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Abstract: In this paper, we formulate the first law of global thermodynamics for stationary states of the
binary ideal gas mixture subjected to heat flow. We map the non-uniform system onto the uniform one
and show that the internal energy U(S∗, V, N1, N2, f ∗1 , f ∗2 ) is the function of the following parameters
of state: a non-equilibrium entropy S∗, volume V, number of particles of the first component, N1,
number of particles of the second component N2 and the renormalized degrees of freedom. The
parameters f ∗1 , f ∗2 , N1, N2 satisfy the relation (N1/(N1 + N2)) f ∗1 / f1 + (N2/(N1 + N2)) f ∗2 / f2 = 1 ( f1

and f2 are the degrees of freedom for each component respectively). Thus, only 5 parameters of
state describe the non-equilibrium state of the binary mixture in the heat flow. We calculate the non-
equilibrium entropy S∗ and new thermodynamic parameters of state f ∗1 , f ∗2 explicitly. The latter are
responsible for heat generation due to the concentration gradients. The theory reduces to equilibrium
thermodynamics, when the heat flux goes to zero. As in equilibrium thermodynamics, the steady-
state fundamental equation also leads to the thermodynamic Maxwell relations for measurable
steady-state properties.

Keywords: non-equilibrium thermodynamics, entropy and internal energy, mixtures and parameters
of state

1. Introduction

In classical thermodynamics, the internal energy, U(S, V, N), of a one-component ideal
gas is a function of three parameters: entropy, S, volume V and the number of particles
N. Each parameter of state represents one independent way of system’s energy exchange
with the external world. For fixed N, there are two ways of energy change: heat and work.
The infinitesimal change of the internal energy satisfies the equation dU = TdS− pdV,
where the first term is the heat and the last is the work term. Until recently, no such
description was available for systems in non-equilibrium states, subjected to energy flow.

The classical theory of irreversible (non-equilibrium) thermodynamics [1] is based
on three differential non-linear equations representing conservation of mass, momentum
(Navier–Stokes equation) and energy. These conservation laws are supplemented by the
assumption of the local equilibrium, corresponding local equations of state and constitutive
relations between fluxes and thermodynamic forces. The solutions of these equations
are given in terms of velocity, v(r, t), temperature, T(r, t) and number density of particles,
n(r, t) profiles. In the stationary states, the profiles and fluxes depend only on the position in
space r, not on time, t. The assumption of the local equilibrium is crucial in the formulation
of the local equations of state. For the ideal gas it is justified, but contested for interacting
systems [2]. The assumption of local equilibrium for the ideal gas is valid for a small
temperature gradient, i.e., such that l f p|∇T|/T � 1, for the mean free path of the molecules,
l f p [3]. At the pressure of 1 bar at room temperature, the mean free path is of the order
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of l f p ≈ 100 nm. In such conditions, the assumption of local equilibrium breaks down
only for temperature gradients higher than 107 K/cm. Thus, this assumption is even
satisfied inside the Sun! This local description contains the first law of thermodynamics,
but in a different form than that given in the equilibrium thermodynamics and based on a
few global parameters of state. In our recent paper [4] we provided the latter, i.e., global
thermodynamic description for the ideal gas in a heat flow.

We have previously [4] studied the one-component ideal gas in a heat flow between
two parallel walls at distance L, kept at two different temperatures T1(z = 0) > T2(z = L).
The local equilibrium gives the local pressure, p(z), and the internal energy per unit volume,
u(z):

p(z) = kBT(z)n(z), (1)

and
u(z) =

3
2

n(z)kBT(z), (2)

with Boltzmann constant kB, particle number density n(z), and the temperature T(z) at
position z. We have shown rigorously that when we integrate both equations over the
volume of the system we can formulate the global thermodynamics with the internal energy
as a function of a few parameters of state. After integration we obtain:

pV = NkB
T2 − T1

log T2
T1

. (3)

and
U =

3
2V

NkB
T2 − T1

log T2
T1

. (4)

We identify the system’s temperature, T∗,

T∗ =
T2 − T1

log T2
T1

. (5)

In this way we made a mapping of the non-uniform system into the uniform one. We
observe that obtained equations have the same form as in equilibrium for the ideal gas
at temperature T∗. We demanded such form because, after the mapping, we treat the
system as the uniform one as in equilibrium. Moreover, the obtained equations of state
must reduce to the equilibrium equations of state when the heat flux is zero. Now we
define the internal energy as a function of three parameters of state U(S∗, V, N), with the
thermodynamic relation: (

∂S∗

∂U

)
V,N

=
1

T∗
, (6)(

∂S∗

∂V

)
U,N

=
p

T∗
.

