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Abstract: Though an accurate measurement of entropy, or more generally uncertainty, is critical to the
success of human–machine teams, the evaluation of the accuracy of such metrics as a probability of
machine correctness is often aggregated and not assessed as an iterative control process. The entropy
of the decisions made by human–machine teams may not be accurately measured under cold start
or at times of data drift unless disagreements between the human and machine are immediately
fed back to the classifier iteratively. In this study, we present a stochastic framework by which an
uncertainty model may be evaluated iteratively as a probability of machine correctness. We target
a novel problem, referred to as the threshold selection problem, which involves a user subjectively
selecting the point at which a signal transitions to a low state. This problem is designed to be simple
and replicable for human–machine experimentation while exhibiting properties of more complex
applications. Finally, we explore the potential of incorporating feedback of machine correctness
into a baseline naïve Bayes uncertainty model with a novel reinforcement learning approach. The
approach refines a baseline uncertainty model by incorporating machine correctness at every iteration.
Experiments are conducted over a large number of realizations to properly evaluate uncertainty at
each iteration of the human–machine team. Results show that our novel approach, called closed-loop
uncertainty, outperforms the baseline in every case, yielding about 45% improvement on average.

Keywords: uncertainty; interactive machine learning; reinforcement learning; Q-learning; confidence;
calibration; human–machine teams

1. Introduction

The concept of uncertainty is used with great frequency in machine learning (ML) to
provide an understanding of the dependability of model classifications and predictions.
However, uncertainty is interpreted and used in many different ways. Uncertainty is used
to evaluate the reliability of ML models [1,2], to optimize [3], and to provide transparency
to stakeholders [4]. When estimated using entropy, uncertainty is often interpreted as a
measure of disorder or randomness [5]. In active learning, various models of uncertainty
are used to establish a basis for deciding what examples to query for labeling [6,7]. For
applications of interactive machine learning (IML), which involve tightly coupled ongoing
interactions between an ML model and a human via a constrained human–computer
interface, models of uncertainty may be used to meter the level of work presented to the
user [8]. As such, it is often useful to define uncertainty as the probability that a machine’s
attempt to solve a problem is incorrect [9,10].

In theory, ML models that have a statistically viable sampling of data may yield accu-
rate values of uncertainty solely based on the distribution of this sampling under a robust
data model. However, many problems either do not attain this sampling or suffer from
concept drift, a modality change in the data context that interrupts or invalidates the data
model [11]. This modality change makes it likely that the data model’s yielded uncertainty
is low while classification accuracy is also low, which is indicative of an uncertainty model
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that does not properly reflect the probability of machine correctness. The opposite may
also be true, where a yielded high uncertainty is reported during events of high accuracy.
This tends to occur when a classifier is not yet adequately trained or when data models are
underfit. In the most ideal case, an uncertainty model is automatically calibrated such that
its yielded values closely reflect the probability that a misclassification occurs.

A major advantage of the IML paradigm, displayed in Figure 1, is the presence of a
human user who may iteratively and immediately correct machine error. In many cases,
this feedback may immediately refine a supervised data model by training online on user-
corrected information treated as ground truth. Though this technique is trivial for the
precision of classification or prediction, very little work has focused on incorporating such
feedback to improve the way in which uncertainty is quantified and calibrated [9,12].

The focus of the research presented in this article is to better understand how uncer-
tainty is improved and evaluated for iterative IML applications. A stochastic method for
experimentation that takes iterative feedback of machine correctness into account will be
presented. To introduce the underlying concepts, a somewhat subjective and generative
threshold-selection task is defined and used as a target problem for experimentation. This
task involves a human analyst selecting the point at which a decaying signal, namely a
sigmoid, is to be considered “low” on a visual plot. As the task progresses, the signals enter
new modalities that simulate concept drift. At every step, the machine’s goal is to place the
threshold within an accepted tolerance to the analyst’s placement. The machine begins the
task at cold start, meaning with no prior training data, and trains on the human placement
using a supervised model. Additionally, and most importantly for our case, the machine
will also provide a probability that this placement is correct. In each iteration of the task,
the machine observes the human-placed threshold as the ground truth and trains on the
placement for subsequent iterations.

