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Abstract: The conversion of native forest into agricultural land, which is common in many parts
of the world, poses important questions regarding soil degradation, demanding further efforts to
better understand the effect of land use change on soil functions. With the advent of 3D computed
tomography techniques and computing power, new methods are becoming available to address this
question. In this direction, in the current work we implement a modification of the Fisher–Shannon
method, borrowed from information theory, to quantify the complexity of twelve 3D CT soil samples
from a sugarcane plantation and twelve samples from a nearby native Atlantic forest in northeastern
Brazil. The distinction found between the samples from the sugar plantation and the Atlantic forest
site is quite pronounced. The results at the level of 91.7% accuracy were obtained considering the
complexity in the Fisher–Shannon plane. Atlantic forest samples are found to be generally more
complex than those from the sugar plantation.

Keywords: complexity; Fisher Shannon plane; land use change; X-ray CT scan soil samples

1. Introduction

The degradation of soils due to land use changes driven by economic factors represents
a major concern for the foreseeable future in many parts of the world. More precisely, land
use change may adversely affect fundamental soil functions, such as nutrient storage,
diffusion and cycling, carbon storage and greenhouse gas emissions, erosion resistance,
water storage, drainage, and filtration [1–5]. Moreover, the biodiversity of forests may also
be unfavorably affected by systematic land use change [6]. On the other hand, poverty and
population growth lead to an ever-increasing demand for indiscriminate natural resources
in developing countries. The demand for pasture, timber, firewood, and crops drives the
conversion of tropical forests into agricultural land at an alarming rate. This situation
dictates comprehensive studies on the impact of deforestation and land use conversion on
soil quality in general. More precisely, the outstanding question is whether the cultivation
of deforested land may lead to the permanent degradation of land productivity. The
ecologically sensitive components of the tropical ecosystem may not buffer the effects
of agricultural practices (see, e.g., [7] and references therein). Therefore, comprehensive
assessment of soil properties is fundamental for the early detection and mitigation of
adverse soil change effects.

The effects of land use change have been addressed mainly focusing on physical,
chemical, and biological properties [7–9], while far fewer studies have been devoted to
changes in soil structure [10,11]. The latter governs its functions [12], and quantification
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of soil architecture can be seen as a key to better understanding the complex dynamical
phenomena that govern these functions. Therefore, a comprehensive description and
quantification of soil functions rely on an in-depth understanding of characteristics such as
the three-dimensional distribution of constituents, connectedness, hierarchical organization,
and complexity.

While X-ray computed tomography (CT) has been advancing at an impressive rate
over the last decades, it has also become a widespread tool for non-destructive 3D soil
visualization and quantification, shedding new light on soil functions [13]. The diverse
properties of soil that have not been previously amenable to analyses can now be assessed
through CT scans, providing novel fundamental insights into soil functions [13]. These
properties include isotropy, homogeneity, complexity, and the hierarchical fractal (or multi-
fractal) organization of soil constituents, contributing to a deeper understanding of soil’s
physical, chemical, and biological processes [14]. X-ray CT scans have already been studied
to characterize the pores’ spatial distribution, revealing extraordinary complexity of the
pore space [15–18]. The complexity of soil structure has also been addressed through
methods based on concepts from statistical physics and information theory, such as fractals
and multifractals [19–21], information content [22] and complex networks [23,24]. As a
consensus has not yet been reached on the adequate threshold for separating pores from
solid in CT scans [25], it has also been suggested that rather than thresholding, grayscale
soil images should be used for the multifractal characterization of the soil structure [26–30].

Between 2000 and 2018, Brazil suffered a total reduction of 489,877 km2 in the natural
area of its six terrestrial biomes. Among them, the Atlantic Forest biome has the one with
the highest percentage of degradation over time, as it covers the most industrialized and
productive areas, in addition to having the highest demographic density in the national
territory, housing about 49.3% of the urban areas of the country [31]. One of the crops
that most stands out in the region of the Atlantic Forest biome is sugarcane, especially
in the northeast region of the country, where cultivation is present in eight of the nine
states in the region. For the 2020/2021 harvest, an increase of 1.6% in the planted area
and 4.1% in production were estimated compared to the previous sugarcane harvest in
the northeastern region of Brazil [32]. The replacement of the native vegetation of the
Atlantic Forest with sugarcane cultivation generates negative impacts on the physical
attributes of the soil [33–36]. These attributes control many soil functions, such as water
retention and infiltration, gas exchange, resistance to erosion, nutrient dynamics, and root
penetration [12], and directly influence ecosystem services.