This mapping gives us the same formal structure as we know from equilibrium. The entropy
S∗ is responsible for the net heat that enters or leaves the system [5–7] and changes the
internal energy. In general, the heat flows through the system all the time without changing
the internal energy. Upon any process we would like to know how much of the heat
transferred to the system changes the internal energy. This heat is called net heat and is
given in the differential form by T∗dS∗.
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S∗ is only part of the total entropy of the system. The total entropy of the system,
Stot = A

∫
dzs(z), where s(z) is the volumetric entropy density given by local equilibrium

assumption within irreversible thermodynamics, can be written as a sum [4]:

Stot

(
U, V,

T2

T1

)
= S∗(U, V) + ∆S

(
U, V,

T2

T1

)
, (7)

∆S(U, V, T2/T1) = NkB log

(T2

T1

)5/4
(

log T2
T1

T2
T1
− 1

)5/2.

Only S∗ governs net heat in the system (heat absorbed/released in the system). ∆S controls
the dissipative background and solely depends on the entropy production given by [1]
σ = −A

∫ L
0 dz κ∇T(z) · ∇ 1

T(z) = Aκ
L

(
T2
T1

+ T1
T2
− 2
)

, where κ is the heat conductivity. The
difference between the total entropy and S∗ vanishes, ∆S(U, A, L, T2/T1) → 0, when
the system approaches the equilibrium state, T2/T1 → 1. Therefore, S∗ becomes in this
limit the equilibrium entropy. Nonetheless the formal dependence of S∗ on U and V at
non-equilibrium state in a heat flow is the same as at equilibrium.

In this paper we want to apply the same mapping procedure to the binary mixture
of ideal gases. The big difference between previous work and the current one is the fact
that apart from the number density profile and the temperature profile we have additional
profiles of the number densities of each component. As we shall see, these additional
profiles lead to new parameters of state in the non-equilibrium state, which have no direct
counterpart at equilibrium. The purpose of this work is to formulate the first law of global
thermodynamics for ideal gas binary mixture in the heat flow. The paper is organized
as follows: In Section 2, we recall the equilibrium properties of the ideal gas mixture.
In Section 3 we discuss this mixture enclosed between two parallel walls at different
temperatures and solve the equations of irreversible thermodynamics. Sections 4 and 5
contain the main results of the present study. In Section 4, we define all parameters of state
for the mixture and perform the mapping of non-uniform system into the uniform one.
We introduce the first law of non-equilibrium thermodynamics, which follows from these
parameters, and discuss some of its consequences in Section 5. We discuss the results in
Section 6.

2. Preliminaries

We consider a binary mixture of ideal gases enclosed between two parallel walls
separated from each other by a distance L in the z direction. The volume of a system
is V = AL, where A is an area in the x − y plane. The components of the mixture have
number densities n1 and n2, such that n = N/V = n1 + n2 is the total density. The equation
of state of ideal gas at pressure p and temperature T, p = nkBT, where kB is the Boltzmann
constant, can be written as a sum of partial pressures pi

p = p1 + p2 = n1kBT + n2kBT (8)

which is the Dalton’s law [8].
The internal energy density (per volume) is the sum of the internal energy density

ui (i = 1, 2) of the two components separately considered u = u1 + u2. From the classical
equipartition theorem applied to ideal gas it follows that

ui =
fi
2

nikBT =
fi
2

pi, i = 1, 2 (9)

where fi, i = 1, 2 are translational and rotational degrees of freedom of the i component.
fi takes the value 3 for monoatomic, 5 for diatomic, and 6 for polyatomic gas. Often,
the ideal gas law (9) is written using dimensionless specific heat capacity at constant
volume c(i)v = fi

2 .
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The equilibrium entropy density of a binary mixture is

n · s = ns(0) + kB[n ln n− n1 ln n1 − n2 ln n2]. (10)

