t

0

(
fi:n(x)
Si:n(t)

)α

dx− 1
]

= kα

[∫ t

0

(
Fi−1(x)Sn−i(x) f (x)

BF(t)(i, 1 + n− i)

)α

dx− 1

]

= kα

[
BF(t)(αi + ᾱ, 1 + α(n− i))

Bα
F(t)(i, n− i + 1)

∫ t

0

Fα(i−1)(x)Sα(n−i)(x) f α(x)
BF(t)(αi + ᾱ, 1 + α(n− i))

dx− 1

]

= kα

[
BF(t)(αi + ᾱ, 1 + α(n− i))

Bα
F(t)(i, 1 + n− i)

∫ F(t)

0

uα(i−1)(1− u)α(n−i) f α−1(F−1(u))
BF(t)(αi + ᾱ, 1 + α(n− i))

du− 1

]
= kα

[
(ᾱHα(Ui:n; F(t)) + 1)E[ f α−1(F−1(Yi))]− 1

]
, t > 0. (9)

The recent equality above is due to Lemma 1. This finalizes the proof.

1
ᾱ

∫ exp(−1/t)
0 xα(i−1)(1− x)α(n−i)(− log(x))α−1dx(∫ exp(−1/t)

0 xi−1(1− x)n−idx
)α dx− 1


Upon further calculation, it can be deduced that when the order α approaches unity

in Equation (8), the Shannon entropy of the ith ordered variable from a set of random
variables adopted from F can be expressed as follows:

H(Xi:n; t) = H(Ui:n; F(t))−E[ f (F−1(Yi))],

in which Yi ∼ BF(t)(i, n− i + 1). This specific result for t = ∞ has previously been derived
by Ebrahimi et al. [18]. Next, we establish a fundamental result concerning the problem of
monotonicity of the PTE of an rv X, provided that X fulfills the decreasing reversed hazard
rate (DRHR) trait. More precisely, we say that X possesses the DRHR if the reversed hazard
rate (rhr) function it has, i.e., the function τ(x) = d

dx ln(F(x)), decreases monotonically for
all x > 0.

Lemma 2. If Xi:n denotes the ith order statistic obtained from a sample following a DRHR distri-
bution, then Xi:n is also a DRHR.

Proof. We can express the rhr function of Xi:n as follows:

τi:n(t) =
fi:n(t)
Fi:n(t)

= h
(

F(t)
S(t)

)
τ(t), t > 0, (10)

where

h(x) =
xi

B(i, 1 + n− i)∑n
k=i (

n
k)xk , x > 0.

Under the assumption that X is a DRHR, according to Equation (10), the distribution of
Xi:n is a DRHR if, and only if, h(x) decreases in x > 0. Evidently, h(x) indeed decreases in
x, thus completing the proof.

We now demonstrate how the behavior of the new information measure is influenced
by the DRHR feature of X.

Theorem 2. If X induces the DRHR feature, then the Tsallis entropy Hα(Xi:n; t) increases in t for
every α ∈ (0,+∞).
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Proof. The DRHR trait of the distribution of X further induces that the distribution of
Xi:n also has the DRHR trait, as stated in Lemma 2. The proof is obtained directly using
Theorem 2 of the paper by Kayid et al. [9].

Using an example, we illustrate the application of Theorems 1 and 2.

Example 1. We contemplate a distribution with the cdf F(x) = x2 for x ∈ (0, 1) to be the
distribution of the components’ lifetimes. It is evident that f (F−1(u)) = 2

√
u for 0 < u < 1.

Using this information, we can derive the expression:

E[ f α−1(F−1(Yi))] =
2α−1Bt2(α(i− 1

2 ) +
1
2 , 1 + α(n− i))

Bt2(αi + ᾱ, 1 + α(n− i))
,

Furthermore, we can obtain:

Hα(Ui:n; F(t)) =
1
ᾱ

[
Bt2(αi + ᾱ, 1 + α(n− i))

Bα
t2(i, 1 + n− i)

− 1

]
.

Using Equation (8), we deduce that

Hα(Xi:n; t) =
1
ᾱ

[
2α−1Bt2(α(i− 1

2 ) +
1
2 , 1 + α(n− i))

Bα
t2(i, 1 + n− i)

− 1

]
, i = 1, 2, · · · , n. (11)

In Figure 2, we have plotted Hα(Xi:n; t) for various amounts of α with i = 1, · · · , 5 and
n = 5. It can be observed that the PTR increases with t, which aligns with the expectation
from Theorem 2.
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−0.75

−0.50

−0.25

0.00 0.25 0.50 0.75 1.00
t
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, t
)

i = 1 i = 2 i = 3 i = 4 i = 5

α = 0.2
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−400
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0
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t

H
α(

U
i:n

, t
)

i = 1 i = 2 i = 3 i = 4 i = 5

α = 2

Figure 2. The amounts of Hα(Xi:n; t) for α = 0.2 (left console) and α = 2 (right console) with regard
to t.

