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Abstract: The advantages of using mutual information to evaluate the correlation between randomness
tests have recently been demonstrated. However, it has been pointed out that the high complexity of this
method limits its application in batteries with a greater number of tests. The main objective of this work
is to reduce the complexity of the method based on mutual information for analyzing the independence
between the statistical tests of randomness. The achieved complexity reduction is estimated theoretically
and verified experimentally. A variant of the original method is proposed by modifying the step in which
the significant values of the mutual information are determined. The correlation between the NIST battery
tests was studied, and it was concluded that the modifications to the method do not significantly affect the
ability to detect correlations. Due to the efficiency of the newly proposed method, its use is recommended
to analyze other batteries of tests.

Keywords: mutual information; complexity; PRNG; cryptography

1. Introduction

In cryptographic applications, sequences of random numbers are very important. One
of the widest-spread applications is the generation of secret keys. These sequences are
obtained using random number generators, which, depending on the source of randomness,
can be classified as pseudo-random number generators (PRNGs) or truly random number
generators (TRNGs). Some authors, such as [1], include a third group of generators
called hybrid random number generators (HRNGs). The HRNG combines elements of the
previous two generators.

According to [2], the best way to generate “unpredictable” random numbers is to use
physical processes, such as atmospheric or thermal noise, cosmic radiation, and some other
phenomena; however, number generation from physical processes is relatively inefficient
since TRNGs are expensive devices both in terms of execution and applicability. For this
reason, ref [3] states that most systems use PRNGs instead of TRNGs.

Weak RNGs have been identified as the cause of many security problems in computer
systems. A concrete case is exemplified by MIFARE Classic, an RFID radio frequency
identification) card manufactured by NXP Semiconductors that had a weak PRNG,
making it possible to attack their channel of supposedly secure communications [4].
Furthermore, ref [5] described pre-play and man-in-the-middle attacks that demonstrated
how, due to a weak RNG, a payment system could be abused. An explanation of how it
was possible to attack Taiwan’s national database of “Citizen Digital Certificates” was
presented in [6], where it was due to poor implementation of the TRNG in the
Office-certified Renesas AE45C1 v.01 smart card IC German Federal Information Security
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(BSI) [7]. These examples highlight the need for further analysis of RNG design and
implementation to mitigate the possibility of such attacks in the future.

Because PRNGs are based on deterministic algorithms, it is necessary to examine the
output to confirm its suitability for cryptographic applications. This output is statistically
analyzed by one or several randomness tests, and the results are evaluated to determine
whether the generator is random or not. The statistic associated with each statistical test
attempts to identify the presence or absence of a specific pattern. If the pattern is detected,
then the lack of randomness in the sequence can be inferred. There are many statistical
tests for randomness. The same test can even be applied multiple times with different
combinations of parameters [8].

Although some authors [9] recommend using multiple statistical randomness tests
to leverage each test’s strengths, applying too many tests may lead to overestimating
the properties of a PRNG. Thus, ref [10] suggest that two conceptually different tests
may evaluate the same characteristic of randomness and produce correlated results. In
addition, not only can the correlation between different randomness tests be studied, but
the same test with different parameters can be correlated. Therefore, correlation analysis
between randomness tests can also be used for parameter selection. In [11,12], the study of
correlations between tests using the Pearson correlation coefficient (CCP) was proposed;
however, this coefficient is not capable of detecting nonlinear correlations.

Results reported by [13] demonstrate the need for a greater variety of statistical tests.
In their work, they studied eight RNGs, and, in some cases, generators showed difficulties
in passing the tests of Alphabits, Rabbit, Small Crush, and Crush batteries, passing the tests
of Dieharder and SP800-22. As [13] points out, future batteries of statistical tests should
be thoroughly analyzed for possible correlations between their tests before publication.
Likewise, a continuous review of the new randomness tests must be carried out to ensure
their efficiency and statistical strength and integrate them into the batteries if they are not
correlated with the existing tests or are superior to them.

In [12,14], Pearson’s correlation coefficient was used to analyze correlations between
tests; however, [2,11] focused on the proportion of regions where p-values are less than
0.01. Then, ref [15] analyzed the dependencies between nine NIST tests and found the same
dependencies as [12]. Another approach proposed by [16] analyzed the difference between
p-values corresponding to two different tests and detected correlations according to the
distribution of that difference.

