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Abstract: This paper is about Dirichlet averages in the matrix-variate case or averages of functions
over the Dirichlet measure in the complex domain. The classical power mean contains the harmonic
mean, arithmetic mean and geometric mean (Hardy, Littlewood and Polya), which is generalized to
the y-mean by de Finetti and hypergeometric mean by Carlson; see the references herein. Carlson’s
hypergeometric mean averages a scalar function over a real scalar variable type-1 Dirichlet measure,
which is known in the current literature as the Dirichlet average of that function. The idea is
examined when there is a type-1 or type-2 Dirichlet density in the complex domain. Averages of
several functions are computed in such Dirichlet densities in the complex domain. Dirichlet measures
are defined when the matrices are Hermitian positive definite. Some applications are also discussed.

Keywords: Dirichlet average; generalized type-1; type-2 Dirichlet measures; functions of matrix
argument; Dirichlet measures in the complex domain
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1. Introduction

Dirichlet averages are a type of weighted average used in mathematics and statis-
tics. Given a function f (x) and a probability distribution p(x) defined over a domain D,
the Dirichlet average of f (x) over D with respect to p(x) is defined as:

〈 f 〉p =
1
|D|

∫
D

f (x)p(x)dx,

where |D| is the measure of the domain D. Intuitively, the Dirichlet average is the average
value of f (x) weighted by the probability distribution p(x) over the domain D. The name
“Dirichlet average” comes from the fact that the formula for the average involves an
integral that is similar to the Dirichlet integral, which is an important integral in the
theory of functions of a complex variable. Dirichlet averages have connections to many
other important mathematical concepts, such as harmonic analysis, the Fourier series,
and the theory of functions of a complex variable. Dirichlet averages play an important
role in various problems in number theory, including the study of prime numbers and
the distribution of arithmetic functions; see [1,2], etc. [3] used Dirichlet averages in the
study of random matrices. Dirichlet averages are used in the study of option pricing
and risk management in finance; see [4,5] used it in the study of Bayesian inference and
probabilistic modeling in machine learning. Dirichlet averages are used in the study of
natural language processing and text analysis; see [6]. Overall, Dirichlet averages are an
important mathematical tool that have many applications in various disciplines. They
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provide a way to compute the average value of a function over a probability distribution
and have connections to many other important mathematical concepts.

In [7], there is a discussion of the classical power mean, which contains the harmonic,
arithmetic and geometric means. The classical weighted average is of the following form:

f (b) = [w1zb
1 + . . . + wnzb

n]
1
b .

where all the quantities are real scalar and where w′ = (w1, . . . , wn), z′ = (z1, . . . , zn),
zj > 0, wj > 0, j = 1, . . . , n, and ∑n

j=1 wj = 1 with a prime denoting the transpose.
For b = 1, f (1) gives ∑n

j=1 wjzj or the arithmetic mean; when b = −1, f (−1) provides

[∑j(
wj
zj
)]−1 = the harmonic mean and when b → 0+, then f (0+) yields ∏n

j=1 z
wj
j = the

geometric mean. This weighted mean f (b) is generalized to the y-mean by de Finetti [8]
and to the hypergeometric mean by Carlson [9]. A real scalar variable type-1 Dirichlet
measure is involved for the weights (w1, . . . , wn−1) in Carlson’s generalization, and then
average of a given function is taken over this Dirichlet measure. In the current literature this
is known as Dirichlet average of that function, the function need not reduce to the classical
arithmetic, harmonic, and geometric means. Additionally, Carlson offered a comprehensive
and in-depth examination of the many types of Dirichlet averages Carlson developed the
notion of the Dirichlet average in his work, see also [9–14]. The integral mean of a function
with respect to the Dirichlet measure is known as its “Drichlet average”.

The paper is organized as follows: Section 1 gives the basic concepts for developing
the theory of the matrix-variate Dirichlet measure in complex domain. Dirichlet averages
for a function of matrix argument in the complex domain are developed in Section 2.
In Section 3, we discuss the complex matrix-variate type-2 Dirichlet measure and averages
over some useful matrix-variate functions. The rectangular matrix-variate Dirichlet measure
is presented in Section 4. In Section 5, we establish the connection between Dirichlet
averages and Tsallis entropy. Section 6 provides an elaborate account of the diverse sub-
domains in which the technology finds valuable applications.

Complex Domain

In the present paper, we consider Dirichlet averages of various functions over Dirichlet
measures in the complex domain in the matrix-variate cases. All matrices appearing in
this paper are Hermitian positive definite and p × p unless stated otherwise. In order
to distinguish, matrices in the complex domain will be denoted by a tilde as X̃ and real
matrices will be written without the tilde as X. We consider real-valued scalar functions
of the complex matrix argument and such functions will be averaged over a complex
matrix-variate Dirichlet measure. The following standard notations will be used: det(X̃)
will mean the determinant of the complex matrix variable X̃. The absolute value of the
determinant will be denoted by |det(·)|. This means that if det(X̃) = a + ib, i =

√
−1 then√

(a + ib)(a− ib) = (a2 + b2)
1
2 = |det(X̃)|. tr(·) will denote the trace of (·).

