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Abstract: In previous papers, it has been shown how Schrödinger’s equation which includes an
electromagnetic field interaction can be deduced from a fluid dynamical Lagrangian of a charged
potential flow that interacts with an electromagnetic field. The quantum behaviour is derived from
Fisher information terms added to the classical Lagrangian, showing that a quantum mechanical
system is driven by information and not only electromagnetic fields. This program was applied to
Pauli’s equations by removing the restriction of potential flow and using the Clebsch formalism.
Although the analysis was quite successful, there were terms that did not admit interpretation, a
number of which can be easily traced to the relativistic Dirac theory. Here, this analysis is repeated
for a relativistic flow, pointing to a new approach for deriving relativistic quantum mechanics.
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1. Introduction

A comprehensive introduction to the subject of the variational formalism of non-
relativistic fluid dynamics and quantum mechanics and their deep interconnections is
provided in [1,2], and we do not repeat it here.

The original work of Clebsch and all the following publications assume a non-relativistic
fluid in which the velocity of the flow is much slower than the speed of light in a vacuum
c. This is of course to be expected, as the work of Clebsch preceded Einstein’s work on
special relativity by 48 years. There is a practical basis as well, as relativistic flows are hardly
encountered on earth.

The standard approach to relativistic flows is based on the energy–momentum tensor [3–5];
however, this approach is not rigorous, as the definition of an energy–momentum tensor can
only be carried out if a Lagrangian density is provided [6]. However, no Lagrangian density
is known for relativistic flows. In this work, we intend to expand the work of Clebsch to
relativistic flows and thereby amend this lacuna with a derived Lagrangian density for
a relativistic flow, from which will be possible to obtain the rigorous energy–momentum
tensor of high velocity flows.

We begin by introducing a variational principle for a relativistic charged classical
particle with a vector potential interaction and a system of the same. This is followed by
the Eckart [7] Lagrangian variational principles generalized for a relativistic charged fluid.
We then introduce a Eulerian–Clebsch variational principle for a relativistic charged fluid.
Finally, the concept of Fisher information allows us to suggest a new approach to relativistic
quantum mechanics.

2. Variational Analysis of Relativistic Trajectories

We study a particle travelling in a constant metric spacetime. The action A for a
relativistic particle is

A = −mc
∫

dτ − e
∫

Aαdxα (1)
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where τ is the “length” (interval) along the trajectory

dτ2 =
∣∣∣ηαβdxαdxβ

∣∣∣ = |dxαdxα| (2)

where xα denotes the particle’s coordinates (the metric raises and lowers indices, as is
customary), m denotes the particle’s mass, e denotes the particle’s charge, and Aα denotes
the four-vector potential, which is a function of the particle coordinates. In addition, Aα

transforms under Lorentz transformations as a four-dimensional vector. Variational analysis
leads to the following equations:

m
duα

dτ
= − e

c
uβ(∂β Aα − ∂α Aβ), uα ≡ dxα

dτ
, ∂α ≡ ∂

∂xα
, ∂β ≡ ηβα∂α (3)

in which the metric ηαβ is the Lorentz–Minkowski metric:

ηαβ = diag (1,−1,−1,−1). (4)

2.1. Space and Time

For a spacetime with a Lorentz–Minkowski metric, the partition into spatial and
temporal coordinates is easy. The spatial coordinates are ~x = (x1, x2, x3) (in which we
introduce a three-dimensional vector notation) and the temporal coordinate is x0. Time
is measured in seconds and space in meters; thus, we need the conversion coefficient
c to convert between the two system of units x0 = ct. We define both a three- and a
four-dimensional velocity, as follows:

~v ≡ d~x
dt

, v = |~v|, vα ≡
dxα

dt
= (c,~v). (5)

It customary to partition Aα into temporal and spatial pieces:

Aα = (A0, A1, A2, A3) ≡ (A0, ~A) ≡ (
φ

c
, ~A) (6)

where the factor 1
c preceding the scalar potential φ allows us to write the equations in

MKS units, and as such is not needed for arbitrary types of units. We can now define a
magnetic field

~B = ~∇× ~A, (7)

where ~∇ is the nabla operator, and define the electric field as follows:

~E = −∂~A
∂t
− ~∇φ (8)

If v < c, for the differential of the interval we obtain

dτ2 = c2dt2(1− v2

c2 ), dτ = cdt

√
1− v2

c2 =
cdt
γ

, γ ≡ 1√
1− v2

c2

. (9)

The non relativistic limit is v� c, in which case:

γ ' 1. (10)

From now on, we use the symbol' for the low-velocity classical approximation (i.e., the non-
relativistic limit). Thus, the spatial part of Equation (3) is obtained in the well-known form:

d
dt
(mγ~v) =

d
dt

m
~v√

1− v2

c2

 = e
(
~E +~v× ~B

)
, m

d~v
dt
' e
(
~E +~v× ~B

)
. (11)
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2.2. The Lagrangian

We can write the action (1) as a temporal integral, and thereby define the following
Lagrangian:

A =
∫ t2

t1
Ldt, L = L0 + Li

L0 ≡ −mc
dτ

dt
= −mc2

γ
= −mc2

√
1− v2

c2 '
1
2

mv2 −mc2,

Li ≡ −eAα dxα

dt
= e(~A ·~v− φ). (12)

in the above, the ' symbol signifies a classical (low-speed) approximation. Note that the
interaction part of the Lagrangian is the same for high and low speeds, while the kinetic
part takes a different and simpler form for the low-speed cases.