Here, ns(0) = n1s(0)1 + n2s(0)2 , where s(0)i (i = 1, 2) is the entropy per particle of the two
components separately considered. The second term in (10) is the mean-field expression
for the mixing entropy. For ideal gas, one has

s(0)i
kB

=
fi
2
+ 1 +

fi
2

ln

(
2Φiui

fikBn1+2/ fi
i

)
, (11)

where Φi is independent of the thermodynamic state of the gas and has dimension of
n2/ fi /T. For a monoatomic ideal gas, a quantum mechanical theory of Sacur–Tetrode
predicts that the constant Φi depends only upon the mass of the gas particle [9,10].

The total energy and entropy are given by

U =
∫

V
ud3r and S =

∫
V

nsd3r, (12)

which reduces to U = Vu and S = Ns for homogeneous systems. In the absence of external
fields, the equilibrium ideal gas is homogeneous.

From fundamental thermodynamic relation in terms of entropy, the differential dS has
the following form

dS =
1
T

dU +
p
T

dV − µ1

T
dN1 −

µ2

T
dN2. (13)

In the next section we will use the chemical potential difference defined as
µ
T = −

(
∂S
∂ϕ

)
u,n

, where ϕ = n1 − n2. It is given by

µ

T
=

µ
(0)
1 − µ

(0)
2

2T
+

kB
2

ln
x1

1− x1
, (14)

where xi = ni/n is the number fraction of i component; x1 + x2 = 1 in the absence of

chemical reactions. µ
(0)
i
T = −

(
∂nis

(0)
i

∂ni

)
ui ,nj 6=i

is the chemical potential of the component i

individually considered; it depends only on temperature T and pressure p.

3. Ideal Gas Mixture in Heat Flow

Now, we introduce heat flow into the system by setting different temperatures on the
walls, i.e.,

T(z = 0) = T1,

T(z = L) = T2. (15)

In the non-equilibrium state induced by this boundary condition, the system becomes
inhomogeneous and one has to consider spatially varying temperature T(r), pressure p(r),
density n(r) and difference in number densities ϕ(r). In the hydrodynamic limit, the time
evolution of the binary mixture is given by the conservation laws for n, ϕ, momentum
and energy supplemented by the assumption of local equilibrium, relations between
thermodynamic forces and fluxes, and thermodynamic equations of state [1]. Note that
ideal gas satisfies the local equilibrium exactly. This fact describes the strict absence of
spatial correlations between particles, which is, of course, not the case for non-ideal systems.

We focus here on a stationary state with vanishing gas velocity field and constant pres-
sure across the system. The latter, together with n(r) and ϕ(r), follows from conservation
of mass and momentum. The assumptions v = 0 and p(r) = p are in agreement with our
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previous simulation studies [11–13] (for gas–liquid evaporating systems [11,12] and for
Lennard–Jones fluid volumetrically heated [13]), which show that mechanical equilibrium
is established very fast (in comparison to heat flow). Thus, the balance equations for ϕ and
energy simplify to

∂ϕ

∂t
= −2∂i Jd

i ,

∂e
∂t

= −∂i J
Q
i ,

(16)

where Jd ≡ Jd,1 = −Jd,2 is the diffusion current and Jq is the heat current. We choose the
following phenomenological expressions for Jd and Jq [1]:

Jd = −L11∇
( µ

T

)
+ L12∇

(
1
T

)
,

Jq = −L21∇
( µ

T

)
+ L22∇

(
1
T

) (17)

In steady state, Jd = 0 because the system has no contact with particles reservoir.
First, we ignore the thermodiffusion effect, i.e., we assume that L12 = 0. We also

neglect the other cross-term by setting L21 = 0. As a result, Equation (17) reduces to

∇
( µ

T

)
= 0 (18)

and
∇T = const⇒ ∇2T = 0. (19)

The latter yields a linear temperature profile (the system is translationally invariant in x, y
directions)

T(z) = T1 + (T2 − T1)
z
L

. (20)

From Equation (18) we determine the relationship between the local number fraction x1(z)
of the component 1 and the temperature. The local equilibrium allows us to use the local
form of Equation (14) for µ/T; it depends on T(z), x1(z), x2(z), and the pressure p, which
is constant throughout the system. Introducing T̃(z) = T(z)/T1, Equation (18) with the use
of Equation (14) gives