∫
X̃ is integral

over all X̃, where X̃ may be rectangular, square or positive definite. X̃ > O means that the
p× p matrix X̃ is Hermitian positive definite. Constant matrices, whether real or in the
complex domain, will be written without the tilde unless the fact is to be stressed, and in
that case, we use a tilde. O < A < X̃ < B means A > O, X̃− A > O, B− X̃ > O, where A
and B are p× p constant positive definite matrices. Then,∫

O<A<X̃<B
f (X̃)dX̃ =

∫ B

A
f (X̃)dX̃,

means the integral over the Hermitian positive definite matrix X̃ > O. When O < A <
X̃ < B and f (X̃) is a real-valued scalar function of matrix argument, X̃ and dX̃ stand
for the wedge product of differentials. Hence, for Z̃ = (z̃jk) = X + iY, a m× n matrix of
distinct variables z̃jk’s, where X and Y are real matrices, i = +

√
−1. Then, the differential

element dZ̃ = dX ∧ dY, with dX and dY being the wedge products of differentials in X
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and Y, respectively. For example, dX = ∧m
j=1 ∧n

k=1 dxjk if X = (xjk) and m× n. When Z̃ is
Hermitian, then X = X′(symmetric) and Y = −Y′(skew symmetric), where prime denotes
the transpose. In this case, dX = ∧p

j≥k=1dxjk = ∧p
j≤k=1dxjk and dY = ∧p

j<k=1dyjk =

∧p
j>k=1dyjk.

∫
X̃>O f (X̃)dX̃ means the integral over the Hermitian positive definite matrix

X̃ > O. It is a multivariate integral over all x̃jk’s where X̃ = (x̃jk), x̃jk’s are in the complex
domain. The complex matrix-variate gamma function will be denoted by Γ̃p(α), which has
the following expression and integral representation:

Γ̃p(α) = π
p(p−1)

2 Γ(α)Γ(α− 1) . . . Γ(α− (p− 1)),<(α) > p− 1 (1)

and
Γ̃p(α) =

∫
X̃>O
|det(X̃)|α−pe−tr(X̃)dX̃,<(α) > p− 1 (2)

where <(·) means the real part of (·) and the integration is over all Hermitian positive
definite matrix X̃. For our computations to follow, we will need some Jacobians of transfor-
mations in the complex domain. These will be listed here without proofs. For the proofs
and for other such Jacobians, see [15].

Lemma 1. Let X̃ and Ỹ be m× n with mn distinct complex variables as elements. Let A be m×m
and B be n× n nonsingular constant matrices. Then

Ỹ = AX̃B, det(A) 6= 0, det(B) 6= 0⇒ dỸ = [det(A∗A)]n[det(B∗B)]mdX̃ (3)

where A∗ and B∗ denote the conjugate transposes of A and B, respectively; if X, Y, A, B are real then

Y = AXB⇒ dY = [det(A)]n[det(B)]mdX (3a)

and if a is a scalar quantity then

Ỹ = aX̃ ⇒ dỸ = |a|2mndX̃. (3b)

Lemma 2. Let X̃ be p× p and Hermitian matrix of distinct complex variables as elements, except for
Hermitianness. Let A be a nonsingular constant matrix. Then

Ỹ = AX̃A∗ ⇒ dỸ = |det(A)|−2pdX̃. (4)

If A, X, Y, X = X′ are real then

Y = AXA′ ⇒ dY = [det(A)]p+1dX. (4a)

If Y, X, a, X = X′ and a scalar, then

Y = aX → dY = a
p(p+1)

2 dX (4b)

Lemma 3. Let X̃ be p× p and nonsingular with the regular inverse X̃−1. Then

Ỹ = X̃−1 ⇒ dỸ =

{
|det(X̃∗X̃)|−2pdX̃ for a general X̃
|det(X̃∗X̃)|−pdX̃ for X̃ = X̃∗ or X̃ = −X̃∗

(5)

Lemma 4. Let X̃ be p× p Hermitian positive definite of distinct elements, except for Hermitian
positive definiteness. Let T̃ be a lower triangular matrix where T̃ = (t̃jk), t̃jk = 0, j < k, t̃jk, j ≥ k
are distinct, t̃kk = tkk > 0, k = 1, . . . , p, that is, the diagonal elements are real and positive. Then

X̃ = T̃T̃∗ ⇒ dX̃ = 2p{
p

∏
k=1

t2(p−k)+1
kk }dT̃. (6)
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With the help of Lemma 4, we can evaluate the complex matrix-variate gamma integral
in (2) and show that it is equal to the expression in (1). When Lemma 4 is applied to the
integral in (2), the integral splits into p integrals of the form

p

∏
k=1

2
∫ ∞

0
(t2

kk)
(α−p)+ 1

2 (2(p−k)+1)e−t2
kk dtkk =

p

∏
k=1

Γ(α− (k− 1)),<(α) > k− 1, k = 1, . . . , p

which results in the final condition as <(α) > p− 1, and p(p− 1)/2 integrals of the form

∏
j>k

∫ ∞

−∞
e−|t̃jk |2dt̃jk = ∏

j>k

∫ ∞

−∞

∫ ∞

−∞
e−(t

2
jk1+t2

jk2)dtjk1 ∧ dtjk2

= ∏
j>k

√
π
√

π = π
p(p−1)

2 , |t̃jk|2 = t2
jk1 + t2

jk2.