The presented methodology for evaluation examines the machine’s reported uncer-
tainty over many independent realizations of the task in order to compare it to a more
accurate measurement of the probability of correctness. Statistics are gathered at every step
across all realizations to evaluate the performance of the uncertainty model. We present
and compare two supervised models for uncertainty using the presented methodology:
a baseline that implements a conventional data-modeled approach using naïve Bayes,
and a novel approach using reinforcement learning (RL) to calibrate the baseline using
feedback of machine correctness within the reward function. We name the novel approach
the closed-loop uncertainty (CLU) model because it takes into account machine correctness in
an online and iterative manner.

Figure 1. The interactive machine learning paradigm tightly couples machine learning to a human
analyst via an intuitive interface for a task.

2. Related Work

The discussion and formulation of uncertainty is an extensive topic in ML literature.
The majority of the prior work discussed in this section focuses on studies that present
methods for calculating some value of uncertainty based on the distribution of labeled
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data. Studies involving uncertainty values that are provided explicitly by humans during
training are considered out of the scope of this study.

The interpretation of confidence, which we define to be the opposite of uncertainty,
by Pronk et al. [13] for the naïve Bayes classifier formulates the confidence interval for
the posterior probabilities of classes. The CLU model we present contrasts this approach
in that it takes posterior probabilities as an observable state rather than an estimate for
classification confidence.

Defining uncertainty as the probability that a model is incorrect (or confidence as the
probability that a model is correct) is useful for evaluating trust in a model or metering the
cognitive load and human interaction. However, this definition does have limitations when
compared to other discussions in literature. One limitation is that it fails to distinguish
between aleatoric uncertainty and epistemic uncertainty [7,14]. Aleatoric uncertainty involves
the distribution of noise and other randomness within the data, while epistemic uncertainty
addresses the lack of knowledge within the model. Aleatoric uncertainty is difficult to
measure [15], especially under concept drift [16]. Other studies more aligned with our
approach have defined uncertainty as a measurement of what is not known at the time of
classification [17]. Though this definition allows considerably more leeway, we choose a
probabilistic interpretation that allows us to validate models for uncertainty experimentally
within an IML paradigm.

Though much of ML theory models classification and prediction on the basis of
statistical probability, the general formulation and evaluation of uncertainty is considered
something of an afterthought [17]. The general idea behind most models of uncertainty
is a mathematical basis for the data model. For example, the softmax layer in a neural
network produces a score that may indicate uncertainty about a classification in multiclass
problems [2]. However, many times such models have demonstrated some sort of best
fit to the probabilities of a label in training data rather than a logical measurement of
machine knowledge about a specific class [18]. Additionally, these models are often not
well calibrated or may not adequately reflect the probability of the machine to be incorrect
after calibration [19]. In these cases, a classification with a low uncertainty does not
necessarily imply a high accuracy [20]. For streaming problems, these shortcomings of
conventional ML models for uncertainty are exacerbated in the presence of concept drift,
where data modalities in the stream may change abruptly or unexpectedly [16]. Therefore,
it may be worthwhile to consider if an interpretation of uncertainty that departs from
stringent mathematical definitions for the data model could be practical in providing a
more accurate quantification of uncertainty, especially in situations where sampling is low
or concept drift is expected to occur.

Entropy as a means of estimating uncertainty has been explored, for example, as an
effective method for variable selection in naïve Bayes classification [21], as a component of
the reward function in building robust RL [22], and in the context of neural networks for
image processing [15]. Some of these techniques use variance and entropy of a statistical
distribution to measure uncertainty, which could also aid in detecting concept drift [23].
Our CLU model differs from these techniques in that it does not explicitly detect concept
drift or variance in input feature data. Instead, CLU observes some measurement of
uncertainty, namely the posterior probabilities of a black-box classifier, and calibrates based
on the observed accuracy of the machine via the feedback from the analyst. Therefore,
the goal of our work is not to detect concept drift, but to provide a model of uncertainty
that is adaptable to concept drift when the drift causes bias in the underlying model.