In [14], dependencies between some NIST tests were determined using the Pearson
correlation coefficient, and patterns were found in the evolution of these dependencies
according to specific factors, such as the length of the sequences analyzed by the tests.
In [17], a novel method was proposed to detect the correlation between statistical
randomness tests using mutual information for the first time. This measure was used to
examine the tests present in the NIST SP 800-22 battery, detecting new correlations.

Different articles have verified the effectiveness of mutual information in studying the
correlation between the randomness tests of different batteries. In [18], DieHarder, TufTest,
and SmallCrush batteries were studied, and in [19], the FIPS 140-2 battery was analyzed
using the method proposed in [17]. Mutual information can detect the correlations found by
Pearson correlation and new nonlinear dependencies between tests. In [20], the complexity
of the method proposed in [17] was estimated, and its high complexity was pointed out
as a disadvantage, which prevents testing batteries with more tests or longer sequences.
However, mutual information as a new measure of independence between randomness
tests represents a significant advance and an important piece for building a definitive test
battery [18].

The main objective of this work is to reduce the complexity of the method proposed
by [17], which we will call from now on MIRT-1 (Mutual Information to analyze Statistical
Randomness Test v1). The step in which the mutual information values corresponding
to significant correlations are determined is modified to achieve this. The complexity
reduction achieved with this modification is estimated theoretically and then confirmed
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experimentally. The efficiency of the new proposed method (MIRT-2) will be determined by
considering the complexity calculation. On the other hand, the efficacy will be measured
according to the number of correlations that it can detect compared to the MIRT-1 method.

2. Preliminaries
2.1. Mutual Information

Mutual information (MI) is an important measure of statistical correlation. It stands
out for its ability to detect the correlation between variables and possesses properties that
make it an ideal measure of stochastic dependence [21–24]. Unlike the Pearson correlation
coefficient (PCC), which only considers linear dependencies, or other correlation coefficients
that only detect monotonic dependencies, MI considers all correlations regardless of their
functional form.

The MI between two discrete random variables X and Y is defined as

MI(X, Y) = ∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
, (1)

where p(x, y) is the joint probability function of X and Y, and p(x) and p(y) are the marginal
probability distribution functions of X and Y, respectively. MI can also be defined in terms
of entropy as

MI(X, Y) = H(X) + H(Y)− H(X, Y), (2)

where H(X) and H(Y) are the marginal entropy of the variables X and Y, respectively, and
H(X, Y) is the joint entropy of both variables. For the case of continuous random variables,
the sums are replaced by integrals:

MI(X, Y) =
∫

Y

∫
X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
dxdy. (3)

More on the properties of entropy and mutual information for continuous variables
and their relationship to the discrete case can be found in [25].

2.2. Estimating Mutual Information

When the probability distributions are unknown, it is not possible to calculate the exact
value of MI(X, Y), so it is necessary to calculate a sample estimator M̂I(X, Y). Estimators
of the mutual information M̂I differ in estimating the probabilities of the marginal and
joint densities. Some of the estimators proposed in the literature use discretization [26,27],
kernels [28,29] or correlation integrals [30], k-nearest neighbors [31,32], B-splines [33], or
Gram–Charlier polynomial expansion [34].

One of the simplest estimators is the maximum-likelihood (ML) estimator (plug-in).
With this, entropy is estimated from the observed individual and joint frequencies. Since
there are no assumptions about the data distribution, the ML estimator is considered non-
parametric. Another of the estimators used is the James–Stein shrinkage estimator. The
approach of this estimator is considered semi-parametric because it has characteristics of
parametric and non-parametric methods [35]. A comprehensive comparison of estimators
can be found in [35,36].