Thus, the integral in (2) reduces to the expression in (1).

Lemma 5. Let X̃ be n × p, n ≥ p matrix of full rank p. Let S̃ = X̃∗X̃, a p × p Hermitian
positive definite matrix. Let dX̃ and dS̃ denote the wedge product of the differentials in X̃ and S̃,
respectively. Then

dX̃ = |det(S̃)|n−p πnp

Γ̃p(n)
dS̃. (7)

This is a very important result because X̃ is a rectangular matrix with mn distinct elements,
whereas S̃ is Hermitian positive definite and p× p. With the help of the above lemmas, we will
average a few functions over the Dirichlet measures in the complex domain.

2. Dirichlet Averages for Functions of Matrix Argument in the Complex Domain

The Dirichlet distributions of real types 1 and 2 are generalized to standard distribu-
tions of beta and type-2. The literature contains these distributions, their characteristics,
and a few generalizations in the form of Liouville distributions. Dirichlet type-1 and type-2
matrix-variate analogues can be found in the literature; [15] is one example. Generalizations
of matrix variables to the Liouville family can be observed in [16]. Matrix-variate distribu-
tions, not generalized Dirichlet, may be seen from [17–19] provides examples of the use of
scalar variable Dirichlet models in random division and other geometrical possibilities.

All the matrices appearing in this section are p× p Hermitian positive definite unless
stated otherwise. Consider the following complex matrix-variate type-1 Dirichlet measure:

f1(X̃1, . . . , X̃k) = D̃k|det(X̃1)|α1−p . . . |det(X̃k)|αk−p

× |det(I − X̃1 − . . .− X̃k)|αk+1−p (8)

where X̃1, . . . X̃k are p× p Hermitian positive definite, that is, X̃j > O, j = 1, . . . , k, such
that I − X̃j > O, j = 1, . . . , k, I − (X̃1 + . . . + X̃k) > O. The normalizing constant D̃k can
be evaluated by integrating out matrices one at a time and the individual integrals are
evaluated by using a complex matrix-variate type-1 beta integral of the form

∫ I

O
|det(X̃)|α−p|det(I − X̃)|β−pdX̃ =

Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)
,<(α) > p− 1,<(β) > p− 1 (9)

where Γ̃p(α) is given in (1). It can be shown that the normalizing constant is the following:

D̃k =
Γ̃p(α1 + . . . + αk+1)

Γ̃p(α1) . . . Γ̃p(αk+1)
(10)

for <(αj) > p − 1, j = 1, . . . , k + 1. Since (10) is a probability measure, f (X̃1, . . . , X̃k) is
non-negative for all X̃j, j = 1, · · · , k and the total integral is one. It is a Dirichlet measure
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associated with a Dirichlet density, and it is also a statistical density; hence, we can denote
the averages of given functions as the expected values of those functions, denoted by E(·).
Let us consider a few functions and take their averages over the complex matrix-variate
Dirichlet measure in (8). Let

φ1(X̃1, . . . , X̃k) = |det(X̃1)|γ1 . . . |det(X̃k)|γk . (11)

Then, the average of (11) over the measure in (8) is given by

E[φ1] = D̃k

∫
X̃1,...,X̃k

|det(X̃1)|α1+γ1−p . . . |det(X̃k)|αk+γk−p

× |det(I − X̃1 − . . .− X̃k)|αk+1−pdX̃1 ∧ . . . .∧ dX̃k.

Note that the only change is that αj is changed to αj + γj for j = 1, . . . , k; hence, the result is
available from the normalizing constant. That is,

E[φ1] = {
k

∏
j=1

Γ̃p(αj + γj)

Γ̃p(αj)
}

Γ̃p(α1 + . . . + αk)

Γ̃p(α1 + γ1 + . . . + αk + γk + αk+1)
, (12)

for <(αj + γj) > p− 1, j = 1, . . . , k,<(αk+1) > p− 1. Let

φ2(X̃1, . . . , X̃k) = |det(I − X̃1 − . . .− X̃k)|δ. (13)

Then, in the integral for E[φ2] the only change is that the parameter αk+1 is changed to
αk+1 + δ. Hence, the result is available from the normalizing constant D̃k. That is,

E[φ2] =
Γ̃p(αk+1 + δ)

Γ̃p(αk+1)

Γ̃p(α1 + . . . + αk+1)

Γ̃p(α1 + . . . + αk+1 + δ)
(14)

for <(αk+1 + δ) > p − 1,<(αj) > p − 1, j = 1, . . . , k. The structure in (14) is also the
structure of the δ-th moment of the determinant of the matrix with a complex matrix-
variate type-1 beta distribution. Hence, this φ2 has an equivalent representation in terms of
the determinant of a matrix with a complex matrix-variate type-1 beta distribution. Let

φ3(X̃1, . . . , X̃k) = etr(X̃1). (15)

Let us evaluate the Dirichlet average for k = 2. Then

E[φ3] = D̃2

∫
X̃1,X̃2

etr(X̃1)|det(X̃1)|α1−p|det(X̃2)|α2−p

× |det(I − X̃1 − X̃2)|α3−pdX̃1 ∧ . . . ∧ dX̃3.