2.3. The Action and Lagrangian for a System of Particles

Consider N particles indexed by n ∈ [1− N], with a corresponding mass mn and
charge en. Each particle has a trajectory xα

n(τn), in which τn measures the interval already
propagated along the trajectory; thus,

uα
n ≡

dxα
n

dτn
. (13)

We assume as usual that the particle trajectories pierce through time “planes” and that
the “plane” t is pierced at a position vector ~xn(t); see Figure 1 (actually, each “plane” is
three-dimensional).

Figure 1. Schematic drawing of two trajectories piercing a time “plane”, which is illustrated as a
straight line.

Thus, we can define a velocity ~vn ≡ d~xn
dt . The action and Lagrangian for every particle

are as before:

An = −mnc
∫

dτn − en

∫
Aα(xν

n)dxαn =
∫ t2

t1
Lndt, Ln ≡ L0n + Lin

L0n ≡ −mnc2

γn
' 1

2
mnv2

n −mnc2, Lin ≡ en

(
~A(~xn, t) ·~vn − φ(~xn, t)

)
. (14)
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The action and Lagrangian for the system of particles are trivially deduced:

As =
∫ t2

t1
Lsdt, Ls =

N

∑
n=1

Ln. (15)

The variational analysis follows the same route as for one particle, and the following set of
equations are obtained:

mn
duα

n
dτn

= − en

c
uβ

n(∂β Aα
n − ∂α Aβn), n ∈ [1− N]. (16)

For the three dimensional form,

d
dt
(γn~vn) =

en

mn

[
~vn × ~B(~xn, t) + ~E(~xn, t)

]
, n ∈ [1− N]. (17)

In the low velocity limit,

d~vn

dt
' en

mn

[
~vn × ~B(~xn, t) + ~E(~xn, t)

]
, n ∈ [1− N], (18)

in which we do not sum over repeated Latin indices.

3. The Lagrangian Description of a Relativistic Charged Fluid
3.1. Action and Lagrangian

The dynamics of a flow are specified by its composition and the forces acting upon
it. The fluid is composed of “fluid elements” [7,8]. A “fluid element” is a point particle
with an infinitesimal mass dM~α, infinitesimal charge dQ~α, position four vector x~αν(τ~α), and
u~αν(τ~α) ≡

dx~αν(τ~α)
dτ~α

. Here, the continuous vector label~α is present instead of the discrete index
n used in the previous section. However, the “fluid element” is not a proper point particle,
as it has an infinitesimal volume dV~α, infinitesimal entropy dS~α, and infinitesimal internal
energy dEin ~α. The action for each “fluid element” follows Equation (12) and has the form

dA~α = −dM~αc
∫

dτ~α − dQ~α

∫
Aµ(xν

~α)dxµ~α + dAin ~α,

dAin ~α ≡ −
∫

dEin ~αdt. (19)

The Lagrangian for each “fluid element” can be derived from the above expression as
follows:

dA~α =
∫ t2

t1
dL~αdt, dL~α ≡ dLk~α + dLi~α − dEin ~α

dLk~α ≡ −dM~αc2

γ~α
' 1

2
dM~α v~α(t)

2 − dM~αc2

dLi~α ≡ dQ~α

(
~A(~x~α(t), t) ·~v~α(t)− φ(~x~α(t), t)

)
. (20)

The action and Lagrangian of the entire fluid is integrated over all possible~α’s:

L =
∫
~α

dL~α

A =
∫
~α

dA~α =
∫
~α

∫ t2

t1
dL~αdt =

∫ t2

t1

∫
~α

dL~αdt =
∫ t2

t1
Ldt. (21)

We define a density by dividing a fluid element quantity by its volume. This is done for the
Lagrangian, mass, charge, and internal energy of every fluid element by introducing the
following symbols:
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L~α ≡
dL~α
dV~α

, ρ~α ≡
dM~α

dV~α
, ρc~α ≡

dQ~α

dV~α
, ein ~α ≡

dEin ~α

dV~α
(22)

Every quantity of the density type is a function of ~x, in which the “fluid element” labelled
~α is located in time t, for example,

ρ(~x, t) ≡ ρ(~x~α(t), t) ≡ ρ~α(t). (23)

In addition, we define “specific” quantities by dividing and the attribute of the “fluid
element” by its mass, for example, a specific internal energy ε~α is:

ε~α ≡
dEin ~α

dM~α
⇒ ρ~αε~α =

dM~α

dV~α

dEin ~α

dM~α
=

dEin ~α

dV~α
= ein ~α. (24)