According to [37], the most common mutual information estimator is the naive
equidistant binning estimator. This estimator considers each variable’s domain partition in
a finite number, n, of discrete intervals (equidistant partition). The number of intervals for
each variable is the same, so the parameter to optimize is the number of intervals to
discretize or, equivalently, the length of the interval. The binning process begins with
selecting the support interval, (a, b). Usually, this interval is constructed from the smallest
and largest values in the sample {x1, x2, . . . , xn}. Given the interval (a, b), a frequency
histogram is constructed from the number of points in each interval. The intervals, Bk, are
half-open, i.e., Bk = [tk, tk+1) for k = −∞, . . . ,−1, 0, 1, . . . , ∞, where the points tk satisfy
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that tk < tk+1. The width of each interval is denoted by hk = tk+1 − tk, and the number of
elements in the interval is denoted by vk. In this way, given the sample x1, x2, . . . , xn,
we have

vk =
n

∑
i=1

1xi∈Bk , (4)

where 1(·) is the indicator function. It is clear that vk ≥ 0 and ∑k vk = n. Generally,
the intervals are selected so they are of the same width, i.e., hk = h, ∀k. For equal-width
intervals, we define

h =
b− a

k
. (5)

Many researchers have attempted to determine the optimal value, k, of the intervals,
but these methods often rely on strong assumptions about the distribution of the data [38].
Depending on the distribution type and the analysis objective, different values of h can be
selected. Experimentation is usually necessary to determine the optimal width. Table 1
presents some of the most used rules for selecting k.

Table 1. Rules for selecting the number k of intervals for the discretization.

Rules k

Sturges [39] 1 + log2(n)
Cochran [40] b

√
n/5c

Rice [41] b2 3
√

nc
Cencov [42] b 3

√
nc

Bendat–Piersol [43] b1.87(n− 1)0.4c
Larson [44] 1 + b2.2 log2(n)c
Velleman [45] b2

√
nc if n ≤ 100

b10 log10(n)c if n > 100
Doane [46] 1 + log2(n) + log2

(
1 +

√
b1

σ
√

b1

)
Mosteller–Tukey [47] b

√
nc

Terrell–Scott [48] 3
√

2n
Ishikawa [49] 6 + bn/50c

In most cases, the number of bins to discretize is set to k = 10 [50]. This work will
discretize it in k = 10 intervals because it is the same approach used in [17] to design the
MIRT-1 method.

2.3. Distribution of Estimators

The ML estimator of mutual information M̂IML(X, Y) =ĤML(X) + ĤML(Y)−
ĤML(X, Y) has been extensively studied in the literature [51,52]. It is known from [51] that,
under certain conditions, such as finite alphabet size and MI > 0, the following holds:

√
n(M̂IML −MI)

σ̂
∼ N(0, 1). (6)

On the other hand, in [52,53], it was stated that

2nM̂IML ∼ χ2
(I−1)(J−1) (7)

where I and J are the sizes of the alphabets of X and Y, respectively.
In [17], the ML, Miller–Madow, James–Stein, and Schurmann–Grassberger estimators

were compared as the sample size increased. For the selection of the mutual information
estimator, two pairs of variables were used, one of independent variables (see Figure 1)
and the other of dependent variables (see Figure 2). It was concluded that, for more than
10,000 observations, the difference between the estimators is very small: 0.0074 for the pair
of independent variables and 0.0065 for the dependent ones. However, the James–Stein
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estimator (shrinkage) was selected since the mutual information took the value of 0 for the
independent variables, even for very small sample sizes.
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Figure 1. Comparison of mutual information estimators for a pair of independent tests [17]. 
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Figure 2. Comparison of mutual information estimators for a pair of correlated tests [17].

Although for this particular case, only these mutual information estimators are being
compared, a more comprehensive study of the entropy estimators can be found in [36]. The
entropy estimator James–Stein shrinkage used to calculate mutual information in [17] is
defined as

ĤSH = − ∑
x∈K

p̂SH
x log2 p̂SH

x (8)

where
p̂SH

x = λ̂tx + (1− λ̂) p̂ML
x (9)

with

λ̂ =
1−∑k

x=1( p̂ML
x )2

(n− 1)∑k
x=1(tx − p̂ML

x )2
(10)

and
tk =

1
k

(11)
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2.4. MIRT-1 Method

As the distribution of the shrinkage estimator of the mutual information is unknown,
a permutation test was performed to decide which values were significantly greater than 0.
A permutation test is a statistical method used to determine the significance of a particular
statistic by comparing it to a null distribution generated by randomly permuting the data.
In this case, the permutation test determines whether the mutual information between two
variables significantly differs from what would be expected by chance.