Take out I − X̃1 from |det(I − X̃1 − X̃2)| and make the transformation

Ũ2 = (I − X̃1)
− 1

2 X̃2(I − X̃1)
− 1

2 .

Then, from Lemma 2, dŨ2 = |det(I − X̃1)|−pdX̃2. Now, Ũ2 can be integrated out by using
a complex matrix-variate type-1 beta integral given in (9). That is,

∫
O<Ũ2<I

|det(Ũ2)|α2−p|det(I − Ũ2)|α3−pdŨ2 =
Γ̃p(α2)Γ̃p(α3)

Γ̃p(α2 + α3)
(16)

for <(α2) > p− 1,<(α3) > p− 1. The X̃1 integral to be evaluated is the following:∫
X̃1

etr(X̃1)|det(X̃1)|α1−p|det(I − X̃1)|α2+α3−pdX̃1. (17)
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In order to evaluate the integral in (17), we can expand the exponential part by using zonal
polynomials for complex argument; see [15,20]. We need a few notations and results from
zonal polynomial expansions of determinants. The generalized Pochhammer symbol is
the following:

[a]M =
p

∏
j=1

(a− j + 1)kj
=

Γ̃p(a, M)

Γ̃p(a)
, Γ̃p(a, M) = Γ̃p(a)[a]M (18)

where the usual Pochhmmer symbol is

(a)m = a(a + 1) . . . (a + m− 1), a 6= 0, (a)0 = 1 (19)

and M represents the partition, M = (m1, . . . , mp), m1 ≥ m2 ≥ . . . ≥ mp, m1 + . . . + mp = m
and the zonal polynomial expansion for the exponential function is the following:

etr(X̃) =
∞

∑
m=0

∑
M

C̃M(X̃)

m!
(20)

where C̃M(X̃) is zonal polynomial of order m in the complex matrix argument X̃; see (6.1.18)
of [15]. One result on zonal polynomial that we require will be stated here as a lemma.

Lemma 6. ∫
O<Z̃<I

|det(Z̃)|α−p|det(I − Z̃)|β−pC̃M(Z̃Ã)dZ̃

=
Γ̃p(α, M)Γ̃p(β)

Γ̃p(α + β, M)
C̃M(Ã)

=
Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)

(α)M
(α + β)M

C̃M(Ã), (21)

see also (6.1.21) of [15], for <(α) > p− 1,<(β) > p− 1, Ã > O. By using (21), we can evaluate
the X̃1-integral in E[φ3]. That is,∫

O<X̃1<I
etr(AX̃1)|det(X̃1)|α1−p|det(I − X̃1)|α2+α3−pdX̃1

=
∞

∑
m=0

∑
M

∫
O<X̃1<I

C̃M(ÃX̃1)

m!
|det(X̃1)|α1−p|det(I − X̃1)|α2+α3−pdX̃1

=
∞

∑
m=0

∑
M

C̃M(Ã)

m!
Γ̃p(α1, M)Γ̃p(α2 + α3)

Γ̃p(α1 + α2 + α3, M)
.

Now, with the result on X̃2-integral, D̃2 and the above result will result in all the gamma products
being canceled and the final result is the following:

E[φ3] =
∞

∑
m=0

∑
M

C̃M(Ã)

m!
(α1)M

(α1 + α2 + α3)M
= 1F1(α1; α1 + α2 + α3; Ã) (22)

for <(αj) > p− 1, j = 1, 2, 3 and 1F1 is a confluent hypergeometric function of complex matrix
argument Ã.

3. Dirichlet Averages in Complex Matrix-Variate Type-2 Dirichlet Measure

Consider the type-2 Dirichlet measure

f2(X̃1, . . . , X̃k) = D̃k|det(X̃1)|α1−p . . . |det(X̃k)|αk−p

× |det(I + X̃1 + . . . + X̃k)|−(α1+...+αk+1) (23)
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for <(αj) > p− 1, j = 1, . . . , k + 1 and it can be seen that the normalizing constant is the
same as that in the type-1 Dirichlet measure. Let us evaluate some Dirichlet averages in the
measure (23). Let

φ4(X̃1, . . . , X̃k) = |det(X̃1)|γ1 . . . |det(X̃k)|γk . (24)

Then, when the average is taken, the change is that αj changes to αj + γj, j = 1, . . . , k;
hence, one should be able to find the value from the normalizing constant by adjusting for
αk+1. Write (α1 + . . . + αk+1) = (α1 + γ1 + . . . + αk + γk) + (αk+1 − γ1 − . . .− γk). That
is, replace αj by αj + γj, j = 1, . . . , k and replace αk+1 by αk+1 − γ1 − . . .− γk to obtain the
result from the normalizing constant. Therefore,

E[φ4] = {
k

∏
j=1

Γ̃p(αj + γj)

Γ̃p(αj)
}

Γ̃p(αk+1 − γ1 − . . .− γk)