Thus, we can partition the Lagrangian density as follows:

L~α =
dL~α
dV~α

=
dLk~α
dV~α

+
dLi~α
dV~α
− dEin ~α

dV~α
= Lk~α + Li~α − ein ~α

Lk~α ≡ −ρ~αc2

γ~α
' 1

2
ρ~αv~α(t)

2 − ρ~αc2,

Li~α ≡ ρc~α

(
~A(~x~α(t), t) ·~v~α(t)− ϕ(~x~α(t), t)

)
. (25)

We can now write the fluid Lagrangian as a spatial integral:

L =
∫
~α

dL~α =
∫
~α
L~αdV~α =

∫
L(~x, t)d3x (26)

which we use in the later section concerned with the Eulerian representation of the fluid.

3.2. Variational Analysis

Here, we introduce the symbols ∆~x~α ≡ ~ξ~α to denote a variation of the trajectory ~x~α(t),
hence,

∆~v~α(t) = ∆
d~x~α(t)

dt
=

d∆~x~α(t)
dt

=
d~ξ~α(t)

dt
, (27)

and according to Equation (9),

∆
(

1
γ~α

)
= −γ~α~v~α(t)

c2
d~ξ~α(t)

dt
, ∆γ~α =

γ3
~α~v~α(t)

c2
d~ξ~α(t)

dt
. (28)

An “ideal fluid” is defined by the fact that the “fluid element” does not exchange mass,
electric charge, or heat with other elements; or in variational form,

∆dM~α = ∆dQ~α = ∆dS~α = 0. (29)

According to thermodynamics, a change in the internal energy of a “fluid element” satisfies
the below equation in the particle’s rest frame:

∆dEin ~α0 = T~α0∆dS~α0 − P~α0∆dV~α0. (30)

In the above equation, the first term describes the heating of the “fluid element”, while
the second term is a manifestation of the work performed by the “fluid element” on
neighbouring elements; T~α0 denotes the temperature of the “fluid element” in the rest
frame, and P~α0 is the pressure of the same. As the rest mass of the fluid element does not
change and does not depend on any specific frame, we may divide the above expression by
dM~α to derive the variation of the specific energy:
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∆ε~α0 = ∆
dEin ~α0
dM~α

= T~α0∆
dS~α0
dM~α

− P~α0∆
dV~α0
dM~α

= T~α0∆s~α0 − P~α0∆
1

ρ~α0
= T~α0∆s~α0 +

P~α0

ρ2
~α0

∆ρ~α0. s~α0 ≡
dS~α0
dM~α

(31)

where s~α0 is the specific entropy of the fluid element in its rest frame. It follows (suppressing
the indices~α below) that

∂ε0

∂s0
= T0,

∂ε0

∂ρ0
=

P0

ρ2
0

. (32)

Another useful thermodynamic quantity is the enthalpy, defined for a fluid element in its
rest frame as follows:

dW~α0 = dEin ~α0 + P~α0dV~α0. (33)

with the specific enthalpy then being

w~α0 =
dW~α0
dM~α

=
dEin ~α0
dM~α

+ P~α0
dV~α0
dM~α

= ε~α0 +
P~α0
ρ~α0

. (34)

Combining the above with Equation (32), we obtain the following useful property:

w0 = ε0 +
P0

ρ0
= ε0 + ρ0

∂ε0

∂ρ0
=

∂(ρ0ε0)

∂ρ0
. (35)

Moreover,

∂w0

∂ρ0
=

∂(ε0 +
P0
ρ0
)

∂ρ0
= −P0

ρ2
0
+

1
ρ0

∂P0

∂ρ0
+

∂ε0

∂ρ0
= −P0

ρ2
0
+

1
ρ0

∂P0

∂ρ0
+

P0

ρ2
0
=

1
ρ0

∂P0

∂ρ0
. (36)

For an ideal fluid, we neglect heat conduction and radiation, and consider only the convec-
tion. Thus, ∆dS~α0 = 0, and it follows that:

∆dEin ~α0 = −P0∆dV~α0. (37)

We now need to establish some relations between the rest frame and any other frame in
which the fluid element is in motion; this frame is sometimes denoted the “laboratory”
frame. First, note that in the rest frame there is (by definition) no velocity; hence, according
to Equation (9), we have:

dτ = cdt0 = cdt

√
1− v2

c2 =
cdt
γ

⇒ dt0 =
dt
γ

. (38)

It is well known that the four-volume is Lorentz invariant; hence,

dV0dt0 = dVdt = dVdt0γ, ⇒ dV0 = γdV. (39)

Thus,

ρ0 =
dM
dV0

=
1
γ

dM
dV

=
ρ

γ
, ⇒ ρ = γρ0. (40)

Moreover, the action provided in Equation (19) is Lorentz invariant; thus,

dEin ~α0dt0 = dEin ~αdt = dEin ~αdt0γ⇒ dEin ~α0 = γdEin ~α, dEin ~α =
dEin ~α0

γ
. (41)