The null hypothesis (H0) is that there is no relationship between the two variables,
and any observed mutual information is due to chance. The alternative hypothesis (H1)
is that there is a significant relationship between the two variables, and the observed
mutual information is not due to chance. If the p-value is less than a predetermined
significance level, then the null hypothesis can be rejected in favor of the alternative
hypothesis, indicating that there is a significant relationship between the two variables.
The permutation test is applied following these steps:

1. Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be continuous random variables.
2. Construct the permuted samples

(
X, πi(Y)

)
, ∀i = 1, k in such a way that the possible

association between X and Y disappears, πi being the permutation i of elements of
Y, i.e.,

• πi ∈ Sn, ∀i = 1, k;
• πi 6= πj, for i 6= j;
• π0 is the identity of Sn.

3. Estimate the MI of the allowed samples to obtain {Zi}k
i=0, where Zi = MI(X, πi(Y)).

4. The p-value associated with the test is calculated by

p-value =

k
∑

j=1
I≥Z0(Zi)

k
, (12)

where I≥Z0(Zi) is the indicator function defined by

1≥Z0(x) =
{

1 if x ≥ Z0,
0 if x < Z0.

(13)

5. If p-value ≥ α, then the null hypothesis is not-rejected.

In [17], these steps were performed for each pair of random statistical tests, computing
q = 10, 000 permutations in each case.

The MIRT-1 method proposed in [17] is described in the following steps:

1. Select PRNGs.

– The selected generators must generate outputs that satisfy the randomness conditions.

2. Build the data samples using the selected generators.

– Generate n sequences of random numbers of length L to be evaluated using the
selected statistical randomness tests.

3. Evaluate each of the n sequences using the k statistical randomness tests to obtain the
corresponding p-values for each Ti test (with i = 1, . . . , k).

4. Compute the MI between sequences of p-values to detect the possible presence
of correlations.

– Estimate the MI between pairs (Ti, Tj) of sequences of p-values to detect the
presence of correlation.

– In the case of the MIRT-1 method, the estimator used is the shrinkage estimator.
– For a better interpretation in [17], the MI values were normalized, i.e.,

MI′(Ti, Tj) =
IM(Ti, Tj)

H(Ti)
, where H(Ti) represents the entropy of the variable Ti.
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5. Determine the significant correlations to conclude the correlation between the tests
using the permutation test. The MI values are grouped in a triangular matrix

M =


H(T1) MI(T1, T2) . . . MI(T1, Tk)

0 H(T2) . . . MI(T2, Tk)
...

...
. . .

...
0 0 . . . H(Tk)


k×k

where MI(Ti, Tj) represents the MI between i and j. The diagonal of the matrix
contains the values H(Ti) that represent the entropy of the variable Ti.

The complexity of the MIRT-1 method is estimated in [20] using the following:

O(k2 · q(n + d2)), (14)

where k represents the number of statistical tests to be analyzed, q is the number of
permutations to determine the significance of the correlations, n is the length of the
sequences of p-values analyzed, and d is the number of intervals in the discretization
process. In practical applications, it is of interest to increase k, and the parameter d is
selected in such a way as to increase the effectiveness of detection. Therefore, the feasible
parameters to reduce are q and n, but the reduction in n can affect the effectiveness of the
estimator, so, in this work, we will focus on reducing the value q.

3. Reducing the Complexity of the Method Based on Mutual Information to Analyze
the Independence between the Statistical Tests of Randomness

This section presents the main contribution of this work: significantly reducing the
complexity of the MIRT-1 method.

3.1. Solution Idea

To reduce complexity, it is proposed to eliminate the permutation test, which poses
a new problem. In Step 5 of the MIRT-1 method, deciding which values of the mutual
information are significant is necessary to conclude the correlation between the tests. Given
the continuous random variables X and Y, decide if the value MI(X, Y) is significantly
greater than 0, and thus conclude if there is some dependency between both variables. The
hypothesis test asks the following:{

H0 : MI(X, Y) = 0
H1 : MI(X, Y) > 0

, (15)

where H0 is the null hypothesis that states the independence between X and Y, and H1 is
the alternative hypothesis, where there would be some association between X and Y.