Γ̃p(αk+1)
(25)

for <(αj + γj) > p− 1, j = 1, . . . , k and <(αk+1 − γ1 − . . .− γk) > p− 1,<(αk+1) > p− 1.
Thus, only a few moments will exist, interpreting E[φ4] as the product moment of the
determinants of X̃1, . . . X̃k. Let

φ5(X̃1, . . . , X̃k) = |det(I + X̃1 + . . . + X̃k)|−δ. (26)

Then, when the average is taken the only change in the integral is that αk+1 is changed to
αk+1 + δ ; hence, from the normalizing constant the result is the following:

E[φ5] =
Γ̃p(αk+1 + δ)

Γ̃p(αk+1)

Γ̃p(α1 + . . . + αk+1)

Γ̃p(α1 + . . . + αk+1 + δ)
, (27)

for <(αk+1 + δ) > p− 1, the other conditions on the parameters for D̃k remain the same.
Observe that if <(δ) > 0, then the structure in (27) is that of the δ-th moment of the
determinant of a complex matrix-variate type-1 beta matrix. Thus, this type-2 form gives a
type-1 form result. Let

φ6(X̃1, X̃2) = e−tr(AX̃1)|det(I + X̃1)|α1+α3 . (28)

Then, the Dirichlet average of φ6 in the complex matrix-variate type-2 Dirichlet measure in
(23) for k = 2 is the following:

E[φ6] = D̃2

∫
X̃1,X̃2

e−tr(X̃1)|det(I + X̃1)|α2+α3 |det(X̃1)|α1−p|det(X̃2)|α2−p

× |det(I + X̃1 + X̃2)|−(α1+α2+α3)dX̃1 ∧ . . . dX̃3.

Take out (I + X̃1) from I + X̃1 + X̃2 and make the transformation

Ũ2 = (I + X̃1)
− 1

2 X̃2(I + X̃1)
− 1

2 ⇒ dŨ2 = |det(I + X̃1)|−pdX̃2.

The Ũ2-integral gives

∫
Ũ2>O

|det(Ũ2)|α2−p|det(I + Ũ2)|−(α1+α2+α3)dŨ2 =
Γ̃p(α2)Γ̃p(α1 + α3)

Γ̃p(α1 + α2 + α3)
. (29)

Observe that the exponent becomes zero and the factor containing |det(I + X̃1)| disappears.
Then, the X̃1-integral is∫

X̃1>O
|det(X̃1)|α1−pe−tr(AX̃1)dX̃1 = Γ̃p(α1)|det(A)|−α1 . (30)
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The results from (29), (30) and D̃2 gives the final result as follows:

E[φ6] =
Γ̃p(α1 + α3)

Γ̃p(α3)
|det(A)|−α1 (31)

and the original conditions on the parameters remain the same and no further conditions
are needed, where A > O. Note that if φ6 did not have the factor |det(I + X̃1)|α1+α3 , a
factor containing |det(I + X̃1)| would also have been present, then the X̃1-integral would
have gone in terms of a Whittaker function of matrix argument; see [15].

4. Dirichlet Averages in Complex Rectangular Matrix-Variate Dirichlet Measure

Let Bj be nj × nj a Hermitian positive definite constant matrix and let B
1
2
j denote the

Hermitian positive definite square root of Bj. Let X̃j be a nj × p, nj ≥ p matrix of full rank
p so that X̃∗j X̃j = S̃j > O or S̃j is a Hermitian positive definite. Observe that for p = 1,
X̃∗j BjX̃j is a positive definite Hermitian form. Hence, our results to follow will also cover
results on Hermitian forms. Consider the model

f3(X̃1, . . . , X̃k) = G̃k|det(X̃∗1 B1X̃1)|α1 . . . |det(X̃∗k BkX̃k)|αk

× |det(I − X̃∗1 B1X̃1 − . . .− X̃∗k BkX̃k)|αk+1−p (32)

where G̃k is the normalizing constant and O < X̃∗j BjX̃j < I, j = 1, . . . , k, O < X̃∗1 B1X̃1 + . . .+
X̃∗k BkX̃k < I, j = 1, . . . , k. The normalizing constant is evaluated by using the following

procedure. Let Ỹj = B
1
2
j X̃j ⇒ dỸj = |det(Bj)|pdX̃j from Lemma 1. Let Ỹ∗j Ỹj = S̃j. Then,

from Lemma 5 we have

dỸj =
πnj p

Γ̃p(nj)
|det(S̃j)|nj−pdX̃j. (33)

Then,

dX̃1 ∧ . . . ∧ dX̃k = {
k

∏
j=1

πnj p

Γ̃p(nj)
|det(B̃j)|−p|det(S̃j)|nj−p}dS̃1 ∧ . . . ∧ dS̃k. (34)

Since the total integral is 1, we have

1 =
∫

X̃1,...X̃k

f3(X̃1, . . . , X̃k)dX̃1 ∧ . . . ∧ dX̃k

= G̃k{
k

∏
j=1

πnj p

Γ̃p(nj)
}
∫

S̃1,...,S̃k

|det(S̃1)|α1+n1−p . . .

× |det(S̃k)|αk+nk−p|det(I − S̃1 − . . .− S̃k)|αk+1−pdS̃1 ∧ . . . ∧ dS̃k.