We can now vary the internal energy of the fluid element:

∆dEin ~α = ∆
(

1
γ

)
dEin ~α0 +

1
γ

∆dEin ~α0. (42)
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Taking into account Equations (37) and (39), we obtain:

∆dEin ~α = ∆
(

1
γ

)
dEin ~α0 −

1
γ

P0∆dV~α0 = ∆
(

1
γ

)
dEin ~α0 −

1
γ

P0∆(γdV~α). (43)

Thus, using the definition of enthalpy in Equation (33), we can write:

∆dEin ~α = ∆
(

1
γ

)
(dEin ~α0 + P0dV~α0)− P0∆dV~α = ∆

(
1
γ

)
dW~α0 − P0∆dV~α. (44)

We now vary the volume element. At time t, the volume of the fluid element is:

dV~α,t = d3x(~α, t). (45)

The Jacobian relates this to the same element at t = 0:

d3x(~α, t) = Jd3x(~α, 0), J ≡ ~∇0x1 · (~∇0x2 × ~∇0x3) (46)

where ~∇0 is calculated with respect to the t = 0 coordinates of the fluid elements:

~∇0 ≡ (
∂

∂x(~α, 0)1
,

∂

∂x(~α, 0)2
,

∂

∂x(~α, 0)3
). (47)

An interesting point is that the construction of the volume element of space from three
vectors, for which we construct a Jacobian as in Equation (46), is very similar to the con-
struction of a four-dimensional volume element from four scalars considering a Jacobian
of the transformation of space time coordinates to scalar field space, as was done long ago
in [9–12]. Thus,

∆dV~α,t = ∆d3x(~α, t) = ∆J d3x(~α, 0) =
∆J
J

d3x(~α, t) =
∆J
J

dV~α,t,

(∆d3x(~α, 0) = 0). (48)

The variation of J can be derived as follows:

∆J = ~∇0∆x1 · (~∇0x2 × ~∇0x3) + ~∇0x1 · (~∇0∆x2 × ~∇0x3) + ~∇0x1 · (~∇0x2 × ~∇0∆x3), (49)

Now, we have:

~∇0∆x1 · (~∇0x2 × ~∇0x3) = ~∇0ξ1 · (~∇0x2 × ~∇0x3)

= ∂kξ1~∇0xk · (~∇0x2 × ~∇0x3) = ∂1ξ1~∇0x1 · (~∇0x2 × ~∇0x3) = ∂1ξ1 J.
~∇0x1 · (~∇0∆x2 × ~∇0x3) = ~∇0x1 · (~∇0ξ2 × ~∇0x3)

= ∂kξ2~∇0x1 · (~∇0xk × ~∇0x3) = ∂2ξ2~∇0x1 · (~∇0x2 × ~∇0x3) = ∂2ξ2 J.
~∇0x1 · (~∇0x2 × ~∇0∆x3) = ~∇0x1 · (~∇0x2 × ~∇0ξ3)

= ∂kξ3~∇0x1 · (~∇0x2 × ~∇0xk) = ∂3ξ3~∇0x1 · (~∇0x2 × ~∇0x3) = ∂3ξ3 J. (50)

Thus,
∆J = ∂1ξ1 J + ∂2ξ2 J + ∂3ξ3 J = ~∇ ·~ξ J, ∆dV~α,t = ~∇ ·~ξ dV~α,t. (51)

The variation of the internal energy of Equation (44) can be written as follows:

∆dEin ~α = ∆
(

1
γ

)
dW~α0 − P0~∇ ·~ξ dV~α,t. (52)

Taking into account Equation (28), this takes the following form:

∆dEin ~α = −P~α0~∇ ·~ξ~α dV~α,t −
γ~α~v~α(t)

c2 dW~α0 ·
d~ξ~α(t)

dt
. (53)
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The variation of internal energy is the only new calculation with respect to the calculation
for a system of particles (as described previously) thus, the rest of the analysis is trivial.
Varying Equation (19), we obtain

∆dA~α =
∫ t2

t1
∆dL~αdt, ∆dL~α = ∆dLk~α + ∆dLi~α − ∆dEin ~α

∆dLk~α = −dM~αc2∆
(

1
γ~α

)
= dM~αγ~α~v~α(t) ·

d~ξ~α(t)
dt

,

∆dLi~α = dQ~α

(
∆~A(~x~α(t), t) ·~v~α(t) + ~A(~x~α(t), t) · ∆~v~α(t)

− ∆φ(~x~α(t), t)). (54)

We can now combine the internal and kinetic parts of the varied Lagrangian, taking
into account the specific enthalpy definition in Equation (34):

∆dLk~α − ∆dEin ~α = dM~αγ~α

(
1 +

w0

c2

)
~v~α(t) ·

d~ξ~α(t)
dt

+ P~α0~∇ ·~ξ~α dV~α,t. (55)