∇ ln
x1(z)
x2(z)

= ∇ ln T̃(z)
f1− f2

2 . (21)

With x1(z) = 1− x2(z) we find

x1(z) =
N1T̃(z)( f1− f2)/2

N2 + N1T̃(z)( f1− f2)/2
. (22)

Note that if f1 = f2, temperature inhomogeneity does not induce spatial variation of
the composition, unless we take into account the effect of thermodiffusion, i.e., L12 6= 0.
In that case we find generally

∇ ln
x1(z)
x2(z)

=

[
f1 − f2

2
− 2L12

kBL11T(z)

]
∇ ln T̃(z). (23)

Onsager coefficients L12 and L11 are assumed to be independent on the concentration and
temperature [14], therefore the solution of Equation (23) is

x1(z) =
N1T̃(z)( f1− f2)/2

N2e
2L12

kBT1L11

(
1− 1

T̃(z)

)
+ N1T̃(z)( f2− f2)/2

. (24)
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This solution clearly shows that in the non-equilibrium steady state the difference f1 − f2 is
a relevant parameter. An analogy can be drawn here with the order parameter: for non-zero
f1 − f2, the profile x1(z) is qualitatively different from that for the zero difference f1 − f2.
Specifically, for f1 − f2 > 0, the concentration of the first component of the mixture (with
more degrees of freedom) increases towards the hotter wall, while for f1 = f2 the opposite is
true (see Figure 1). This observation is important in identifying the steady-state parameters
in constructing global thermodynamics for this system. (In Appendix B, we mention other
approaches to thermodiffusion involving different, measurable thermodiffusion coefficients
and relate them to the Onsager ones.)

0 0.2 0.4 0.6 0.8 1

z / L

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

f
1
 = f

2

T
2

f
1
 > f

2

T
1

Figure 1. Schematic illustration of a binary ideal gas mixture between two parallel walls held at
different temperatures T2 and T1. The resulting temperature gradient induces a gradient of fractions
xi of the mixture components. Solid (green) lines indicate profiles of x1(z/L). Two cases are shown:
(i) f1 > f2 for which the profile is given by Equation (22) and (2) f1 = f2 for which the profile is given
by Equation (A3). For the latter case, we took α12 = 0.3432, which corresponds to the Ne-He pair
at T1 = 300 K. In both cases the temperature profile is given by (20) with the reduced temperature
gradient r = (T2 − T1)/T1 chosen to be 0.5 and N1 = N2.

The density profile follows from the local equation of state and the condition of
constant pressure at steady state, n(z) = p/kBT(z). For a given number of particles,
N = A

∫ L
0 dz n(z), this determines pressure as

p =
N
V

kB
T2 − T1

log T2
T1

. (25)

Finally, the total energy of a mixture is the sum of the energies of the both components of
the mixture (see Equations (9) and (12))

U = U1 + U2 = A
f1

2
kB

∫ L

0
n(z)x1(z)T(z)dz + A

f2

2
kB

∫ L

0
n(z)x2(z)T(z)dz. (26)

Thus, the set of independent parameters controlling the stationary state is T1, T2, A, L, N,
N1, f1, f2.
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4. Non-Equilibrium Parameters and Functions of State

In this section we start constructing non-equilibrium thermodynamics. To this end we
rewrite the total energy (per volume) as follows

u =
U
V

=
f ∗1
2

n1kBT∗ +
f ∗2
2

n2kBT∗, (27)

where ni = Ni/V = (1/L)
∫ L

0 ni(z)dz. This has the same form as in equilibrium but with
temperature T replaced by T∗ and f1, f2 replaced by parameters f ∗1 , f ∗2 , which we call the
“effective” degrees of freedom. From Equation (26), it follows that

f ∗1 = f1

1
L
∫ L

0 n(z)x1(z)
kBT(z)

2 dz

n1
kBT∗

2

= f1 p
1
L
∫ L

0 x1(z)dz
n1kBT∗

(28)

and

f ∗2 = f2

1
L
∫ L

0 n(z)x2(z)
kBT(z)