In this work, we investigate how land use change affects soil structure by using
information theory to quantify the complexity of soil 3D X-ray CT soil samples. For the
first time, the Fisher–Shannon method [37], introduced to jointly quantify the local and
global properties of the probability density function of unidimensional signals, is applied
in the context of soil complexity. In the current study, the “signals” are represented by a
790 × 790 set of 1d vertical lines of 790 greyscale values in X-ray CT scan images of soil
samples from a sugarcane field, and a nearby Atlantic forest site, in northeastern Brazil. For
each image and each of these sequences, we calculate Shannon entropy power (SEP) and
Fisher information measure (FIM) that quantify the disorder and structural organization of
a signal’s variation [38]. The joint FIM/SEP analysis is then performed through the Fisher–
Shannon information plane (FS) via an innovative normalization procedure to achieve
a 91.7% level of accuracy of distinction between the sugar plantation and the Atlantic
forest samples.

2. Methodology
2.1. Soil Samples

Twenty-four soil samples analyzed in this work were collected from sugarcane cultiva-
tion and a nearby native Atlantic forest at a location in the northeastern Brazilian region, the
state of Pernambuco, between latitudes −7.84836 and −7.83519 and longitudes −34.9973
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and −34.9935, as shown in Figure 1. Two samples were collected at each site: one at 10 cm
and another at 20 cm depth.
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Figure 1. Spatial distribution of sample sites. Two samples were taken at each site: one at 10 and
another at 20 cm depth.

The samples were collected using a soil auger with an internal PVC cylinder of 7.5 cm
height and 7.5 cm diameter and excavated by careful penetration with a cylinder coupled
with a blade. After the insertion of the auger in the soil, the cylinders were carefully
extracted to ensure the preservation of the original structure of the environment inside the
PVC cylinders. The samples were then dried at 40 ◦C to remove the water content before
the scanning tomography of the samples.

The CT tomography was performed using a third-generation Nikon XT H 225 ST
X-ray microtomograph with 150 kV voltage, 180 µA current, 500 ms exposure time, and
a 45 µm resolution for voxels. A copper filter with a thickness of 0.5 mm was used to
minimize low-intensity photons. After scanning the total cylinder volume in the initial
acquisition, a subvolume of interest was defined and reconstructed using CTPro 3D XT
3.0.3 (Nikon Metrology NV, Brighton, MI, USA) software. The central part of the cylinder
was highlighted to avoid edge influence. The reconstructed 2D axial projections maintained
the spatial resolution of the acquisition of 45 µm and were saved at a radiometric resolution
(grayscale level) of 16 bits. The final volume was 790 stacks with 790 × 790 pixels, with an
end volume of 7903 = 493,039,000 voxels.

The voxel values of the CT scan images correspond to local sample density on
Hounsfield unit (HU) scale (a linear transformation of the linear attenuation coefficient
measurement such that the radiodensity of water is defined as 0 HU, and the radiodensity
of air is defined as −1000 HU). The minimum observed HU value is 0, the maximum is
32,492, mean is 16,327, and the standard deviation is 402.

Considering the vertical (gravity) direction as naturally preferential from a phenomeno-
logical point of view, in what follows, we perform calculations on 790 × 790 = 624,100
vertical lines of 790 grey-level values each for every sample.
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2.2. The Fisher–Shannon Method

The Fisher–Shannon method consists of a joint analysis of Fisher information measure
(FIM), which quantifies the amount of organization (or order) in a signal, and Shannon en-
tropy (SE) which quantifies the amount of disorder [37]. Fisher introduced the FIM concept
in the statistical estimation theory [39], and it was subsequently used to describe physi-
cal systems [40,41], as well as for time series analysis in geophysics [42,43], ecology [44],
astrophysics [45], meteorology [46,47], hydrology [48], and social science [49].

For a univariate distribution of a continuous variable X with probability density
function (PDF) f (x), the Fisher information measure IX is defined as [49]

Ix =

∞∫
−∞

(
∂

∂x
f (x)

)2 1
f (x)

dx , (1)

and Shannon entropy HX as

Hx = −
∞∫
−∞

f (x)log f (x)dx . (2)

The Fisher information measure thus describes the local properties of the PDF, while
the Shannon entropy describes its global properties [49]. The shape of the PDF is reflected
on these measures, as the FIM assumes high values if the PDF is narrow and low values
if the PDF is broad, while SE attains high values for a broad PDF and low values for a
narrow PDF.