To determine the significant values without using the permutation test, we propose to
replace the James–Stein (shrinkage)-type estimator M̂ISH , whose distribution is unknown,
with another estimator of mutual information whose distribution is known. The mean
square error of the new estimator should be reasonably small for the selected sample
size. In this paper, we will use a maximum-likelihood estimator transformation M̂IML
whose distribution is known [51,52]. It is known that the maximum-likelihood estimator of
entropy is normally distributed [54] asymptotically with mean

E(ĤML − H) = − k− 1
2n

+
1

12n2

(
1−

k

∑
i=1

1
pi

)
+ O(n−3), (16)

and variance,

σ2(ĤML) =
1
n

(
k

∑
i=1

pi ln2(pi)− H2

)
+

k− 1
2n2 + O(n−3). (17)
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The mean can be calculated if the order n2 is neglected. However, for the case of
the variance, the terms of order n depend on the unknown probabilities. Therefore, the
transformation of Equation (7) will be used since the mean and variance are known, and
it is known that the normal distributes asymptotically when the number of degrees of
freedom is greater than 30.

3.2. Selection of the Critical Value to Determine the Significant Correlations

To decide whether to reject the null hypothesis of independence between (Ti, Tj) in
the new variant of the method, a priori knowledge of the distribution of the transformation
2nM̂IML(Ti, Tj) of estimator M̂IML will be used. The transformation 2nM̂IML(Ti, Tj)

distributes χ2 (Equation (7)). For our case, I = J = d is the number of discretization
intervals. Then,

2nM̂IML(Ti, Tj) ∼ χ2
(d−1)2 . (18)

To guarantee that the χ2 distribution of 2nM̂IML(Ti, Tj) approximates the normal
distribution, the condition (d− 1)2 > 30 will be imposed on d, which implies that d >
1 +
√

30 = 6.48, concluding that, for values of d > 6.48, we have

2nM̂IML(Ti, Tj) ∼ N
(
(d− 1)2,

√
2(d− 1)

)
. (19)

For the particular case of study, if we discretize d = 10 > 6.48 intervals, we obtain
(d − 1)2 = (9)2 = 81 � 30, which guarantees that the theoretical distribution of
2nM̂IML(Ti, Tj) closely approximates the normal distribution (Equation (19)). Using this
theoretical distribution, the critical value corresponding to the α prefix can be taken, and
therefore it is unnecessary to use the permutation test.

For the sampling distribution of 2nM̂IML(Ti, Tj) to be close to its theoretical normal
distribution, it is convenient that the length n of the sequence of p-values is big enough. So,

ZML =
2nM̂IML(Ti, Tj)− (d− 1)2

√
2(d− 1)

∼ N(0, 1) (20)

distributes the normal asymptotically when (d− 1)2 � 30. For an α significance level, the
critical value for the right tail is Z1−α. Therefore, if the estimated values of ZML are greater
than the critical value, it can be concluded that there is a correlation between Ti and Tj with
probability α that they are independent. For example, for α = 0.01, if ZML > Z1−0.01 = 2.36,
it is concluded that the value ZML is significant.

3.3. Method Modification Proposal

From Step 1 to Step 3, the MIRT-1 method remains unchanged. In Step 4, in [17], the
shrinkage estimator M̂ISH was used, while now it is proposed to use the ML estimator
ÎMML. In Step 5, in [17], the values of M̂ISH were normalized. A permutation test was
applied; on the other hand, in this new method used to determine the significant values of
M̂IML, the transformation ZML is computed, and knowledge of the normal distribution of
ZML will be used.

The application of the new MIRT-2 method from this modification is as follows (the
steps that changed concerning MIRT-1 are indicated in bold):

1. Select PRNGs.

– The selected generators must generate outputs that satisfy the randomness
conditions.

2. Build the data samples using the selected generators.

– Generate n sequences of random numbers of length L to be evaluated using the
selected statistical tests of randomness.
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3. Evaluate each of the n sequences using the k statistical tests of randomness to obtain
the corresponding p-values for each Ti test (with i = 1, . . . , k).

4. Compute the MI between sequences of p-values to detect the presence of correlations.

– Calculate the MI between pairs (Ti, Tj) of sequences of p-values to detect the
presence of correlation.

– The MI estimator used is the ML M̂IML

5. Calculate ZML and compare it with the critical value associated with the default α

value. If ẐML > Z1−α, the null hypothesis of independence between the tests of
randomness is rejected.

Table 2 summarizes the parameters chosen for the MIRT-1 and MIRT-2 methods.

Table 2. Parameters used for the MIRT-1 and MIRT-2 methods.