Now, evaluating the type-1 Dirichlet integrals over the S̃j’s, one obtains the following result:

G̃k = {
k

∏
j=1
|det(Bj)|p

Γ̃p(nj)

πnj p
1

Γ̃p(αj + nj)
}

×
Γ̃p(α1 + . . . + αk+1 + n1 + . . . + nk)

Γ̃p(αk+1)
(35)
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for Bj > O,<(αj + nj) > p− 1, j = 1, . . . , k,<(αk+1) > p− 1. Thus, (32) with (35) defines
a rectangular complex matrix-variate type-1 Dirichlet measure. There is a corresponding
type-2 Dirichlet measure, given by the following:

f4(X̃1, . . . , X̃k) = G̃k|det(X̃1)|α1 . . . |det(X̃k)|αk

× |det(I + X̃1 + . . . + X̃k)|−(α1+...+αk+1+n1+...+nk) (36)

for Bj > O,<(αj + nj) > p− 1, j = 1, . . . , k,<(αk+1) > p− 1 and G̃k is the same as the one
appearing in (35). Let us compute the Dirichlet averages of some functions in the type-2
rectangular complex matrix-variate Dirichlet measure in (36). Let

φ7(X̃1, . . . , X̃k) = |det(X̃1)|γ1 . . . |det(X̃k)|γk . (37)

Then, when we take the expected value of φ7 in (36) the only change is that αj changes to αj +
γj, j = 1, . . . , k ; hence, the final result is available from the normalizing constant. Therefore

E[φ7] = {
k

∏
j=1

Γ̃p(αj + nj + γj)

Γ̃p(αj + nj)
}

Γ̃p(αk+1 − γ1 − . . .− γk)

Γ̃p(αk+1)
(38)

for <(αj + nj + γj) > p − 1, j = 1, . . . , k,<(αk+1 − γ1 − . . . − γk) > p − 1,<(αk+1) >
p− 1. Let

φ8(X̃1, . . . , X̃k) = |det(I + X̃1 + . . . + X̃k)|−δ. (39)

Then, the only change is that αk+1 goes to αk+1 + δ in the integral and no other change is
there ; hence, the average is available from the normalizing constant. That is,

E[φ8] =
Γ̃p(αk+1 + δ)

Γ̃p(αk+1)

Γ̃p(α1 + . . . + αk+1 + n1 + . . . + nk)

Γ̃p(α1 + . . . + αk+1 + n1 + . . . + nk + δ)
(40)

for <(αj + nj) > p− 1, j = 1, . . . , k,<(αk+1 + δ) > p− 1,<(αk+1) > p− 1.
The case p = 1 in the complex rectangular matrix-variate type-1 Dirichlet measure is

very interesting. We have a set of Hermitian positive definite quadratic forms here having
a joint density of the following form:

f5(X̃1, . . . , X̃k) = G̃k[X̃∗1 B1X̃1]
α1 . . . [X̃∗k BkX̃k]

αk

× |det(I − [X̃∗1 B1X̃1]− . . .− [X̃∗k BkX̃k])|αk+1−p (41)

where Bj > O, and X̃∗j BjX̃j is a scalar quantity, j = 1, . . . , k. Consider the same types

of transformations as before. Ỹj = B
1
2
j X̃j. Then, Ỹ∗j Ỹj = |ỹj1|2 + . . . + |ỹjnj |

2 or the sum

or squares of the absolute values of ỹjr where Ỹ∗j = (ỹ∗j1, . . . , ỹ∗jnj
). This is an isotropic

point in in the 2nj-dimensional Euclidean space. From here, one can establish various
connections to geometrical probability problems; see [19]. Also, (41) is associated with the
theory of generalized Hermitian forms in pathway models; see [21]. Let us evaluate the
h-th moment of

φ9(X̃1, . . . , X̃k) = [X̃∗1 B1X̃1 + . . . + X̃∗k BkX̃k]
h (42)

for p = 1. For p > 1 we have seen that this is not available directly but moments of
|det(I − X̃∗1 B1X̃1 − . . .− X̃∗k BkX̃k)| was available. But for p = 1, one can obtain the h-th
moment of both for an arbitrary h. By computing the h-th moment of [1− X̃∗1 B1X̃1 − . . .−
X̃∗k BkX̃k], for p = 1, we note that for arbitrary h, this quantity and its complementary
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part [X̃∗1 B1X̃1 + . . . + X̃∗k BkX̃k] are both scalar variable type-1 beta distributed with the
parameters (αk+1, ∑k

j=1(αj + nj)) and (∑k
j=1(αj + nj), αk+1), respectively. Then,

E[φ9] =
Γ̃p(∑k

j=1(αj + nj) + h)

Γ̃p(∑k
j=1(αj + nj))

Γ̃p(∑k
j=1(αj + nj) + αk+1)

Γ̃p(∑k
j=1(αj + nj) + αk+1 + h)

(43)

for <(αj) > p − 1, j = 1, . . . , k + 1,<(∑k
j=1(αj + nj) + h) > p − 1. Consider φ9 in the

complex matrix-variate type-2 Dirichlet measure for p = 1. Then, the h-th moment will
reduce to the following:

E[φ9] =
Γ̃p(∑k

j=1(αj + nj) + h)

Γ̃p(∑k
j=1(αj + nj))

Γ̃p(αk+1 − h)
Γ̃p(αk+1)

(44)

for <(αk+1 − h) > p− 1,<(αj) > p− 1, j = 1, . . . , k + 1,<(∑k
j=1(αj + nj) + h) > p− 1.