The CLU model presented in this study employs a feedback model to achieve an
improved quantification of uncertainty, which may itself have a higher order of uncertainty
associated with it. Such phenomena for reinforcement learning have been discussed
thoroughly in Clements et al. [24], where the difference between aleatoric and epistemic
uncertainty is distinguished within deep reinforcement learning. The study builds on
previous work that aims to view uncertainty through the lens of a return distribution and
the variance associated with it [25,26]. These previous studies in reinforcement learning
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have defined uncertainty as a function of the input data or lack of input data, while the
CLU implementation that we present defines uncertainty as a function of the accuracy
of the underlying classification model within a stochastic process where accuracies may
be measured.

IML models have calculated uncertainty using mixture models or some approach that
resembles that of the machine learning algorithm used in the classification process [27]. In
other studies, uncertainty has been defined as the sample conditional error, which is the
probability that the classifier makes a mistake on a given sample [28,29]. These techniques
require that the underlying distributions of the data model are known, which is often not
possible. Our approach allows for a black-box baseline model of uncertainty, and we show
that it performs accurately even when the data-model distributions are not accurate.

3. Background

A sigmoid curve, or logistic curve, is an S-shaped curve. For our setting, we are
interested in a version that begins near y = 1 when x = 0 and decays to approach y = 0
as x approaches 1. The sigmoid is centered somewhere between x = 0.2 and x = 0.8.
In general, we can describe this curve using the following function:

y(x) =
1

1 + ek(x−x0)
(1)

where x0 is the curve’s midpoint and k is the decay rate.
Gaussian naïve Bayes classification is used as a baseline, which operates by calculating

posterior probabilities assuming all predictor covariates have a normal distribution and are
independent [30]. However, it is possible to construct an effective naïve Bayes classifier
when the independence assumption is alleviated [31,32]. The feature spaces used in the
naïve Bayes classifiers discussed in this paper do not contain independent features.

Kernel density estimation (KDE) can be used to estimate the distribution of a covariate,
which is useful in addressing problems posed by continuous variables. Namely, KDE
allows for smoothing the distributions of the feature space [33].

A Markov decision process (MDP) is defined as a tuple (S, A, ξ, R, γ), which comprises
a state space S, a set of possible actions A, a transition probability matrix ξ, a reward
function R, and a discounting factor γ. [34]

Q-learning is a type of model-free RL used to find the optimal policy, which is the
strategy for choosing actions in each state, by updating the expected reward for state–
action pairs. The only conditions for convergence on the optimal policy is that the actions
are repeatedly sampled in all states and the action-values are discrete [35]. This allows
convergence towards the optimal policy by choosing actions randomly for each trial. Q-
learning is a popular implementation of RL due to its simplicity and effectiveness at finding
optimal solutions in MDPs.

4. Materials and Methods

All experimentation and machine models were implemented and run in the R pro-
gramming language. Naïve Bayes classification and posterior probability calculation were
performed using the ‘naivebayes’ package [36], and all reinforcement learning was con-
ducted using the ‘ReinforcementLearning’ package [37]. The code used is available upon
request from the corresponding author.

4.1. Threshold Selection Problem

The methodology for uncertainty presented in this study is specific to an online IML
implementation [38]. Though a multitude of problems for which IML implementations
exist are available in the current state of the art, the problems either possess overly complex
features and interfaces or do not provide controls to induce concept drift or realize parallel
tasks in a stochastic manner. We present a threshold selection problem that exhibits the
properties of being an intuitive task definition with a simple interface, a 2-dimensional
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dataset with a minimal feature space, a stochastic basis for generating a very large number
of 2D examples for the problem space, moderate subjectivity that prevents trivial solutions
without human interaction, and a parameterized complexity and noise model used to
induce concept drift.