The electromagnetic interaction variation terms are not different than in the low-speed (non-
relativistic) case (see for example Equations (A47) and (A48) of [1]), and their derivation is
repeated here:

d~FL~α ≡ dQ~α

[
~v~α × ~B(~x~α(t), t) + ~E(~x~α(t), t)

]
(56)

and

∆dLi~α =
d(dQ~α

~A(~x~α(t), t) ·~ξ~α)
dt

+ d~FL~α ·~ξ~α. (57)

We can introduce the shorthand notation

λ̄ ≡ 1 +
w0

c2 , λ ≡ γλ̄ = γ
(

1 +
w0

c2

)
. (58)

If the enthalpy of a fluid element in its rest frame is much smaller than its rest energy,
we have:

dW~α0 � dM~αc2 ⇒ 1� dW~α0
dM~αc2 =

w~α0
c2 . (59)

Thus, in the classical limit (which involves restrictions on the enthalpy of both the fluid
element and its velocity), we have

λ̄ ' 1, λ ' 1. (60)

The variation of the action of a relativistic fluid element is

∆dA~α =
∫ t2

t1
∆dL~αdt = (dM~αλ~α~v~α(t) + dQ~α

~A(~x~α(t), t)) ·~ξ~α
∣∣∣t2
t1

−
∫ t2

t1
(dM~α

d(λ~α~v~α(t))
dt

·~ξ~α − d~FL~α ·~ξ~α − P~α0~∇ ·~ξ~α dV~α,t)dt. (61)

Thus, the variation of the relativistic fluid action is

∆A =
∫
~α

dA~α =
∫
~α
(dM~αλ~α~v~α(t) + dQ~α

~A(~x(~α, t), t)) ·~ξ~α
∣∣∣∣t2
t1

−
∫ t2

t1

∫
~α
(dM~α

d(λ~α~v~α(t))
dt

·~ξ~α − d~FL~α ·~ξ~α − P~α0~∇ ·~ξ~α dV~α)dt. (62)

Now, according to Equation (22) we may write:

dM~α = ρ~α dV~α, dQ~α = ρc~α dV~α (63)
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and using the above relations, we can turn the~α integral into a volume integral and write
the variation of the fluid action, in which we suppress the~α labels:

∆A =
∫
(ρλ~v + ρc ~A) ·~ξdV

∣∣∣∣t2
t1
−
∫ t2

t1

∫
(ρ

d(λ~v)
dt
·~ξ − ~fL ·~ξ − P0~∇ ·~ξ)dVdt. (64)

In the above, we have introduced the Lorentz force density

~fL~α ≡
d~FL~α
dV~α

= ρc~α

[
~v~α × ~B(~x~α(t), t) + ~E(~x~α(t), t)

]
. (65)

Now, because
P0~∇ ·~ξ = ~∇ · (P0~ξ)−~ξ · ~∇P0, (66)

and using the Gauss theorem, the variation of the action can be written as

∆A =
∫
(ρλ~v + ρc ~A) ·~ξdV

∣∣∣∣t2
t1

−
∫ t2

t1

[∫
(ρ

d(λ~v)
dt
− ~fL + ~∇P0) ·~ξdV −

∮
P0~ξ · d~Σ

]
dt. (67)

It follows that the variation of the action vanishes for a ~ξ such that ~ξ(t1) = ~ξ(t2) = 0 and is
vanishing on a surface encapsulating the fluid, and otherwise is arbitrary only if the Euler
equation for a relativistic charged fluid is satisfied, that is,

d(λ~v)
dt

= −
~∇P0

ρ
+

~fL
ρ

,
d~v
dt
' −

~∇P0

ρ
+

~fL
ρ

, (68)

for the particular case where the fluid element is made up of identical microscopic parti-
cles each with a mass m and charge e. It follows that the mass and charge densities are
proportional to the number density n:

ρ = m n, ρc = e n⇒
~fL
ρ

= k
[
~v× ~B + ~E

]
, k ≡ e

m
, (69)

thus, except for the terms related to the internal energy, the equation is similar to that for a
point particle. For a neutral fluid, we obtain the following form:

d(λ~v)
dt

= −
~∇P0

ρ
,

d~v
dt
' −

~∇P0

ρ
. (70)

Notably, some authors prefer to write the above equation in terms of the energy per
element of the fluid per unit volume in the rest frame, which is the sum of the internal
energy contribution and the rest mass contribution:

e0 ≡ ρ0c2 + ρ0ε0. (71)

It is easy to show that:

λ̄ = 1 +
w0

c2 =
e0 + P0

ρ0c2 . (72)

Using the above equality and a few manipulations, we may write Equation (70) in a form
which is preferred by certain authors:

(e0 + P0)
γ

c2
d(γ~v)

dt
= −~∇P0 −

γ2

c2
dP0

dt
~v. (73)
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In practical fluid dynamics, a fluid is described in terms of localized quantities instead of
quantities related to unseen infinitesimal “fluid elements”. This is the Eulerian description
of fluid dynamics, in which one uses flow fields rather than “fluid elements”, as is discussed
further below.