Method MIRT-1 MIRT-2

Distribution of the
p-values

U(0,1) U(0,1)

MI estimator shrinkage (SH) maximum-likelihood (ML)

Discretization k = 10 k = 10

Selection of
significant values

Comparison with the
critical value obtained

by the permutation test.

Comparison with
the critical value

of the normal distribution
for the α prefix.

The complexity of the MIRT-1 method was calculated in [20]

O(k2 · q(n + d2)). (21)

The modification proposed in this paper reduces it to

O(k2(n + d2)), (22)

since not applying the permutations test is equivalent to taking q = 1. The reduction
achieved is of the order

k2 · q(n + d2)

k2(n + d2)
= q, (23)

so the modified method is expected to be about q-times faster. For example, in [17,20],
q = 10,000 was used; for this case, the MIRT-2 method would have a complexity
10,000 times lower than MIRT-1.

The replacement of the shrinkage estimator M̂ISH of mutual information used in the
MIRT-1 method with the maximum-likelihood estimator M̂IML allows complexity to be
reduced since the permutation test is eliminated and the known distribution of the new
estimator is used to set the critical value and select the significant values. This modification
could affect the ability to detect correlations if appropriate measures are not taken. To
avoid this impact, it is proposed to apply the MIRT-2 method with a sample size equal to
10 000, and it is recommended not to reduce this value while this M̂IML estimator is used.
This recommendation is based on the results of Figure 2 of [17] since, for this sample size,
the difference between the values of the estimators is very small and the ability to detect
correlations is not affected.

4. Experimental Validation

In this section, the reduction in the complexity of MIRT-2 to MIRT-1 will be verified
experimentally.
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4.1. Experimental Check of Normality of ZML
4.1.1. Design of Experiment 1

For random sequences, the p-values generated by statistical randomness tests follow a
uniform distribution with values between 0 and 1 [9]. For this reason, the experiments
generated data that followed the same distribution. To study the normality of the
transformation ZML and the pairs (Xi, Yi) , i = 1, . . . , 1 000 of independent and identically
distributed random variables, where X, Y ∼ U(0, 1) , X = {x1, x2, ..., x10,000} and
Y = {y1, y2, ..., y10,000}. Subsequently, the MI between the pairs was calculated using the ML
estimator, and 1000 M̂IML observations were obtained. The MI values were transformed
using Equation (20) to obtain a sample of 1000 ZML values. The Anderson–Darling and
Kolmogorov–Smirnov tests were applied to verify the normality of ZML.

4.1.2. Results

Table 3 shows p-values for the Anderson–Darling and Kolmogorov–Smirnov
normality tests.

Table 3. Tests for normality for the values of ZML.

Normality Test p-Value

Anderson–Darling A = 0.47518 0.2395
Kolmogorov–Smirnov D = 0.019679 0.8334

For all cases, the p-value > 0.05; therefore, there is insufficient evidence to reject the
null hypothesis of normality. In Figure 3, a histogram with the values of ZML and the
estimate of the kernel density (KDE) of the sample data (black) and the curve of normal
density (blue) can be observed. The blue line represents the theoretical normal probability
density function, while the black curve represents a smoothed density estimate using a
kernel density estimation technique.

In the Q-Q graph of Figure 4, it can be seen that the observed values are close to the
expected ones. Through normality tests, it was possible to verify experimentally that the
transformation ZML follows a normal distribution under the theoretical argumentation
presented in Section 3.2. The red line in the Q-Q plot graph represents the theoretical
quantiles of a standard normal distribution, and it serves as a reference line for comparing
the distribution of the plotted data to the normal distribution.

Figure 3. Sampling distribution of the 1000 observations of ZML obtained from pairs (Xi, Yi).
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Figure 4. Quantile plot of the 1000 observations of ZML obtained from pairs (Xi, Yi).

4.2. Analysis of the Effectiveness of the Proposed Variant
4.2.1. Design of Experiment 2

Based on the idea of the previous section, the MI between the NIST statistical
randomness tests was calculated using the MIRT-2 method. For this, the ML estimator was
used, and the symmetric matrix of dimension 17× 17 was obtained with the values of the
MI. It is important to highlight that for selecting the p-values, the approach proposed
by [20] was followed. All sequences that did not comply with the requirement were
discarded. There was a required number of cycles for the random excursions and random
excursions variant tests, thus generating p-values equal to 0. Under the standard normal
distribution and the independence assumption, a significance level α = 0.001 corresponds
to a critical value CV = 3.090232. Therefore, if ZML > 3.09, the null hypothesis of
independence is rejected. Following Step 5 of the MIRT-2 method, those greater than the
critical value were selected as significant values of the ZML.