This threshold selection problem is a simpler surrogate for online IML applications
in the sense that it exhibits subjectivity in preference and concept drift, similar to those
discussed by Kabra et al. [39] and Michael et al. [10]. Additionally, it is straightforward
to define this problem as a stochastic process by which uncertainty may be studied and
evaluated as a probability of correctness. The problem is able to be realized such that a single
trial of the problem will, for the most part, have similar complexity across all realizations.

4.1.1. Trial Definition

A trial consists of a 2D plot of a decaying sigmoid curve sampled at 100 regular discrete
points. The user is asked to locate the point at which they think the sigmoid transitions from
a high state to a low state, i.e., the human-placed threshold, which is treated as ground truth.
Increasingly complex noise is added as the trials go on to induce concept drift. Examples of
these trials in each phase of the experiment are displayed in Figure 2.

Figure 2. An example trial of each phase showing the human-placed threshold in blue and the
machine-placed threshold in red. Correct machine placement is determined by the tolerance, where a
tolerance of 0.04 would mark the phases I and V examples correct and all others incorrect. Human-
placed thresholds are subjective due to the preference of the analyst.

The user is constant and maintains their preference within a given realization of
the experiment. Other realizations may contain different preferences for the threshold
placement. The location where the signal is no longer considered to be in the “high” state
is a subjective choice made by the analyst (see Appendix A.5).

4.1.2. Phase Definition

In a realization of the problem, multiple trials are generated and presented to the
human–machine team in a particular order. A phase is a consecutive subset of trials with
similar stochastic parameterization, which defines a fixed modality of complexity. Overall,
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the progression of phases are designed with the intent of generating more complex sig-
moids.

Phase I contains only square wave trials, making it the simplest phase with minimal
subjectivity. The only stochastic parameter is the center of the plot, x0 ∈ [0.2, 0.8], which
is selected in a uniform random way. The curve depicted for the analyst in each trial for
Phase I is

y(x) =

{
1 if x ≤ x0

0 if x > x0
(2)

Phase II depicts a logistic curve, as defined in Equation (1), where the decay rate k is
randomly assigned. This causes the curve to lead to a slower or faster decay:

k =

(
1− 1

1 + exp( −1
1−d )

)−1

(3)

where d ∈ [0, 1) is a uniform random variable. This formula was found to yield the best
mix of sigmoid decay after experimenting with a variety of other approaches.

The subsequent phases, III-V, induce random noise into the sigmoid. The noise N
is applied in an additive way. The magnitude of the noise is N = m cos(τπ), where
τ ∈ [0, 1] and m ∈ [0, 0.8] are uniform random variables. The variable m indicates the
maximum magnitude of additive noise such that N ∈ [−m, m]. Trials of Phase III generate
sigmoids with N added to a uniformly random percentage of uniformly random chosen
points. Phase IV generates sigmoids with N added to randomly chosen sub-intervals of
points. Sub-interval sizes are chosen by the uniform random variable l ∈ [0, 100]. The
number of sub-intervals is randomly chosen from the set {n ∈ I|0 ≤ n ≤ b 100

l c}. Finally,
Phase V sigmoids contain additive noise, N, throughout the entire function. Depending on
the parameters and noise, any phase can potentially generate a plot resembling that of a
previous phase.

Figure 2 illustrates an example trial from each phase. The human-placed threshold,
which is considered ground truth, is shown in blue, and the machine-placed threshold,
which is placed using a naïve Bayes classifier, is shown in red. As will be discussed in
Section 4.2, we examine different tolerances for machine-placed thresholds to be consid-
ered correct.

4.2. Na ïve Bayes Classifier

A Gaussian naïve Bayes classifier is used to predict the location of the human-placed
threshold. We refer to this predicted location as the machine-placed threshold, which is shown
as the red line of the example plots in Figure 2. The features used by the naïve Bayes
classifier include the basic coordinates of each trial’s sigmoid. In addition, several features
are extracted to enhance the feature space. This includes the first derivative of the sigmoid
at each discrete point, the second derivative of the sigmoid at each point, the mean of
the next 10 points’ y values, and the mean of each point along with its 2 direct neighbors.
These features were determined using conventional feature selection techniques, and they
were shown to yield generally high accuracy in each phase after warm-up for reasonable
tolerances of machine placement.