4. The Clebsch Approach to a Relativistic Charged Eulerian Fluid

Here, we follow the derivation of [1,2,13], now taking into account the relativistic
nature of the flow; this implies taking into account an action which is invariant under
Lorentz transformations. Let us consider the following action:

A ≡
∫
Ld3xdt, L ≡ L0 + L2 + Li

L0 ≡ −ρ(
c2

γ
+ ε) = −ρ0(c2 + ε0) = −e0, L2 ≡ ν∂ν(ρ0uν)− ρ0αuν∂νβ,

Li ≡ −ρc Aνvν, vν ≡
dxν

dt
. (74)

In the non-relativistic limit, we can write

L0 ' ρ(
1
2

v2 − ε− c2), (75)

taking into account that
uµ = γ(c,~v) (76)

and that ρ = γρ0 according to Equation (40). Hence, it is easy to write the above Lagrangian
densities in a space–time formalism:

L2 = ν[
∂ρ

∂t
+ ~∇ · (ρ~v)]− ρα

dβ

dt
Li = ρc

(
~A ·~v− φ

)
(77)

Here, we consider the variational variables to be functions of space and time (fields). These
include a vector velocity field ~v(~x, t) and density scalar field ρ(~x, t). The way to include
conservation of quantities such as label, mass, charge and entropy in the above formalism,
which is easy in the Lagrange approach, is to use Lagrange multipliers ν, α that enforce the
following equations:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0

dβ

dt
= 0 (78)

Provided that ρ 6= 0, these are the continuity equation which ensures mass conservation
and the condition that β be a label (co-moving function). Combining the variation with
respect to β with the continuity Equation (78) leads to the following equation (similar to
the derivation of Equations (67)–(69) of [2]):

dα

dt
= 0 (79)

Hence, for ρ 6= 0, both α and β are labels. The specific internal energy ε0 defined in Equation
(24) is dependent on the thermodynamic properties of the fluid. This is formulated through
an equation of state as a function of the density and specific entropy. Here, we assume a
barotropic fluid, that is, ε0(ρ0) is a function of the density ρ0 alone. The electromagnetic
potentials ~A, φ are given functions of coordinates, and as such are not varied. Another
assumption in our analysis is that each fluid element is composed of microscopic particles
of mass m and charge e; thus, it follows from Equation (69) that
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ρc = kρ. (80)

We can now take the variational derivative with respect to the density ρ, obtaining:

δρ A =
∫

d3xdtδρ[− c2

γ
− w0

δρ0

δρ
− ∂ν

∂t
−~v · ~∇ν + k(~A ·~v− φ)]

+
∮

d~S ·~vδρν +
∫

d~Σ ·~vδρ[ν] +
∫

d3xνδρ|t1
t0

(81)

or:

δρ A =
∫

d3xdtδρ[− c2 + w0

γ
− ∂ν

∂t
−~v · ~∇ν + k(~A ·~v− φ)]

+
∮

d~S ·~vδρν +
∫

d~Σ ·~vδρ[ν] +
∫

d3xνδρ|t1
t0

. (82)

Hence, if δρ disappears on the boundary and cut, at the initial and final times we obtain:

dν

dt
=

∂ν

∂t
+~v · ~∇ν = − c2 + w0

γ
+ k(~A ·~v− φ)⇒ dν

dt
' 1

2
v2−w0− c2 + k(~A ·~v− φ). (83)

In the above, we use the material derivative defined by the prevalent form:

dg(~α, t)
dt

=
dg(~x(~α, t), t)

dt
=

∂g
∂t

+
d~x
dt
· ~∇g =

∂g
∂t

+~v · ~∇g (84)

when g is taken to be dependent on ~x, t. Equation (83) can be written in short form:

dν

dt
= −c2 λ̄

γ
+ k(~A ·~v− φ) = −c2 λ

γ2 + k(~A ·~v− φ), (85)

in which λ̄ is defined in Equation (58). Finally, we vary the action with respect to ~v, taking
into account that

δ~v
1
γ
= −γ

~v · δ~v
c2 . (86)

This results in

δ~v A =
∫

d3xdtρδ~v · [γ~v− w0

ρ

δρ0

δ~v
− ~∇ν− α~∇β + k~A]

+
∮

d~S · δ~vρν +
∫

d~Σ · δ~vρ[ν], (87)

however,
δρ0

δ~v
= ρ

δ 1
γ

δ~v
= −ργ

~v
c2 . (88)

Taking in account the definition of λ (see Equation (58)), we have

δ~v A =
∫

d3xdtρδ~v · [λ~v− ~∇ν− α~∇β + k~A]

+
∮

d~S · δ~vρν +
∫

d~Σ · δ~vρ[ν]. (89)