Instead of Shannon entropy, it is often more convenient [50] to use the quantity called
Shannon entropy power (SEP) defined by

Nx =
1

2πe
e2Hx . (3)

The product CX = NX IX satisfies “isoperimetric inequality” NX IX ≥ 1 (where equality
holds for the Normal distribution), demonstrating that FIM and Shannon entropy are
intrinsically related and can be jointly used to characterize the non-stationary behavior
of complex signals. The product NX IX is called Fisher–Shannon complexity (FSC) and
can be used as a statistical measure of the complexity of the signal under study [51]. The
joint FIM/SEP analysis is performed through the Fisher–Shannon information plane (FS),
where Shannon entropy power NX is used for the horizontal axes, and Fisher information
measure IX is taken for the vertical axis variable [37]. The signal is mapped to the point with
coordinates (N X , IX), which can lie anywhere in the FS plane where the “isoperimetric
inequality” NX IX ≥ 1 is satisfied. The distance from the “isocomplexity” line NX IX = 1
can be used as a measure of the complexity of the signal [49].

As the above measures depend only on the PDF, Fisher–Shannon analysis can be imple-
mented for real-world datasets corresponding to complex systems through nonparametric
density estimation, avoiding parametric assumptions on the distribution. One possibility is
using histograms with the discretized version of (1) and (2). However, in this work, we
implement kernel density estimation, which is more reliable [52] in the current case. The
Kernel density estimator of the PDF is given by [53]

f̂M(x) =
1

Nb

N

∑
i=1

K
(

x− xi
b

)
, (4)

where b > 0 is the so-called bandwidth parameter, N is the length of the signal, and K(u) is
the kernel function, which is a continuous symmetric function that satisfies K(u) ≥ 0 and
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∫ +∞
−∞ K(u)du = 1. The most widely used is the Gaussian kernel K(u) = (2π)−1/2exp

(
−u2/2

)
yielding

f̂M(x) =
1

Nb
√

2π

N

∑
i=1

e−
(x−xi)

2

2b2 . (5)

The term “nonparametric density estimation” here refers to avoiding a choice of the
functional form of the distribution and the corresponding parameter estimation. On the
other hand the bandwidth parameter b > 0 is used here to control the smoothness of the
PDF and is determined here through Silverman’s rule [54]

b = 0.9min
(

σ,
IQR
1.34

)
n−

1
5 , (6)

where n is the sample size, σ is standard deviation, and IQR is the interquartile range.

3. Results and Discussion

The Ix, Nx, and Cx values were calculated for each of the 624,100 vertical lines of
length 790 for all the 24 CT scan images, as well as for the 790 horizontal planes of
790 × 790 = 624,100 voxels each, and for the full 7903 = 493,039,000 voxel images. The
PDF f (x) in the 1d case corresponds to 790 voxels for each of the 624,100 vertical lines; in
the 2d case, f (x) corresponds to 624,100 voxels for each of the 790 vertical planes; and in
the 3D case, there is a single PDF f (x) corresponding to all the 493,039,000 voxels.

After extensive testing with different combinations of quantities and distribution
measures that can be extracted from these calculations, we have found that the first option
of considering the set of vertical lines for each sample yields the best distinction between the
sugar cane and the Atlantic forest samples. The descriptive statistics (minimum, maximum,
quartiles, mean, and standard deviation) of the Ix, Nx, and Cx values of vertical lines,
obtained with bandwidth b = 94.85 (average Silverman’s rule value for all the vertical
strips of all the images), are presented in Tables A1–A3 in the Appendix A, respectively,
and the distribution of the values in the 790 × 790 plane for all samples are presented
in Figures 2–4.

As seen in Figures 2–4, the spatial distribution of Ix demonstrates higher values for
sugarcane (SC) samples compared to the Atlantic forest (AF), while the Nx distribution
demonstrates the opposite, i.e., lower values are found for SC in comparison with the
AF samples. On the other hand, these differences are mostly canceled out when the
complexity CX = NX IX is calculated; the SC samples CX values are found to be rather
homogeneous except for the sample SC2-10, while inhomogeneity is rather pronounced for
the AF samples, more so for the 10 cm than for the 20 cm depth samples. These findings
are purely phenomenological, and the observations may not hold in a general scenario of
native versus cultivated land samples.