2 dz

n2
kBT∗

2

= f2 p
1
L
∫ L

0 x2(z)dz
n2kBT∗

(29)

where we have used n(z)T(z) = p/kB = const. The parameter T∗ can be determined from
the requirement that the pressure

p = kB
1
L

∫ L

0

(
n1(z)T(z) + n2(z)T(z)

)
dz = p1 + p2. (30)

Then, Equation (30) can be written as

p = n1kBT∗ + n2kBT∗, (31)

which is to say that partial pressures in steady state are related to the non-equilibrium
energies in the same way as in equilibrium (see Equation (9)) but with fi replaced by f ∗i .
Solving Equation (31) with the use of Equation (25), we find

T∗ =
p

kB

1
n1 + n2

=
p

kB

V
N

=
T2 − T1

ln T2
T1

(32)

T∗ can be interpreted as an “average” temperature in the non-equilibrium steady state.
Eliminating p in expressions for f ∗1 , f ∗2 we find:

f ∗1 =
f1

x1

1
L

∫ L

0
x1(z)dz,

f ∗2 =
f2

x2

1
L

∫ L

0
x2(z)dz.

(33)

Using x2(z) = 1− x1(z) we can see that the new parameters of state f ∗1 , f ∗2 are not indepen-
dent but obey the following relation:

f ∗1
f1

x1 +
f ∗2
f2

x2 = 1. (34)

We note that even if both components of the mixture have the same number of de-
grees of freedom f1 = f2, the effective parameters f ∗1 , are not equal in non-equilibrium
steady states providing we do not neglect thermal diffusion (see Equation (24)). Using
Equations (20) and (22) for the profiles of the number fraction x1(z) of the component 1
and temperature T(z), we can express the steady-state variable f ∗1 in terms of the control
parameters. The explicit formulas can be obtained for the case of f1 6= f2 in terms of the
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special functions as presented in Appendix A. For small, reduced temperature gradients
r = (T2 − T1)/T1 and for N1 = N2 we find

f ∗1 ≈
f1

x1

(
1
2
+

f1 − f2

16
r
)
+ O(r2). (35)

If N1 6= N2, the expression for f ∗1 in this limit is more complicated, but has a similar
structure in terms of dependence on r. The coefficients are functions of N1/N2 and f1, f2
but not of T1 as shown in Appendix A. In the case of f1 = f2, for which x1(z) given by
Equation (24), the integral cannot be expressed in a closed form.

In the next step in the construction of global thermodynamics, we note that because
the Equations (27) and (31) have the same structure as the equilibrium equation of state, we
may formally write:

S∗ = (S∗1)
(0) + (S∗2)

(0) − N1 ln
N1

N
− N2 ln

N2

N
, (36)

with

(S∗i )
(0)

NikB
=

f ∗i
2

+ 1 +
f ∗i
2

ln

[
2ΦiU

kB(N1 f ∗1 + N2 f ∗2 )

(
V
Ni

)2/ f ∗i
]

. (37)

Equation (36) has the functional form of the equilibrium fundamental relation for a binary
ideal gas mixture with fi replaced by f ∗i (compare Equations (10) and (11)). We will treat
Equation (36) as a definition of the non-equilibrium steady-state entropy S∗(U, V, N1, N2, f ∗1 , f ∗2 )
that also provides the fundamental relation for the non-equilibrium steady state. We note that S∗

differs from total entropy defined as Stot = A
∫

dzs(z), where s(z) is the volumetric entropy
density given by local equilibrium assumption within irreversible thermodynamics. In
comparison with the equilibrium entropy, S∗ depends on additional two state parameters
f ∗1 and f ∗2 . As a consequence, for the difference dS∗ we find:

dS∗ =
dU
T∗

+
p

T∗
dV −

µ∗1
T∗

dN1 −
µ∗2
T∗

dN2 −
F1

T∗
d f ∗1 −

F2

T∗
d f ∗2 , (38)

where
µ∗i

kBT∗
= −

(
∂S∗

∂Ni

)
U,V,Nj 6=i , f ∗1 , f ∗2

= −
f ∗i
2

ln
ΦikBT∗

n
2/ f ∗1
i

+ ln xi

(39)

and
Fi
T∗

= −
(

∂S∗

∂ f ∗i

)
U,V,N1,N2, f ∗j 6=i

= −Ni
f ∗i

(
ln xi −

µ∗i
T∗

)
. (40)

Equations (32)and (35) provide the effective parameters of state, T∗ and f ∗1 for given
control parameters T1, T2 and N1, N2 at fixed N1 + N2.