The above boundary terms contain an integration over the external boundary
∮

d~S and an
integral over the cut

∫
d~Σ that must be introduced in the case that ν is not single-valued;

more details on this case are provided in the later sections of this paper. The external
boundary term vanishes in the case of astrophysical flows for which ρ = 0 on the free flow
boundary or the case in which the fluid is contained in a vessel which induces a no-flux
boundary condition δ~v · n̂ = 0 (where n̂ is a unit vector normal to the boundary). The cut
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“boundary” term vanishes when the velocity field varies only parallel to the cut, that is,
it satisfies a Kutta-type condition. If the boundary terms vanish, then ~v must have the
following form:

λ~v = α~∇β + ~∇ν− k~A,⇒ ~v ' α~∇β + ~∇ν− k~A, (90)

which is a generalization of the Clebsch representation of the flow field (see for example [7]
and [14], p. 248) for a relativistic charged flow. Note that the ν function contributes to the
velocity field through its gradient; this means that we can add any function of time to ν
without altering the physical field. Redefining

ν̄ ≡ ν + c2t, (91)

we obtain the more standard classical form of Equations (83) and (90):

dν̄

dt
' 1

2
v2 − w0 + k(~A ·~v− φ), ~v ' α~∇β + ~∇ν̄− k~A. (92)

4.1. Euler’s Equations

We now show that a velocity field provided by Equation (90) such that the functions
α, β, ν satisfy the corresponding Equations (78), (79) and (83) must satisfy Euler’s equations.
Let us first calculate the material derivative of λ~v:

d(λ~v)
dt

=
d~∇ν

dt
+

dα

dt
~∇β + α

d~∇β

dt
− k

d~A
dt

. (93)

It can be easily shown that:

d~∇ν

dt
= ~∇dν

dt
− ~∇vn

∂ν

∂xn
= ~∇

(
− c2 + w0

γ
+ k~A ·~v− kφ

)
− ~∇vn

∂ν

∂xn

d~∇β

dt
= ~∇dβ

dt
− ~∇vn

∂β

∂xn
= −~∇vn

∂β

∂xn
(94)

in which xn is a Cartesian coordinate and a summation convention is assumed. Inserting
the result from Equation (94) into Equation (93) yields:

d(λ~v)
dt

= −~∇vn(
∂ν

∂xn
+ α

∂β

∂xn
) + ~∇

(
− c2 + w0

γ
+ k~A ·~v− kφ

)
− k

d~A
dt

= −~∇vn(λvn + kAn) + ~∇(− c2 + w0

γ
+ k~A ·~v− kφ)− k∂t ~A− k(~v · ~∇)~A

= − 1
γ
~∇w0 + k~E + k(vn~∇An − vn∂n ~A), (95)

where the electric field is defined in Equation (8). Furthermore, according to Equation (7),

(vn~∇An − vn∂n ~A)l = vn(∂l An − ∂n Al) = εlnjvnBj = (~v× ~B)l , (96)

hence, we obtain the Euler equation of a charged relativistic fluid in the following form:

d(λ~v)
dt

= − 1
γ
~∇w0 + k

[
~v× ~B + ~E

]
= −1

ρ
~∇P0 + k

[
~v× ~B + ~E

]
, (97)

which is due to (see Equation (36)):

~∇w0 =
∂w0

∂ρ0
~∇ρ0 =

1
ρ0

∂P0

∂ρ0
~∇ρ0 =

1
ρ0

~∇P0. (98)
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Equation (97) is identical to Equation (68); thus, it is proven that the Euler equations can
be derived from the action (77), meaning that all the equations of relativistic charged fluid
dynamics can be derived from the action in (77) using arbitrary and unrestricted variations.

4.2. Simplified Action

It may be claimed the previous approach introduces unnecessary complications to the
theory of relativistic fluid dynamics by adding three additional scalar fields α, β, ν to the
physical set ~v, ρ. We show that this is just a superficial impression, and that Equation (74)
in the pedagogical form can be further simplified. It is easy to show that, defining a
four-dimensional Clebsch four vector:

vµ
C ≡ α∂µβ + ∂µν = (

1
c
(α∂tβ + ∂tν), α~∇β + ~∇ν) = (

1
c
(α∂tβ + ∂tν),~vC) (99)

and a four dimensional electromagnetic Clebsch four vector:

vµ
E ≡ vµ

C + kAµ = (v0
E,~vE) = (

1
c
(α∂tβ + ∂tν + kφ),~vC − k~A), (100)

it follows from Equations (78), (85) and (90) that:

vµ = −
vEµ

λ
⇒ ~v =

~vE
λ

, λ = − 1
c2 (α∂tβ + ∂tν + kφ). (101)

The classical limit of the above equations is

~v ' ~vE, λ ' 1. (102)

Eliminating the Lagrangian density ~v appearing in Equation (77), the equation can be
written (up to surface terms) in the following compact form:

L̂[ρ0, α, β, ν] = ρ0

[
c
√

vEµvµ
E − ε0 − c2

]
(103)