In order to address the distance from the isocomplexity line NX IX = 1 as a measure of
complexity of the vertical sample lines [49], it should be noted that the scales of Shannon
entropy power with an average of 〈Nx〉 = 1.527× 105 and Fisher information with an
average of 〈I〉 = 9.278× 10−6 differ in orders of magnitude, while the average of the
Fisher–Shannon complexity 〈Cx〉 = 1.352 is of the order of unity. If the projection of a
point (NX , IX) in the FS plane presented in Figure 5a to the nearest point on the “iso-
complexity” line is denoted by (NX0, IX0), then the displacement of Shannon information
∆IX ≡ IX − IX0 turns negligible in comparison to the displacement of Shannon entropy
power ∆NX ≡ NX − NX0, and by minimizing the distance to the isocomplexity line, the
points are projected vertically down to the isocomplexity line, with the Euclidean distance
being practically reduced to ∆NX and there being no influence of ∆IX .
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(
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to the closest point on the isocomplexity line.

To mitigate this fact, here we introduce a novel normalization procedure for the
variables NX and IX. More precisely, first we identify the maximum value NXmax among
all the samples, and we scale all the sample values as N′X = NX/NXmax and I′X = IX NXmax,
thus preserving the Cx≡ NX IX complexity values. Distance from a point (N′X , I′X) to a
projection point (N′XI , I′XI) on the isocomplexity plane is now given by

d =

√(
N′X − N′XI

)2
+

(
I′X −

1
N′XI

)2
(7)

and setting the derivative of d with respect to N′XI to zero to find the closest point
(

N′X0, I′X0
)

yields the fourth-order polynomial expression for x ≡ N′X0 ≡ 1/I′X0

x4 − x3N′X + xI′X − 1 = 0 , (8)

which is solved numerically for all samples. The results of this novel procedure are
presented in Figure 5b, and the distances scatterplot from the isocomplexity plane is
presented in Figure 6.

Table 1. Complexity (distance from the isocomplexity plane).

Sugarcane

SC1-10 SC2-10 SC3-10 SC4-10 SC5-10 SC6-10

0.0676 0.2899 0.0696 0.0619 0.0825 0.0531

SC1-20 SC2-20 SC3-20 SC4-20 SC5-20 SC6-20

0.0342 0.0951 0.0420 0.1144 0.0714 0.0660

Atlantic forest

AF1-10 AF2-10 AF3-10 AF4-10 AF5-10 AF6-10

0.3290 0.3198 0.2961 0.3022 0.3179 0.1799

AF1-20 AF2-20 AF3-20 AF4-20 AF5-20 AF6-20

0.0998 0.1341 0.1032 0.1704 0.2294 0.1215
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The sugarcane sample’s complexity, quantified by the distance from the isocomplexity
line (Figures 4 and 5) is generally lower than those of the Atlantic forest samples, which
also exhibit large fluctuations between the alternative values from samples taken at depths
of 10 cm and 20 cm. The complexity values are presented in Table 1.

To demonstrate the validity of this novel approach, in Figure 7, we show the 3D images
of the two samples with the lowest and highest complexity, respectively.
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1500 Hounsfield units (a common quantitative scale for radiodensity).

It should be stressed here that the current approach, without using any arbitrary
parameters (such as, e.g., threshold), not only yields results that agree well with com-
mon sense (as can be seen in Figure 5) but also provides a precise quantitative measure
of the complexity of the samples. The usefulness of this approach for quantifying soil
degradation should be tested in future studies in the natural environment and controlled
laboratory experiments.

Finally, to test the discriminative power of the current approach, we implement here
the fitting of values from Table 1 to a logistic function, where a categorical variable of zero
value is attributed to the sugarcane samples and unit value to the Atlantic forest samples,
with results shown in Figure 8.
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Considering logistic regression as a binary classifier, the threshold of d = 0.0952
separates the two groups of samples with only two samples (SC2-10 and SC4-20) falling
into the wrong category. It should be noted here that the k-means method does not produce
meaningful results in this case because of the difference in the variance of the d values of
the two groups, which is much smaller for the sugarcane samples than for the Atlantic
forest samples.