Unfortunately, convenient statements for the PTE of ordered rvs are not available in
some situations for many distributions. Given this limitation, we are motivated to explore
alternative approaches to characterizing the PTE of order statistics. We therefore propose
to establish thresholds for the PTE of order statistics. To this end, we present the following
theorem as a conclusive proof that provides valuable insight into the nature of these bounds
and their applicability in practical scenarios.
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Theorem 3. Consider a nonnegative rv X, which is continuous having pdf f and cdf F. Suppose we
haveM = f (m) < +∞, in which m plays the role of the mode of the underlying distribution with
density F such that f (x) ≤M. Then, for every α ∈ (0,+∞), we obtain

Hα(Xi:n; t) ≥ 1
ᾱ

[
((ᾱ)Hα(Ui:n; F(t)) + 1)Mα−1 − 1

]
.

Proof. Because for every α ∈ (1,+∞)(α ∈ (0, 1))), one has

f α−1(F−1(u)) ≤ (≥)Mα−1,

one can write
E[ f α−1(F−1(Yi))] ≤ (≥)Mα−1.

The desired conclusion now clearly follows from the use of (8). This concludes the proof of
the theorem.

The recent result introduces a boundary on the PTE of Xi:n, i.e., the function which is signified
by Hα(Xi:n; t). This limiting value is expressed via the PTE of the ordered variable of a set of
random variables selected according to the uniform probability law and, further, the mode of
the distribution under consideration, which is represented by m. This result yields a quantitative
measure of the lower bound of the PTE with regard to the distribution mode and offers intriguing
insights into the uncertainty features of Xi:n. Based on Theorem 4, we show the bound of the PTE
on the ordered rvs for a few standard and reputable distributions in Table 1.

Table 1. Lower bound on Hα(Xi:n; t) derived from Theorem 4.

pdf Bounds

f (x) = 2
π(1+x2)

, x > 0, ≥ 1
ᾱ

[
(1 + ᾱHα(Ui:n; F(t)))

(
2
π

)−ᾱ
− 1
]

f (x) = 2
σ
√

2π
e−(x−µ)2/2σ2

, x ∈ (µ,+∞), µ > 0, ≥ 1
ᾱ

[
(1 + ᾱHα(Ui:n; F(t)))

(
2

σ
√

2π

)−ᾱ
− 1
]

f (x) = λ
β e−

(x−µ)
β (1− e−

(x−µ)
β )λ−1, x ∈ (µ,+∞), µ > 0, ≥ 1

ᾱ

[
(1 + ᾱHα(Ui:n; F(t)))(β(1− 1

λ )
1−λ)ᾱ − 1

]
f (x) = bc

Γ(c) xc−1e−bx, x > 0, ≥ 1
1−α

[
(1 + ᾱHα(Ui:n; F(t)))( b(c−1)c−1e1−c

Γ(c) )−ᾱ − 1
]

The following result establishes an upper boundary condition for the new information
measure of the system with parallel structure with regard to the rhr of the distribution
under consideration.

Theorem 4. Let the distribution of X fulfill the DRHR trait. For α > 1, we have the inequality

Hα(Xn:n; t) ≤ α− τα−1(t)
α(α− 1)

,

in which τ(t) is the rhr of X, which is a decreasing function by assumption.

Proof. Since the distribution of X has a decreasing rhr function, thus Theorem 2 provides
that Hα(Xn:n; t) increases as t increases. Therefore, based on Theorem 3 of Kayid and
Alshehri [9], we have

Hα(Xn:n; t) ≤ kα
α− τα−1

n:n (t)
α

≤ kα
α− τα−1(t)

α
, t > 0,

in which kα = 1/(1− α). Since τn:n(t) = nτ(t) ≥ τ(t), the last inequality is easily obtained
for α > 1, and the proof is now complete.
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Next, we delve into the monotone behavior of the PTE of extreme order statistics with
components whose lifetimes are uniformly distributed.

Lemma 3. In a system with parallel (series) structure in which components have random lifetimes
following a uniform probability law, the PTE of the lifetime of the device is decreasing with respect
to the components’ number.

Proof. We give the proof when the system operates in parallel. Analogous reasoning can
be applied to a series system. Let us set two rvs Z1 and Zα with densities f1(z) and fα(z),
respectively, which are given by the following:

f1(z) =
zn−1∫ t

0 xn−1dx
and fα(z) =

zα(n−1)∫ t
0 xα(n−1)dx

, z ∈ (0, t).

Next, one obtains

ξn = Hα(Un:n; t) =
1
ᾱ

 ∫ t
0 xα(n−1)dx(∫ t
0 xn−1dx

)α − 1

, 0 < t < 1. (12)

Let us assume that n ∈ [1,+∞). Then, we suppose that the derivative of ξn with regard to
n is well defined. We have the following:

∂ξn

∂n
=

1
ᾱ

∂ςn

∂n
,

where

ςn =

∫ t
0 xα(n−1)dx(∫ t
0 xn−1dx

)α .

It is evident that for α ∈ (1,+∞)(α ∈ (0, 1)):

∂ςn

∂n
=

αA(t)
Bα(t)

(
E[ln(Zα)]−E[ln(Z1)]

)
≥ (≤)0, (13)

where

A(t) =
∫ t

0
xα(n−1)dx, and also B(t) =

∫ t

0
xn−1dx.