Many such results can be obtained for the type-1 and type-2 Dirichlet measures in
Hermitian positive definite Dirichlet measures or in rectangular matrix-variate Dirich-
let measures.

5. A Connection to Tsallis Statistics of Non-Extensive Statistical Mechanics

Ref. [22] introduced an entropy measure and, by optimizing this entropy in an escort
density, and under the constraint that the first moment in the escort density is prefixed
which will correspond to a physical law of conservation of energy, obtained the famous
Tsallis statistics of non-extensive statistical mechanics. Tsallis entropy is a variant of Havrda–
Charvát entropy; see [23]. Havrda–Charvát entropy is an α-generalized Shannon entropy
and Shannon entropy in the discrete distribution is the following:

S( f ) = −C
k

∑
j=1

pj ln pj, pj > 0, j = 1, . . . , k, p1 + . . . + pk = 1 (45)

and its continuous version is the following:

S( f ) = −C
∫

x
f (x) ln f (x)dx, f (x) ≥ 0 for all x and

∫
x

f (x)dx = 1 (46)

where C is a constant. A generalized entropy, introduced by Mathai, is a variant of Havrda–
Charvát entropy and Tsallis entropy in the real scalar variable case, but Mathai’s entropy is
set in a very general framework. It is the following:

Mα( f ) =

∫
X [ f (X)]

1+ a−α
η dX− 1

α− a
, α 6= a, η > 0 (47)

where a is a fixed anchoring point, α is the parameter of interest, η > 0 is a fixed scaling
factor or unit of measurement, f (X) is a real-valued scalar function of X such that f (X) ≥ 0
for all X,

∫
X f (X)dX = 1 or f (X) is a statistical density where X can be a scalar or vector

or matrix or a collection of matrices in the real or complex domain and dX is the wedge
product of all distinct real scalar variables in X. For example, if X′ = [x1, . . . , xp], where
xj, j = 1, . . . , p are distinct real scalar variables and a prime denoting the transpose, then
dX = dx1 ∧ . . . ∧ dxp = dX′. For two real scalar variables x and y, the wedge product
of differentials is defined as dx ∧ dy = −dy ∧ dx, so that dx ∧ dx = 0, dy ∧ dy = 0.
If X = (xij) is a p× q matrix of distinct real scalar variables xij’s, then dX = ∧p

i=1 ∧
q
j=1 dxij.

If X̃ = X1 + iX2, i =
√
(−1), X1, X2 is real, then dX̃ = dX1 ∧ dX2. If X = [X1, . . . , Xk],

a collection of matrices in the real domain, then dX = dX1 ∧ . . . ∧ dXk. If X̃ = [X̃1, . . . , X̃k],

then dX̃ = dX̃1 ∧ . . . ∧ dX̃k. Thus, (47) is the expected value of [ f (X)]
a−α

η , where the
deviation of α from the anchoring point a is measured in terms of η units.
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When α→ a in the real scalar case, we can see that (47) goes to Shannon’s entropy of
(46). But (47) is set up in a very general framework. Let us consider (47) when X is a p× 1
vector of distinct real scalar positive variables, xj > 0, j = 1, . . . , p and let x1 + . . . + xp < 1
so that the xj’s are in a unit ball. Let us optimize (47) under two product moment type
constraints. Let

A = E[xα1−1
1 . . . x

αp−1
p ]

a−α
η and B = E[(xα1−1

1 . . . x
αp−1
p )

a−α
η (

p

∑
j=1

xj)]

for <(αj) > 0, j = 1, . . . , p, where <(·) denotes the real part of (·). Let the constraints
be A is prefixed and B is prefixed. If we use calculus of variation to optimize (47) under
the above constraints, then the Euler equation is the following, where λ1 and λ2 are
Lagrangian multipliers:

∂

∂ f
{ f 1+ a−α

η − λ1(xα1−1
1 . . . x

αp−1
p )

a−α
η f − λ2(xα1−1

1 . . . x
αp−1
p )

a−α
η (

p

∑
j=1

xj) f } = 0⇒

(1 +
a− α

η
) f

a−α
η = λ1(xα1−1

1 . . . x
αp−1
p )

a−α
η + λ2(xα1−1

1 . . . x
αp−1
p )

a−α
η (

p

∑
j=1

xj)⇒

f = λ3xα1−1
1 . . . x

αp−1
p [1 + λ4

p

∑
j=1

xj]
η

a−α

for some λ3 and λ4. Let α < a. Then, let us take λ4 = −b(a− α), b > 0 so that the right side
of the above equation for f can form a density with λ3 being the normalizing constant there.
If λ4 = b(a− α) with b > 0, α < a, then the right side of f will be a positive exponential
function and will not produce a density. Then,

f = λ3xα1−1
1 . . . x

αp−1
p [1− b(a− α)(x1 + . . . + xp)]

η
a−α , η > 0, b > 0, α < a (48)

is a Mathai’s pathway form of real scalar type-1 Dirichlet density. When α > a, then (48)
switches into a real scalar type-2 Dirichlet density with the corresponding normalizing constant.