Labels are determined by assigning 1 to all sample points with x-coordinates less
than or equal to the human placed threshold and 0 to all sample points with x-coordinates
greater than the human placed threshold. This labeling scheme worked best for machine
placement when compared to other schemes, mainly due to its relatively balanced positive
and negative labels when training.

The location of the machine placement was chosen at the first point with the mean of
the posterior probability (generated from Gaussian naïve Bayes) and that of its two direct
neighbors being greater than 0.55.
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When analyzing the performance of naïve Bayes, it was found that the retention of all
training instances hurt performance in later phases due to bias. The most optimal classifier
only considered the instances of the 6 preceding trials when training, which is discussed in
greater detail in Appendix A.2.1. This type of forgetting is typically known to be beneficial
for drifting data streams [40], and thus was used for our experimentation.

4.3. Baseline Uncertainty Model

A naïve Bayes classifier is used as a baseline uncertainty model to produce first-order
input uncertainty values for CLU. We use a baseline in this manner because most supervised
ML implementations naturally choose to formulate uncertainty directly from the data
model, especially in the generative case.

The input to the CLU model we present may take any black-box baseline uncertainty
model. The Gaussian naïve Bayes model we use in this study yielded the best accuracy for
uncertainty as a probability of correctness over various other relatively simple models we
have observed. For an exploration of these, see Appendix A.4.

Unlike the model for machine placement, the uncertainty model must account for
some placement tolerance, denoted by the variable T, allowed by the application. The
placement tolerance is an independent variable that determines the distance within which
a machine placement must be from a human placement to be considered correct. The lower
the placement tolerance, the lower the expected placement accuracy, and vice versa.

In labeling a trial for the uncertainty model, all sample points within the distance
of the placement tolerance are labeled as 1, and all other points as 0. Using this model,
the posterior probability that a sample point in a trial should be given a label of 1 may be
calculated in the conventional way using the product of prior probability and likelihood. A
confidence can then be generated by taking the average of all these posterior probabilities
within the placement tolerance of the machine-placed threshold.

Other than labeling, the baseline uncertainty model differs from the naïve Bayes
classifier in two other ways. The first is the absence of instance forgetting, since it was
found in experimentation that forgetting does not improve the accuracy of the uncertainty
model for the threshold selection problem. Second, the first- and second-derivative features
are removed from the feature space for the uncertainty model. These features generate a
large amount of bias for the way in which thresholds for correctness are labeled, as was
found through feature selection.

4.4. Closed-Loop Uncertainty

The CLU model we present employs reinforcement learning to observe the baseline
confidence value and machine correctness at each iteration in order to refine the baseline
model. This refinement is made possible through the incorporation of correctness (via
human intervention) into the reward function.

The structure of CLU is displayed in Figure 3. The baseline uncertainty model gen-
erates a state space with modifications made to the baseline uncertainty values based
on the action space. Rewards are generated using the ground truth provided by human
intervention to estimate the calibration of the baseline uncertainty model. These compo-
nents constitute the core elements of the MDP, and a policy for calibration is constructed
using Q-learning.

In the following sections, the Markov decision process and the policy selection will be
defined in detail. The size of the state space, action space, and the window parameter in
the reward function were selected using a sensitivity analysis described in Appendix A.2.
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Figure 3. Architecture of closed-loop uncertainty.

4.4.1. State Space

Define the state space S by taking a discretization of the difference between successive
confidence values

∆Ct = Ct − Ct−1 (4)

where t indicates the trial number within a realization. Each Ct is a confidence value, so
∀t, Ct ∈ [0, 1] and thus ∆Ct ∈ [−1, 1]. St(∆Ct) maps the interval [−1, 1] onto the set {1, 2, 3},
and can be expressed as

St(∆Ct) = b
3∆Ct

2
+

5
2
c (5)

This process of discretization is employed to ensure convergence on the optimal
policy, which is described in greater detail in Appendix A.3. Conventional discretization
techniques resemble this approach [41].