5. First Law and Its Consequences

We now consider the change of the total internal energy dU in our system. From
Equation (38), we have

dU = T∗dS∗ − pdV + µ∗1dN1 + µ∗2dN2 +F1d f ∗1 +F2d f ∗2 . (41)
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As argued in Ref. [4], the change in internal energy dU in the very slow process of moving
from one steady state to another by varying the control parameters (so that the pressure
remains homogeneous) is given by

dU = d̄Q +d̄W, (42)

where d̄Q is the net heat entering the system during this transition, and for the fixed number
of mixture components the mechanical work done is

d̄W = −pdV. (43)

The Equation (42) is therefore the first law of thermodynamics for non-equilibrium steady
states where the net heat identified by Equations (42) and (38) (at constant N1 and N2) is

d̄Q = dU + pdV = T∗dS∗ +F1d f ∗1 +F2d f ∗2 . (44)

We note that the net heat flow during the transition between two steady states is a com-
bination of two exact differentials: the effective entropy dS∗ and the effective degrees of
freedom d f ∗1 (from Equation (34) it follows that d f ∗2 = − x2 f1

x1 f2
d f ∗1 ). This is contrary to the

equilibrium thermodynamics, in which heat depends only on temperature and the change
in entropy.

At equilibrium, the most experimentally available thermodynamic quantities are
response functions such as heat capacities, compressibility, susceptibility or chemical
response functions. They follow from the first law of thermodynamics and the equilibrium
fundamental relationship. Using the symmetry of the second derivatives, i.e., Maxwell
relations, one can express one response function in terms of others. This is very useful as,
for example, the heat capacity can be determined by measurements of other quantities,
such as isothermal compressibility [8].

Once we have established the fundamental relationship for steady states of binary
mixtures of ideal gases, we can generalize the equilibrium response functions to steady-state
response functions. First, we consider thermal response function, i.e., the heat capacity
C, which is a measure of amount of heat needed to raise the temperature of a system by
a given amount. Generally, it is defined as derivative, C = d̄Q/dT, but depending on
which independent variables are fixed during the measurements, one has different heat
capacities. For example, the heat capacity at constant volume and number of components
{Nj} is defined as CV = d̄Q/dT|V,{Nj}

, whereas Cp = d̄Q/dT|p,{Nj}
is the heat capacity at

constant pressure and {Nj}. Meanwhile, in the equilibrium state at a constant volume
and fixed {Nj} and { f j}, we can change only the temperature of the system, in the non-
equilibrium steady state we have more possibilities: we can independently vary T1 and T2,
or equivalently T2 and the reduced difference r = (T2 − T1)/T1. If one changes T2 at fixed
r then the state parameter f ∗1 remains constant (see Appendix A and Equation (35)) we can
define steady-state heat capacities for constant volume and pressure as follows

C∗V =
d̄Q
dT∗ |V,{Nj}

, f ∗1
(45)

and
C∗p =

d̄Q
dT∗ |p,{Nj}

, f ∗1
. (46)

Concerning mechanical response functions, we can generalize isothermal compressibility
and thermal expansivity to the steady states as follows

κ∗T,Nj
= − 1

V

(
∂V
∂p

)
|T∗ ,{Nj}

, f ∗1

(47)
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and

α∗p,Nj
=

1
V

(
∂V
∂T∗

)
|p,{Nj}

, f ∗1

. (48)

Because the fundamental equation of steady state has the same form as in equilibrium,
the Maxwell relations for the path with r = const and f ∗1 = const provide connection
between the thermal and mechanical response function, which is the same as in the equilib-
rium, i.e.,

κ∗T,Nj

(
C∗p − C∗V

)
= T∗V

(
α∗p,Nj

)2
. (49)

In order to determine C∗p one need to measure the excess heat due to the small change of T2,
which is in principle possible due to the recent development of the appropriate experimental
techniques [15]. The coefficient κ∗T,Nj

should be measured by changing the pressure at fixed
both temperatures T1 and T2, while the coefficient α∗p,Nj

should be determined by varying
T2 at fixed reduced gradient r.