Note that for q = 1, a q× q Hermitian positive definite matrix is a real scalar positive
variable. Hence, (48) holds in the real and complex cases for q = 1 of q× q real positive
definite or Hermitian positive definite matrices X1, . . . , Xp or X̃1, . . . , X̃p. The above is an
example of the connection of type-1 and type-2 Dirichlet models to Tsallis entropy.

6. Applications

For our applications in the theory of special functions, fractional calculus, mechan-
ics, biology, probability, and stochastic processes, Dirichlet averages and their diverse
approaches are used. In this section, the main areas where the applications of Dirichlet
averages are presented:

6.1. Special Functions

Dirichlet averages were introduced by Carlson in his 1977 work. Carlson [10–13]
observed that the straightforward idea of this kind of averaging generalizes and unifies a
wide range of special functions, including various orthogonal polynomials and generalized
hyper-geometric functions. The relationship between Dirichlet splines and an important
class of hypergeometric functions of several variables is given in [14,24]. Numerous
investigations of B-splines, including those by [14,25,26], used Dirichlet averages.

6.2. Fractional Calculus

The Dirichlet average of elementary functions like power function, exponential func-
tion, etc. is given by many notable mathematicians. There are many results available in
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the literature converting the elementary function into the summation form after taking the
Dirichlet average of those functions, using the fractional integral, and obtaining new results;
see [27–32]. Those results will be used in the future by mathematicians and scientists in a
variety of fields.

6.3. Statistical Mechanics

Statistical mechanics is a branch of physics that studies the behaviour of large systems
of particles, such as gases, liquids, and solids. In statistical mechanics, entropy is a measure
of the degree of disorder or randomness in a system; for more details, see [33,34]. The
greater the entropy, the more disordered the system. Dirichlet averages and statistical
mechanics are connected through the concept of entropy. Dirichlet averages are a type
of mathematical average that weighs a set of values according to a given probability
distribution. For example, given a set of values x1, x2, . . . , xn and a probability distribution
p1, p2, . . . , pn, the Dirichlet average is defined as:

D(p, x) =
n

∑
i=1

pixi.

Statistical mechanics is a branch of physics that studies the behavior of large systems of
particles, such as gases, liquids, and solids. The connection between Dirichlet averages
and statistical mechanics comes from the fact that the Dirichlet average can be seen as a
type of average energy of a system weighted by a probability distribution. In statistical
mechanics, the average energy of a system is also weighted by a probability distribution,
and the entropy of the system is related to the probability distribution of the energy states.
In particular, the Boltzmann entropy of a system is given by:

S = −k
n

∑
i=1

pi ln pi,

where k is the Boltzmann constant. This formula shows that the entropy of a system is
proportional to the negative logarithm of the probability distribution of the energy states.
Thus, Dirichlet averages and statistical mechanics are connected through the concept
of entropy, which relates the average energy of a system to the probability distribution
of its energy states. Dirichlet forms and their applications to quantum mechanics and
statistical mechanics were established by [35]. Connections between Dirichlet distributions
and a scale-invariant probabilistic model based on Leibniz-like pyramids are introduced
by [36]. Ref. [37] showed that marginalizing the joint distribution of individual energies is
a symmetric Dirichlet distribution.

6.4. Gene Expression Modeling

Clustering is a key data processing technique for interpreting microarray data and
determining genetic networks. Hierarchical Dirichlet processes (HDP) clustering is able to
capture the hierarchical elements that are common in biological data, such as gene expres-
sion data, by including a hierarchical structure into the statistical model. [38] presented a
hierarchical Dirichlet process model for gene expression clustering.

6.5. Geometrical Probability

Thomas and Mathai [39] propose a generalized Dirichlet model application to geomet-
rical probability problems. When the linearly independent random points in Euclidean n
space have highly general real rectangle matrix-variate beta density, the volumes of random
parallelotopes are explored. In order to evaluate statistical hypotheses, structural decompo-
sition is provided, and random volumes are linked to generalized Dirichlet models and
likelihood ratio criteria. This makes it possible to calculate percentage points of random
volumes using the generalized Dirichlet marginal’s p-values.
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6.6. Bayesian Analysis

Carlson’s original definition of Dirichlet averages is expressed as mixed multinomial
distributions’ probability-generating functions. They also significantly contribute to the
solution of elliptic integrals and have several connections to statistical applications. Ref. [40]
found that several nested families are built for Bayesian inference in multinomial sampling
and contingency tables that generalize the Dirichlet distributions. These distributions
can be used to model populations of personal probabilities evolving under the process of
inference from statistical data.

7. Conclusions

In this study, the fundamental ideas for the theory development of the matrix-variate
Dirichlet measure in the complex domain are presented. The complex matrix-variate type-2
Dirichlet measure and averages over some useful matrix-variate functions are discussed.
We establish the Dirichlet measure of the rectangular matrix-variate and the relationship
between Tsallis entropy and Dirichlet averages and identify a few applications in various
domains. Additionally, a few applications are covered.
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