4.2.2. Results

In Figure 5, the histogram is represented with the k(k − 1)/2 = 136 observations
of ZML for the values of the mutual information between the pairs of statistical tests of
randomness. High values of ZML (greater than 300) are seen on the right, indicating
possible correlations between test pairs. In Figures 5 and 6, the dotted line represents the
critical value selected for the MI.

Figure 5. Distribution of the 136 observations of ZML for values between 0 and 1000.
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In Figure 6, only the observations of ZML are represented for the values between 0 and
6. It can be noted that the values of ZML smaller than the critical value behave following a
normal distribution, as expected under the independence hypothesis.

Figure 6. Distribution of ZML observations for values between 0 and 6.

Figure 7 shows the mutual information matrix with the significant values for the
selected critical value. The values of ZML greater than CV = 3.09 are indicated in red.

Table 4 compares the correlations detected by the two variants. The paper presented
by [17] did not consider the pre-processing of invalid sequences for the random excursions
and random excursions variant tests. For this reason, the correlations detected with
the MIRT-1 method in [20] and the new MIRT-2 variant proposed in this article will
be compared.

The correlation between the CUSUM (b) and non-overlapping template tests was not
detected by the new MIRT-2 method, indicating that the new variant for this case loses
efficacy concerning MIRT-1. This may be due to substituting the shrinkage estimator for
the ML. However, according to what was expressed in [20], this correlation is quite small,
so its detection may be due to an error or not easy to detect.

Table 4. Comparison of the correlations detected by the MIRT-1 and MIRT-2 methods.

MIRT-1 MIRT-2

App. Ent. ≈Serial 1 ≈Serial 1

CUSUM (f) ≈CUSUM (b)
≈Frequency

≈CUSUM(b)
≈Frequency

CUSUM (b) ≈Frequency
≈Non-Overlapping ≈Frequency

Long. Run ≈Overlapping ≈Overlapping

Random Ex. ≈Random Ex. Variant ≈Random Ex. Variant

Serial 1 ≈Serial 2 ≈Serial 2
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Figure 7. Mutual information matrix with the values of ZML between the pairs of statistical tests for
randomness.

4.2.3. Design of Experiment 3

To verify the reduction in complexity of the new variant of the method concerning
MIRT-1, the experiments presented in [17] were repeated. The methods were implemented
in R using the entropy library in a computer running Windows 10 (64-bit) operating system,
Intel Core i7-3770 3.40 GHz CPU, and 32 GB RAM. The MI with the two versions, MIRT-1
and MIRT-2, was calculated, and the times were compared. This experiment was repeated
ten times. Results are shown in Table 5.

Table 5. Execution time in seconds of the methods for ten experiments.

Execution MIRT-1 MIRT-2 Quotient

1 6249.36 0.33 18,937.45
2 6230.96 0.29 21,486.07
3 6250.03 0.3 20,833.43
4 6238.48 0.31 20,124.13
5 6240.17 0.41 15,219.93
6 6234.23 0.31 20,110.42
7 6236.86 0.29 21,506.41
8 6244.91 0.30 20,816.37
9 6241.02 0.30 20,803.40
10 6246.43 0.42 14,872.45

µ 6241.245 0.326 19,144.92

σ 40.713 0.002 17,415.26

As seen in Table 5, the times were reduced on average 19,444-fold approximately,
where 19,444 > q = 10,000. It can be seen that the reduction in time observed in practice
is even greater than the expected theoretical reduction.
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The times for detection of correlations between the 17 tests of the NIST battery with
sequences of p-values of length 10,000 decreased from approximately 1.7 h to less than 1 s
(see Figure 8).

Figure 8. Representation of the execution time of the methods for ten experiments.

4.3. Analysis of the Consistency and Stability of the MIRT-2 Method

In this section, a detailed analysis of the consistency of the method MIRT-2 and MIRT-1
and the stability of MIRT-2 will be carried out.