Observing the images of Ix, Nx, and Cx of spatial distribution of these samples in
Figures 2–4 reveals that the origin of the strikingly high value of d = 0.290 for sample SC2-
10 stems from the pronounced values of Shannon entropy power NX , which, in combination
with Information measure values IX, yield a Fisher–Shannon complexity CX for each of
the 624,100 vertical lines that was rather similar to those of the Atlantic forest samples.
Therefore, the correct grouping of 22 out of 24 samples (91.7%) is attained, demonstrating
the power of the current novel nonparametric approach. Nevertheless, considering the fact
that the samples are geographically very close to each other so that correlation among them
could have resulted in overfitting, this obtained accuracy represents the training error, and
the regressor is yet to be tested in an independent, uncorrelated dataset.

4. Conclusions

Overall, we can claim that the Fisher–Shannon complexity captures the morphological
changes induced by land-use change rather well. More precisely, the sugarcane field sites
lie in the area that has been converted from Atlantic forest to plantation, and the subsequent
cultivation activities have brought about changes in the soil morphology. While the results
are not entirely consistent in terms of depth and/or position, the 91.7% grouping success
rate may be considered quite high, where the discrepancies may be attributed to some yet
unknown particularities of these sites.

The approach introduced in the current work does not use arbitrary parameters.
It provides a rather precise quantitative complexity measure, which may be seen as a
quantifier of soil degradation level. Finally, the novel normalization procedure of variables
for representation in the Fisher–Shannon information plane, i.e., preserving the Fisher–
Shannon complexity, may be useful for time series and image analysis in general.
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Appendix A

Descriptive statistics (minimum, maximum, quartiles, mean, and standard deviation)
of the Ix, Nx, and Cx values of vertical lines.

Table A1. Descriptive statistics of Fisher information measure Ix.