4.4.2. Action Space

The set of possible actions

A = {x ∈ Q| − 1 ≤ x ≤ 1, x = b/7, b ∈ I} (6)

is defined by evenly discretizing the interval [−1, 1] into 15 values.
Given an action At and a confidence value Ct, we can find the confidence value that is

the result of an action:

C′t(At, Ct) =

{
Ct + AtCt if A ≤ 0
Ct + At(1− Ct) if A > 0

(7)

This definition allows for a fractional shift in any given state’s confidence value either
up or down. For example, an action of 1

7 can be thought as the act of making a 1
7 gain of

any given state’s confidence value towards 1, while the action − 1
7 would cause a 1

7 loss
towards zero.

4.4.3. State Transitions

Let S′t be the state reached from St as a result of action At, and

∆C′t = C′t − Ct−1 (8)
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The state S′t is calculated using Equation (5), and thus becomes

S′t = S(∆C′t) (9)

The transition probabilities ξ are not needed ahead of time due to the usage of model-
free reinforcement learning [34].

4.4.4. Reward Function

For CLU, an ideal reward function would give a higher reward when the policy is
choosing actions that tune the bias of the confidence in the direction of the probability of
a correct classification. For this reason, the reward function uses an estimate of the error
between the confidence of the baseline model and that of the accuracy of the machine
placement for a fixed window size.

Define accuracy pt at trial t to be equal to either 1 when the machine placement
is correct or 0 when the machine placement is incorrect. The mean streaming accuracy,
which measures the fraction of machine placements that are deemed correct within a given
window Wt, where

Wt = {j ∈ N|max(1, t− w− 1) ≤ j ≤ t− 1} (10)

is defined as

p̄t = min(w, t)−1
t−1

∑
i=max(1,t−w−1)

pi (11)

where the window size w is set equal to 24 (for analysis of the window size parameter, see
Appendix A.2.2).

Given a present policy πt : S→ A at trial t, a state St, and a window size w, the win-
dow mean squared error, which estimates the discrepancy between machine placement
accuracy and baseline confidence values, is defined as

D′t = min(w, t− 1)−1
t−1

∑
i=max(1,t−w−1)

(C′i(πi(Si), Ci)− p̄t)
2 (12)

For the baseline confidences, i.e., the policy π(s) = 0 for all s and C′t = Ct at every t,
the baseline window mean squared error Dt is

Dt = min(w, t)−1
t−1

∑
i=max(1,t−w−1)

(Ci − p̄t)
2 (13)

These are used to calculate reward Rt for transitioning from state St to S′t due to action
At.

Rt =

{
1− D′t D′t < Dt

−D′t D′t ≥ Dt
(14)

Note that at each trial t, D′t depends on not only the mean streaming precision p̄t,
but the present policy at each trial. This present policy is used to define C′t for all trials in
a given window Wt. The values for C′t inside each Wt depend on the states and baseline
confidences for each trial inside Wt, yielding a unique Rt.

4.4.5. Policy Selection

At each trial, all of the previous trials’ states and black-box output confidences are
stored, and actions are randomly assigned to each trial. This forms a basis for the online
Q-learning model. The action-value function Q(S, A) gives the expected reward for each
state under each action.
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The learning rule for Q-learning is defined at each trial t as

Q(St, At)← Q(St, At) + λ
(

Rt + γ max
a

Q(S′t, a)−Q(St, At)
)

(15)

where γ, λ ∈ [0, 1] are the discount factor and learning rate, respectively [34]. Both parame-
ters are set to 0.1.

Given a state s, the optimal policy π∗ yields the action that produces the highest
estimated Q-value. If all Q-value estimates are either negative or zero, then the optimal
policy is to take action “0”.

π∗(s) =

{
arg maxa Q(s, a) ∃a ∈ A s.t. Q(s, a) > 0
0 otherwise

(16)

Given a state St and randomly chosen action At at trial t, the present policy, πt, replaces
the optimal action, π∗(St), with At:

πt(s) =

{
At s = St

π∗(s) s 6= St
(17)

The present policy is used to determine reward values, as described in Equation (12).
The optimal policy at each trial is used to calculate the confidence values as shown in
Figure 3.