4.3.1. Consistency

To analyze the consistency of the estimators M̂IML and M̂ISH of mutual information,
a Bland–Altman test was performed. The Bland–Altman test is a statistical method used
to assess the agreement between two measurement methods. In this case, the experiment
aimed to check the consistency between the estimators M̂IML and M̂ISH .

To perform the Bland–Altman test, the following steps were taken:

1. Generate 10,000 samples of independent and identically distributed random
variables U(0, 1).

2. Calculate the mutual information using both M̂IML and M̂ISH estimators for each sample.
3. Calculate the mean and difference between the two methods for each sample. To

check the assumptions of normality of the differences, a test for normal distribution,
such as the Shapiro–Wilk or Kolmogorov–Smirnov test, can be conducted for the
hypothesis that the distribution of the observations in the sample is normal (Figure 9))
(if p < 0.05, then reject normality).

4. Calculate the mean difference and the LOAs (limits of agreement) (mean difference
±1.96 times the standard deviation of the differences.)

5. Interpret the results. If the mean difference is close to zero and the limits of agreement
are narrow, then the two methods are considered to be in good agreement.

If the mean difference is close to zero and the LOA is narrow, it suggests that the two
methods are consistent and can be used interchangeably. On the other hand, if the mean
difference is far from zero and/or the LOA is wide, it suggests that the two methods are
inconsistent and cannot be used interchangeably.

In this case, the test was performed on 10,000 comparisons of the two estimators.
The main measures are summarized in Table 6, resulting in a bias of 0.001768216 and a
standard deviation of bias of 0.0002812867. The upper and lower LOAs were calculated to
be 0.002319538 and 0.001216894, respectively.
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Figure 9. Distribution of the differences in the estimators M̂IML and M̂ISH .

Table 6. Bland–Altman test measurements.

Bias 0.001768216
The standard deviation of bias 0.0002812867

Upper LOA 0.002319538
Lower LOA 0.001216894

Mean of differences/means 202.4483

The bias is within the LOA, indicating that there is no significant difference between
the two measures. However, the bias is not zero, indicating that there is some systematic
difference between the two measures. The upper and lower LOAs are relatively narrow
(Figure 10), indicating good agreement between the two measures.

Overall, the results of the Bland–Altman test suggest that the two measures being
compared are in good agreement, with a small systematic difference between them.

Figure 10. Bland–Altman plot for comparison of the estimators M̂IML and M̂ISH .

4.3.2. Stability

To assess the stability of this estimator, a stability test was carried out using a bootstrap
test with 10,000 repetitions.
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The hypothesis being tested is that the M̂IML estimator is stable, producing consistent
results when applied to different data samples. The null hypothesis is that the M̂IML
estimator is unstable, producing inconsistent results when applied to different data samples.

To perform the bootstrap test, multiple data samples were randomly selected with
replacements from the original dataset. The M̂IML estimator was applied to each sample,
and the resulting mutual information values were recorded. This process was repeated
10,000 times to generate a distribution of mutual information values.

This was carried out for each dataset of each of the NIST statistical tests. The results
showed that of the seven correlations detected with the original data, after carrying out
the bootstrap test, six correlations were maintained (Figure 11). It can be concluded that,
in general, the MIRT-2 method presents good stability. It would be necessary to study in
depth the reason why the correlation between the overlapping and longest run tests did
not remain stable.

Figure 11. Matrix to illustrate the stability of the MI estimator M̂IML.

5. Conclusions

In this work, we reduced the complexity of the MIRT-1 method proposed by [17] q-fold by
modifying the selection criteria for significant values. The complexity reduction was estimated
theoretically and confirmed through experimentation. In addition, it was concluded that this
modification does not significantly affect the method’s effectiveness in detecting correlations.
Therefore, it was proposed for this modification to be implemented in future applications of the
MIRT-1 method to enhance its efficiency. As directions for future work, it is recommended to
apply the MIRT-2 method to analyze the correlation in other batteries of statistical tests, such
as the batteries analyzed in [18,19], with the MIRT-1 method. Some of the batteries that can
be studied are ENT, FIPS 140-2, DieHarder, TufTests, and TestU01. On the other hand, it is
proposed to continue reducing the complexity of the MIRT-2 method by reducing the value
of n. Although it is important to note that reducing n may increase the mean square error of
the M̂IML estimator used in MIRT-2, this causes a decrease in the method’s effectiveness. The
challenge is to reduce n and complexity without losing effectiveness.
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