It is readily seen that for α ∈ (1,+∞)(α ∈ (0, 1)), it holds that Zα is greater (less) than
Z1 in usual stochastic order. Consequently, ln(z) increases as z grows; as an application
of Theorem 1.A.3. of [21], one has E[ln(Zα)] ≥ (≤)E[ln(Z1)]. Hence, (13) is positive
(negative), and as a result, ξn decreases as n grows. Consequently, it is deduced that
the PTE of the life length of a system with parallel units decreases as the number of
components increases.

A large class of distributions consists of those that have density functions that decrease
as the value increases. Some examples of these distributions are exponential, Pareto, and
mixtures of distributions, among others. There are also distributions that have density
functions that increase as the value increases like the power distribution. We will use the
result from the previous lemma to establish the next theorem by which distributions that
have density functions that are either increasing or decreasing are involved.

Theorem 5. Suppose that f is the pdf of the component’s lifetime in a parallel (series) system, and
let f be an increasing (a decreasing) function. Then, the PTE of the system’s lifetime decreases as
n grows.
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Proof. Assuming that Yn ∼ BF(t)(α(n− 1) + 1, 1), then fYn(y) indicates the density of Yn.
It is evident that

fYn+1(y)
fYn(y)

=
BF(t)(α(n− 1) + 1, 1)

BF(t)(αn + 1, 1)
yα, 0 < y < F(t),

increases as y grows. This in turn concludes that Yn is less than or equal to Yn+1 in likelihood
ratio order and, therefore, Yn is less than or equal to Yn+1 in usual stochastic order also. In
addition, α ∈ (1,+∞)(α ∈ (0, 1)), f−ᾱ(F−1(x)) increases (decreases)as x grows. Therefore,

E[ f α−1(F−1(Yn))] ≤ (≥)E[ f α−1(F−1(Yn+1)]. (14)

From Theorem 3, for α ∈ (1,+∞)(α ∈ (0, 1)), one obtains

1 + ᾱHα(Xn:n; t) = [1 + ᾱHα(Un:n; F(t))]E[ f−ᾱ(F−1(Yn))]

≤ (≥) [1 + ᾱHα(Un:n; F(t))]E[ f−ᾱ(F−1(Yn+1))]

≤ (≥) [1 + ᾱHα(Un+1:n+1; F(t))]E[ f−ᾱ(F−1(Yn+1))]

= 1 + ᾱHα(Xn+1:n+1; t).

The initial inequality is obtained by noting that 1+ ᾱHα(Un:n; F(t)) is nonnegative, whereas
the last one is due to Lemma 3(i). Thus, we deduce that Hα(Xn:n; t) ≥ Hα(Xn+1:n+1; t) for
all t ∈ (0,+∞).

The following example shows that this Theorem does not work for all kinds of systems
with an (n− i + 1)-out-of-n structure.

Example 2. We presume a system is operational when more than or equal to (n− 1) of
the n components in the system are in operation. It is then not difficult to observe that
the system’s random lifetime is X2:n. The components are assumed to have an identical
distribution, which is uniform on (0, 1). In Figure 3, we see how the PTE of X2:n changes
with n when α = 2 and t = 0.2. In fact, it is observed in the graph that the PTE of the system
does not always decrease as n increases. For example, it reveals that Hα(X2:2; 0.2) is less
than that of Hα(X2:n; 0.2) for n = 3, 4, . . . , 23.

−7

−6

−5

10 20 30
n

H
α(

U
2:

n,
 0

.2
)

Figure 3. The amounts of the PTE for several choices of n in a system with an (n − 1)-out-of-n
structure with an underlying uniform distribution and where α = 2 when t = 0.2.
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3. Conclusions

We investigated the idea of PTE for order statistics in this paper. A novel method
has been suggested by us to merge the PTE of ordered random variables belonging to
a continuous distribution set with the PTE of the ordered random variables belonging
to a set of random numbers selected from a uniform distribution. This relationship aids
in our comprehension of PTE’s characteristics and behavior for various distributions.
Additionally, because it is challenging to derive precise formulas for the PTE of order
statistics, we have discovered constraints that offer helpful approximations and enable
a deeper comprehension of their characteristics. The derived limits and bounds can be
applied to evaluate the PTE and compare its values in different situations from different
perspectives. In addition, we have investigated how the index of ordered random variables,
denoted by i, and the number of observations, denoted by n, affect PTE. In order to
corroborate our findings and show how our method is applicable, we included examples.
These illustrations showed the usefulness of PTE for ordered random variables and the
adaptability of our approach to various distributions. In short, the current work improves
the perception of PTE for ordered random variables by providing the connections this
quantity has with other measures, by obtaining bounds and exploring the effects of the
position of the ordered variable, and by determining the impact of the size of the sample
under consideration. The findings reported in this paper provide useful and profitable
intuitions for professionals engaged in the analysis of information measures and statistical
inferential procedures.
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