4.5. Methodology of Evaluation

In order to evaluate confidence as a probability of correctness, the experimentation
must be conducted as a stochastic process. Judging an uncertainty model based on a single
realization of an experiment is likened to evaluating the fairness of a coin based on a single
flip. Therefore, the presented experimental methodology for evaluating uncertainty is
based on many parallel realizations of the experiment that are evaluated at every trial t.
Preferences from user to user are not expected to be similar, but each user’s preference is
expected to be consistent within a realization.

Results are reported by subtracting the mean absolute error (MAE) from 1 at each trial
t across all realizations:

1−MAE(t) = 1− 1
n(Ct)

∑
c∈Ct

|Pt − c| (18)

where Ct is a set containing confidences at trial t across all realizations, n(Ct) represents
the number of realizations in Ct, and Pt is the accuracy of machine placement at trial t
across all realizations. Subtracting from 1 simplifies interpretation, with higher values of
1−MAE indicating better model performance.

Experiments were conducted for 30 realizations, each consisting of the 5 phases
described in Section 4.1.2. Each phase contains 7 trials, totaling 35 trials per realization.
This number of realizations was found to reach a statistically significant sample size during
experimentation. Ground truth was labeled for each trial of each realization by a user
who was asked to maintain preference for the entire realization. All machine models
began each realization with a cold start, meaning that all classifiers and uncertainty models
began the first trial of each realization with no training data. As discussed in Section 4.2,
the classifier used for machine placement disregards all training prior to the 6 most recent
trials, as this improved the accuracy of machine placement. The baseline uncertainty model
did not implement this type of forgetting since forgetting did not yield improved results
for uncertainty.



Entropy 2023, 25, 1443 11 of 23

5. Results

Figure 4 shows the average results across all realizations for tolerances 0.02, 0.1,
and 0.2 individually. The plots include the machine placement accuracy for reference.
These particular plots are chosen as they compare and contrast the models for situations
where machine placement accuracy is expected to be low (T = 0.02), moderate (T = 0.1),
and high (T = 0.2). Figure 5 shows results for each trial averaged across all tested tolerances,
which include all values in the set ranging from 0.02 to 0.20 in increments of 0.02. T = 0
was excluded because it requires the machine placement to be identical to that of the
human placement, which, in a continuous space, is impractical. Tolerances greater than
0.2 cover nearly half of a trial graph or more, which becomes less meaningful when
evaluating uncertainty.

The CLU model significantly improves upon the baseline in almost every trial; how-
ever, the most noticeable trials where the baseline performs better than CLU are the first
trials of phases II and III. There are two important reasons why this behavior is observed.
First, the baseline model for uncertainty tends to be biased towards underconfidence,
meaning that its reported probability of correctness tends to be much less than the machine
placement accuracy in general. This is also true for higher values of tolerance, where
classifier accuracy is expected to be high. Because Phases II and III induce a relatively high
amount of concept drift, the machine placement accuracy suffers greatly in the first trial
of these phases. As the baseline is biased towards underconfidence, any significant fall in
accuracy will cause it to exhibit a higher 1−MAE. The second reason that the baseline
model outperforms CLU in these particular trials is CLU is unable to detect concept drift
from first-class features of the data. As it is driven by feedback of correctness, it must
observe that its current policy is inaccurate by observing that the incorrect machine place-
ment was corrected by the human after entering a new phase of drift. However, as the
machine placement accuracy improves incrementally in the subsequent trials of Phases II
and III, the CLU model is able to very quickly outperform the baseline by accounting for
the baseline’s underconfidence by taking into account the incorrect machine placements.
Phases IV and V do not generally induce as much concept drift, as indicated by the machine
placement accuracy of those trials. Additionally, 1−MAE for CLU in Phase I, which is
the simplest phase where machine placement is 100% accurate, is lowest among all phases.
This is mainly due to the lack of training information from cold start as well as the fact that
the bias of the baseline continues to decrease in this phase, undoing the adjustment of the
CLU algorithm.