In order to control the state parameter f ∗1 during measurements of response function,
one has to be able to determine it experimentally as a function of control parameters T1, T2,
and V for given N1, N2. To this end, one needs an experimental procedure to determine S∗

and f ∗1 ( f ∗2 is not an independent state parameter). Because the fundamental relation has
the same form as in equilibrium thermodynamics, by performing the Legendre transform
of the non-equilibrium fundamental relation, we can move to the variables T∗ and f ∗2 .
First, we measure pressure and use Equation (31) to determine T∗(T1, T2, V). The net heat,
with the use of Equations (34), (38), (40) and (44) can be written as dQ = α(T∗, f ∗1 , V)dT∗ +
β(T∗, f ∗1 , V)d f ∗1 . With the non-equilibrium temperature T∗ determined as described above
and the heat differential determined during the change from one to another steady state
by slight change of T1, T2 or V, we determine f ∗1 (T1, T2, V). This situation is similar to
equilibrium thermodynamics, where mechanical and caloric measurements are necessary
to determine the fundamental relation. This aspect is the same. The difference between
steady-state and equilibrium thermodynamics lies in the fact that out-of-equilibrium,
the measurement should be performed for a larger space of parameters. In our case, we
have the two-dimensional space T1(= T2), V in equilibrium while the three-dimensional
space in steady-state T1, T2, V. Having the non-equilibrium parameters of state determined,
T∗(T1, T2, V), f ∗1 (T1, T2, V), f ∗2 (T1, T2, V) allows one to plan the experiment and change
T1, T2, V in such a way that f ∗1 is kept constant and the relation can be experimentally
checked (49).

Let us consider a more general case where the system’s temperature profile is un-
known. This situation appears when the heat conductivity depends on the gas density.
It is straightforward to apply the integration of equations over volume and obtain the
fundamental relation without any changes. As a result, the fundamental relations hold
with other (not necessarily linear) temperature profiles. Moreover, the effective parameters
S∗, f ∗1 , f ∗2 can be determined experimentally according to the above-described procedure.
In addition, because the pressure in the system is homogeneous, the mapping procedure
also holds for the container of any shape. The introduced thermodynamic description thus
works for a broad class of a binary mixture of ideal gases in vessels of different shapes and
practically any temperature profile. There may be more control parameters, not only the
two, that determine the temperature profile in the system. However, even when there are
many control parameters, the fundamental relation with S∗, V, N1, N2, f ∗1 , and f ∗2 with only
five parameters of state always carries the whole of thermodynamic information in the
system and leads to thermodynamic relations such as relation (49).

6. Summary

The internal energy of the binary ideal gas mixture in a heat flow is the function
of five parameters of state U(S∗, V, N1, N2, f ∗), irrespective of the number of boundary
conditions. These parameters determine different ways of changing the internal energy of
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the system. The parameter f ∗ is responsible for additional net heat, not included in T∗dS∗.
T∗dS∗ is not the differential form describing total net heat in the system. The total net heat
is given not only by the changes in S∗ but also in f ∗. The same observation was made for
the van der Waals gas in the heat flow. In this case, the total net heat was given not only
by S∗, but also by the renormalization in the mapping procedure of two parameters of
state a∗, b∗ describing attractive interactions and the excluded volume in the van der Waals
gas [16]. These parameters are constant at equilibrium since they are material parameters
that define interactions in a particular system, but in non-equilibrium van der Waals gas
they are parameters of state, which change the energy due to the change of density profiles.
In our case of binary mixture the new parameter of state emerged from concentration
profiles. Due to existence of profiles of different physical quantities, we expect all material
parameters to become state parameters in the non-equilibrium systems.

Our construction of global thermodynamics for stationary states can be naturally
extrapolated from binary to multi-component ideal gas mixtures in a stationary heat flow.
Obviously, the number of state parameters of the stationary state will increase to include
all Ni and f ∗i , where i = 1, . . . , m and m is the number of components. For the constant
number of molecules N = ∑m

i=1 Ni, the effective parameters f ∗i will not be independent.
Each new parameter of state will add contribution to dU as given by Equation (41).