This Lagrangian density yields the four Equations in (78), (79), and (83); after these equa-
tions are solved, we can substitute the scalar fields α, β, ν into Equation (90) to obtain ~v.
Hence, the general charged relativistic barotropic fluid dynamics problem is modified such
that instead of solving the Euler and continuity equations we need to solve an alternative
equivalent set, which can be derived from the Lagrangian density L̂. The classical limit of
the Equation (103) can be calculated as follows. First, note that

√
vEµvµ

E = |vE0|

√
1−

~v2
E

v2
E0

= |vE0|
√

1− ~v2

c2 =
|vE0|

γ
, (104)

in which we have used Equation (101). According to Equation (101), vE0 < 0, as λ > 0; thus,

|vE0| = −vE0 = −1
c
(α∂tβ + ∂tν + kφ). (105)

Combining Equation (104) and Equation (105), it follows that

c
√

vEµvµ
E = − 1

γ
(α∂tβ + ∂tν + kφ), (106)

which can be written in term of ν̄, defined in Equation (91) as follows:

c
√

vEµvµ
E = − 1

γ
(α∂tβ + ∂tν̄ + kφ− c2). (107)
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We can now write Equation (103) in the following form:

L̂ = ρ0

[
− 1

γ
(α∂tβ + ∂tν̄ + kφ− c2)− ε0 − c2

]
= −ρ0

γ

[
α∂tβ + ∂tν̄ + kφ + γε0 + (γ− 1)c2

]
. (108)

The classical limit v
c → 0, γ→ 1 is straightforward, except for the last term, which should

be handled with care:

(γ− 1)c2 =

(
γ− 1( v

c
)2

)
v2 ' 1

2
v2 ' 1

2
v2

E. (109)

Taking into account Equation (109), it follows that

L̂ ' −ρ0[
∂ν̄

∂t
+ α

∂β

∂t
+ ε(ρ0) + kφ +

1
2
(~∇ν̄ + α~∇β− k~A)2]. (110)

However, from Equation (41) it follows that

ε0 =
dEin ~α0
dM~α

= γ
dEin ~α

dM~α
= γε. (111)

Thus, in the classical limit there is no difference between ρ and ρ0 on the one hand and ε0

and ε on the other, as the difference is of order
( v

c
)2. Therefore, we may write

L̂ ' −ρ[
∂ν̄

∂t
+ α

∂β

∂t
+ ε(ρ) + kφ +

1
2
(~∇ν̄ + α~∇β− k~A)2], (112)

which is exactly the same classical Lagrangian density provided in Equation (20) of [1]
(with ν̄ replacing ν and φ replacing ϕ).

5. Conclusions

While the analogies between spin fluid dynamics and classical Clebsch fluid dynamics
are quite convincing [1,2], there are terms in spin fluid dynamics that lack a classical
interpretation. Thus, it has been suggested that these terms originate from a relativistic
Clebsch theory, which was the main motivation for the current paper. Indeed, following in
the footsteps of previous papers [15,16], we may replace the internal energy in Equation
(103) with a Lorentz-invariant Fisher information term to obtain a new Lagrangian density
of the relativistic quantum mechanics of a particle with spin:

L[ρ0, α, β, ν] = ρ0

[
c
√

vEµvµ
E − c2

]
+

h̄2

2m
∂µa0∂µa0, a0 ≡

√
ρ0

m
(113)

where m is the particle’s mass and h̄ is Planck’s constant divided by 2π.
A side benefit of the above work is the ability to canonically derive the momentum

energy tensor of a relativistic fluid.
As the current paper is of limited scope, we have not been able to compare the above

Lagrangian with its low-speed limit and derive the relevant quantum equation; hopefully,
this will be done in a subsequent more expanded paper. However, it is easy to see even here
that Schrödinger’s theory is the limit of the theory described by the Lagrangian density of
Equation (113). We write the last term of this equation explicitly as

h̄2

2m
∂µa0∂µa0 =

h̄2

2m

(
1
c2 (∂ta0)

2 − (~∇a0)
2
)

. (114)
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If 1
c |∂ta0| � |~∇a0|, which is a classical limit, as it requires that the amplitude typical

gradient length over the typical amplitude changing time to be much smaller than c, we
may write

h̄2

2m
∂µa0∂µa0 ' −

h̄2

2m
(~∇a0)

2. (115)

The first terms of Equation (113) can be classically approximated through Equation (112),
in which we assume no internal energy ε = 0 and no vorticity α = β = 0; thus, we obtain

L ' −ρ[
∂ν̄

∂t
+ kφ +

1
2
(~∇ν̄− k~A)2]− h̄2

2m
(~∇a0)

2, (116)

which is identical to the Schrödinger’s Lagrangian density (45) in [1] with a minor change of
notation: ρ→ ρ̂, ν̄→ ν̂, φ→ ϕ, a0 → a. Thus, Schrödinger’s quantum theory is a classical
limit of the relativistic quantum theory represented by Equation (113).

We conclude by acknowledging the importance of the comparison between the fluid
route to relativistic quantum mechanics and the more established route laid out by Dirac;
this certainly deserves an additional paper, which I hope to compose in the near future.
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