Min Q1 Q2 Q3 Max Mean Stdev
Atlantic Forest

AF1-10 4.24 × 10−6 6.07 × 10−6 6.50 × 10−6 7.01 × 10−6 1.62 × 10−5 6.62 × 10−6 8.67 × 10−7

AF2-10 3.53 × 10−6 6.79 × 10−6 7.52 × 10−6 8.40 × 10−6 1.76 × 10−5 7.70 × 10−6 1.29 × 10−6

AF3-10 3.65 × 10−6 6.28 × 10−6 6.89 × 10−6 7.64 × 10−6 1.79 × 10−5 7.05 × 10−6 1.09 × 10−6

AF4-10 3.31 × 10−6 6.54 × 10−6 7.14 × 10−6 7.89 × 10−6 1.69 × 10−5 7.34 × 10−6 1.19 × 10−6

AF5-10 4.13 × 10−6 7.13 × 10−6 7.90 × 10−6 8.81 × 10−6 2.02 × 10−5 8.08 × 10−6 1.36 × 10−6

AF6-10 3.79 × 10−6 9.58 × 10−6 1.07 × 10−5 1.19 × 10−5 2.59 × 10−5 1.08 × 10−5 1.86 × 10−6

AF1-20 4.51 × 10−6 7.46 × 10−6 8.14 × 10−6 8.86 × 10−6 1.46 × 10−5 8.20 × 10−6 1.03 × 10−6

AF2-20 3.32 × 10−6 8.10 × 10−6 9.02 × 10−6 1.01 × 10−5 1.78 × 10−5 9.15 × 10−6 1.47 × 10−6

AF3-20 3.45 × 10−6 7.63 × 10−6 8.37 × 10−6 9.20 × 10−6 1.74 × 10−5 8.47 × 10−6 1.19 × 10−6

AF4-20 3.93 × 10−6 7.47 × 10−6 8.20 × 10−6 9.04 × 10−6 1.58 × 10−5 8.31 × 10−6 1.18 × 10−6

AF5-20 3.69 × 10−6 7.33 × 10−6 8.18 × 10−6 9.21 × 10−6 1.82 × 10−5 8.37 × 10−6 1.50 × 10−6

AF6-20 4.08 × 10−6 8.11 × 10−6 9.08 × 10−6 1.02 × 10−5 1.82 × 10−5 9.22 × 10−6 1.54 × 10−6

Sugarcane

SC1-10 4.91 × 10−6 8.15 × 10−6 8.76 × 10−6 9.40 × 10−6 1.45 × 10−5 8.80 × 10−6 9.37 × 10−7

SC2-10 3.24 × 10−6 8.35 × 10−6 9.35 × 10−6 1.05 × 10−5 2.02 × 10−5 9.47 × 10−6 1.60 × 10−6

SC3-10 3.57 × 10−6 9.05 × 10−6 9.78 × 10−6 1.05 × 10−5 1.61 × 10−5 9.81 × 10−6 1.13 × 10−6

SC4-10 4.52 × 10−6 9.02 × 10−6 9.77 × 10−6 1.06 × 10−5 1.71 × 10−5 9.83 × 10−6 1.16 × 10−6

SC5-10 4.01 × 10−6 9.22 × 10−6 1.01 × 10−5 1.10 × 10−5 1.82 × 10−5 1.01 × 10−5 1.31 × 10−6

SC6-10 3.67 × 10−6 1.07 × 10−5 1.17 × 10−5 1.27 × 10−5 1.94 × 10−5 1.17 × 10−5 1.45 × 10−6

SC1-20 5.11 × 10−6 1.03 × 10−5 1.11 × 10−5 1.19 × 10−5 1.72 × 10−5 1.11 × 10−5 1.15 × 10−6

SC2-20 3.51 × 10−6 8.54 × 10−6 9.36 × 10−6 1.02 × 10−5 1.81 × 10−5 9.43 × 10−6 1.30 × 10−6

SC3-20 3.46 × 10−6 9.87 × 10−6 1.07 × 10−5 1.15 × 10−5 1.78 × 10−5 1.07 × 10−5 1.24 × 10−6

SC4-20 3.96 × 10−6 7.93 × 10−6 8.71 × 10−6 9.57 × 10−6 1.72 × 10−5 8.81 × 10−6 1.26 × 10−6

SC5-20 3.71 × 10−6 9.17 × 10−6 1.01 × 10−5 1.11 × 10−5 1.79 × 10−5 1.01 × 10−5 1.43 × 10−6

SC6-20 6.56 × 10−6 1.27 × 10−5 1.41 × 10−5 1.56 × 10−5 2.68 × 10−5 1.42 × 10−5 2.17 × 10−6
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Table A2. Descriptive statistics of Shannon entropy power Nx.