The formulation of the first law of global non-equilibrium thermodynamics opens the
possibility to formulate the second law. The second law defines the direction of processes
that take place in out-of-equilibrium systems. In our recent contributions [17] we showed
that formulating the first law of stationary thermodynamics for a specific class of problems
is a necessary step towards pursuing the second law. This class of problems can be extended
to additional forms of energies residing in the system, e.g., Van der Waals gas (internal
potential), ideal gas in gravitational field (external potential) and in this contribution,
the mixture of gases (multiple components). Formulation of the second law for these
system is under development.

Author Contributions: Conceptualization, R.H., A.M. and K.M.; methodology, R.H., K.M., A.M.
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Appendix A. Variables of Steady State in Terms of Control Parameters

The integral of the concentration profile x1(z) in Equation (28) for the integrand given
by Equation (22) with N1 = N2 can be obtained analytically in terms of the Gaussian
hypergeometric function 2F1(a, b; c; w) and polygamma function ψ(m)(w) [18]:

1
L

∫ L

0
x1(z)dz =

1
rδ

[
ψ(0)(d)− ψ(0)(d + 1/2)

]
+

2
r(2 + δ)

(1 + r)1+ δ
2 2F1(1, 2d; 2d + 1;−(1 + r)

δ
2 ),
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where d = 1/δ + 1/2 with δ = f1 − f2 > 0 and r = (T2 − T1)/T1 > 0 is the reduced slope
of the temperature profile. The state variable f ∗1 is thus

f ∗1 =
f1

x1
[B1(δ, r) + B2(δ, r)], (A1)

where
B1(δ, r) =

1
rδ

[
ψ(0)(d)− ψ(0)(d + 1/2)

]
B2(δ, r) =

2
r(2 + δ)

(1 + r)1+ δ
2 2F1(1, 2d; 2d + 1;−(1 + r)

δ
2 ).

For N1 6= N2 we obtain

f ∗1 =
f1

x1

[
D1

(
δ, r,

N1

N2

)
+D2

(
δ, r,

N1

N2

)]
, (A2)

where

D1

(
δ, r,

N1

N2

)
= − 2N1

N2r(2 + δ) 2F1

(
1, 2d; 2d + 1;−N1

N2

)
D2

(
δ, r,

N1

N2

)
=

2N1(1 + r)1+ δ
2

N2r(2 + δ) 2F1

(
1, 2d; 2d + 1;−N1

N2
(1 + r)

δ
2

)
.

For small reduced temperature gradients across the system we find for N1 6= N2

f ∗1 ≈
f1

x2
2F1

(
1, 2d; 2d + 1;− x1

x2

)
− f1

x1

(
− x1

x2

)− 2
δ

B
(
− x1

x2
; 2d + 1;−1

)
+

f1

x2

f1 − f2

4(1 + x1/x2)2 r + O(r2),

where B(r; p, q) is incomplete Euler beta function [18]. For N1 = N2 the above expression
reduces to Equation (35).

Appendix B. Other Approaches to Thermodiffusion

It is worth stressing that many numerical results as well as measurements of ther-
modiffusion coefficients are reported in the literature (see, e.g., [19–22] and references
therein). They indicate that, unlike Onsager coefficients, these coefficients are functions
of composition and temperature. For example, within the framework of the generalized
Stefan–Maxwell thermodiffusion equations for f1 = f2, one obtains exactly the same equa-
tion as Equation (23), but with 2L12/(L11kBT) replaced by α12 = A12/D12. Aij is the
Newman–Soret thermal diffusion coefficient and Dij is the Stefan–Maxwell diffusivity (see
e.g., Equation (6.8) from Ref. [22]). It is argued that coefficients Aij = DT

i /ρi − DT
j /ρj,

where DT
i is the thermal diffusivity coefficient of component i and ρi is its mass density, are

more approximately constant with respect to composition in binary systems [23]. Assuming
that the ratio α12 does not depend on both temperature and composition, the solution of
Equation (23) for the profile x1(z) is

x1(z) =
N1T̃(z)( f1− f2)/2−α12

N2 + N1T̃(z)( f1− f2)/2−α12
. (A3)

For noble gas pairs at T = 300 K, the value of α12 is equal to 0.3432 for a Ne-He pair, 0.1741
for an Ar-Ne pair, or 0.0262 for a Xe-Kr pair [24,25].
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