Min Q1 Q2 Q3 Max Mean Stdev
Atlantic Forest

AF1-10 1.24 × 105 2.14 × 105 2.37 × 105 2.62 × 105 4.10 × 105 2.39 × 105 3.53 × 104

AF2-10 7.07 × 104 1.84 × 105 2.11 × 105 2.39 × 105 6.14 × 105 2.13 × 105 4.03 × 104

AF3-10 7.43 × 104 1.92 × 105 2.17 × 105 2.44 × 105 6.00 × 105 2.20 × 105 3.99 × 104

AF4-10 9.73 × 104 1.85 × 105 2.09 × 105 2.37 × 105 6.23 × 105 2.15 × 105 4.63 × 104

AF5-10 8.54 × 104 1.76 × 105 2.03 × 105 2.34 × 105 3.88 × 105 2.06 × 105 4.05 × 104

AF6-10 5.55 × 104 1.04 × 105 1.30 × 105 1.65 × 105 4.34 × 105 1.38 × 105 4.11 × 104

AF1-20 7.64 × 104 1.30 × 105 1.45 × 105 1.62 × 105 3.72 × 105 1.48 × 105 2.40 × 104

AF2-20 6.30 × 104 1.22 × 105 1.39 × 105 1.60 × 105 7.27 × 105 1.43 × 105 3.08 × 104

AF3-20 5.92 × 104 1.25 × 105 1.41 × 105 1.58 × 105 9.73 × 105 1.44 × 105 2.84 × 104

AF4-20 7.90 × 104 1.40 × 105 1.58 × 105 1.82 × 105 3.96 × 105 1.64 × 105 3.44 × 104

AF5-20 6.98 × 104 1.47 × 105 1.72 × 105 2.03 × 105 5.56 × 105 1.78 × 105 4.29 × 104

AF6-20 5.91 × 104 1.18 × 105 1.36 × 105 1.58 × 105 5.51 × 105 1.39 × 105 2.98 × 104

Sugarcane

SC1-10 7.31 × 104 1.19 × 105 1.29 × 105 1.41 × 105 3.03 × 105 1.31 × 105 1.71 × 104

SC2-10 6.34 × 104 1.40 × 105 1.72 × 105 2.13 × 105 9.73 × 105 1.79 × 105 5.13 × 104

SC3-10 6.82 × 104 1.06 × 105 1.16 × 105 1.29 × 105 8.74 × 105 1.20 × 105 2.02 × 104

SC4-10 6.50 × 104 1.05 × 105 1.15 × 105 1.28 × 105 4.23 × 105 1.17 × 105 1.82 × 104

SC5-10 6.23 × 104 1.02 × 105 1.14 × 105 1.31 × 105 4.34 × 105 1.20 × 105 2.60 × 104

SC6-10 5.43 × 104 8.70 × 104 9.63 × 104 1.08 × 105 7.01 × 105 9.86 × 104 1.63 × 104

SC1-20 6.05 × 104 9.01 × 104 9.72 × 104 1.05 × 105 3.58 × 105 9.84 × 104 1.22 × 104

SC2-20 5.79 × 104 1.12 × 105 1.26 × 105 1.43 × 105 1.05 × 106 1.30 × 105 2.68 × 104

SC3-20 5.88 × 104 9.36 × 104 1.02 × 105 1.12 × 105 1.10 × 106 1.04 × 105 1.54 × 104

SC4-20 6.46 × 104 1.24 × 105 1.39 × 105 1.57 × 105 4.46 × 105 1.43 × 105 2.69 × 104

SC5-20 5.79 × 104 1.00 × 105 1.12 × 105 1.27 × 105 5.15 × 105 1.17 × 105 2.52 × 104

SC6-20 3.83 × 104 7.48 × 104 8.49 × 104 9.66 × 104 2.19 × 105 8.69 × 104 1.72 × 104

Table A3. Descriptive statistics of Fisher–Shannon complexity Cx.

Min Q1 Q2 Q3 Max Mean Stdev
Atlantic Forest

AF1-10 1.05 1.36 1.51 1.72 4.30 1.58 3.22 × 10−1

AF2-10 1.02 1.36 1.53 1.79 4.61 1.63 3.89 × 10−1

AF3-10 1.03 1.33 1.46 1.65 4.13 1.54 3.11 × 10−1

AF4-10 1.03 1.30 1.44 1.68 5.08 1.58 4.53 × 10−1

AF5-10 1.02 1.35 1.54 1.84 4.69 1.65 4.22 × 10−1

AF6-10 1.01 1.14 1.32 1.64 5.48 1.47 4.74 × 10−1

AF1-20 1.01 1.12 1.17 1.24 2.29 1.19 1.00 × 10−1

AF2-20 1.01 1.14 1.21 1.33 4.13 1.29 2.69 × 10−1

AF3-20 1.01 1.11 1.16 1.23 4.13 1.20 1.61 × 10−1
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Table A3. Cont.

Min Q1 Q2 Q3 Max Mean Stdev
Atlantic Forest

AF4-20 1.01 1.18 1.27 1.40 3.58 1.34 2.55 × 10−1

AF5-20 1.01 1.22 1.34 1.55 4.85 1.47 4.17 × 10−1

AF6-20 1.01 1.13 1.21 1.31 2.71 1.25 1.68 × 10−1

Sugarcane

SC1-10 1.01 1.09 1.12 1.17 2.00 1.14 7.35 × 10−2

SC2-10 1.01 1.29 1.50 1.91 4.44 1.68 5.32 × 10−1

SC3-10 1.01 1.08 1.12 1.20 3.55 1.16 1.19 × 10−1

SC4-10 1.01 1.08 1.11 1.17 2.38 1.14 9.14 × 10−2

SC5-10 1.01 1.08 1.12 1.21 3.79 1.19 2.29 × 10−1

SC6-10 1.00 1.07 1.11 1.17 2.87 1.14 1.02 × 10−1

SC1-20 1.00 1.05 1.07 1.10 1.97 1.08 5.51 × 10−2

SC2-20 1.01 1.10 1.16 1.25 4.03 1.20 1.43 × 10−1

SC3-20 1.01 1.05 1.08 1.12 4.82 1.10 6.40 × 10−2

SC4-20 1.01 1.14 1.20 1.28 3.19 1.23 1.34 × 10−1

SC5-20 1.01 1.08 1.12 1.19 3.36 1.15 1.27 × 10−1

SC6-20 1.00 1.11 1.18 1.27 2.73 1.20 1.28 × 10−1
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