The baseline model (the red line) dramatically under performs during phase I when
the machine placement accuracy is at 100 percent, due to the features acting discrete for this
phase, while Gaussian naïve Bayes performs best for continuous normally distributed fea-
tures.

A summary of 1−MAE statistics for various tolerances are shown in Table 1. These
values were calculated across all trials of all realizations of experiments. As shown, CLU
is able to improve upon the baseline model by up to 68% and exhibited a 45% average
improvement overall. In general, better CLU performance trended towards tolerance
values of 0.06–0.16, where the machine placement accuracy was expected to be moderate,
and the baseline performed most poorly.
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Figure 4. Results comparing the baseline uncertainty model to the CLU model for tolerances 0.02,
0.1, and 0.2, respectively, from top to bottom. Results are plotted for each trial across all realizations.
The green plot shows the average accuracy of machine placement.
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Figure 5. Results as shown in Figure 4, but averaged across all explored tolerances.

Table 1. Results of 1−MAE for CLU and baseline models. The mean and variance across all trials
and realizations for several tolerances are shown, as well as the accuracy of the machine placement.

1 − MAE

CLU Baseline
Tolerance Accuracy Mean Variance Mean Variance

0.02 0.471 0.645 0.0213 0.609 0.0614
0.04 0.625 0.675 0.0231 0.507 0.0382
0.06 0.734 0.676 0.0185 0.444 0.0241
0.08 0.796 0.718 0.0203 0.427 0.0202
0.1 0.832 0.704 0.025 0.44 0.0167

0.12 0.857 0.729 0.0176 0.463 0.0154
0.14 0.879 0.742 0.0163 0.485 0.0127
0.16 0.898 0.753 0.0141 0.509 0.0116
0.18 0.908 0.727 0.0104 0.537 0.0105
0.2 0.923 0.764 0.0102 0.56 0.00898

6. Discussion

By considering feedback on machine correctness within an iterative IML paradigm,
it has been shown that uncertainty modeling can greatly improve upon a baseline that
only considers the input data model. A novel closed-loop uncertainty model exemplifying
this improvement was presented. This implementation uses reinforcement learning to
incorporate feedback on machine correctness and calibrate a more traditional uncertainty
model. A simple yet effective threshold selection problem, which exhibits many of the
important characteristics of IML such as concept drift and subjectivity, was presented and
used for experimentation.

The calibration of uncertainty under concept drift can be performed effectively by
incorporating human feedback into the reward function of a reinforcement learning model.
However, the performance of this calibration is dependent on how the states, actions,
and rewards are defined. If the state space does not reflect the baseline uncertainty model,
if the action space is too complex, or if the reward function does not incentivize actions in
the direction of better calibration, it will result in slowly or poorly calibrated uncertainty
values. Therefore, careful consideration is required when defining these components of the
MDP, and finding the most optimal definitions may not be straightforward. It is possible
that the MDP presented for the threshold selection problem could be enhanced by designing
a more nuanced reward function.
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The work presented in this paper is meant to demonstrate the concept of modeling
and evaluating uncertainty for IML problems. Though the threshold selection problem is
interesting and useful for this type of demonstration, the problem itself is relatively simple
in terms of classification and feature space. The approach of calibrating uncertainty using
the architecture of CLU is presented in the context of a two-class problem. However, there
is no reason why CLU cannot generalize to a multi-class problem provided the multi-class
problem has human feedback indicating ground truth and an initial baseline uncertainty,
which could be set equal to a constant value as discussed in Appendix A.4.3. The reward
function would need to be altered to account for the effect changing the uncertainty of one
class would have on another class. A more complex problem would most likely necessitate
a more complex feature space and thus a finer-grained state–action space requiring higher-
level optimization. In such cases, algorithms like DQN could be effective [42]. Our group is
currently working to extend this research to the challenging domain of geographic region
digitization. In these more complex problems, the cognitive load of the human analyst
must be taken into consideration. Too little cognitive load, and the machine model is
slowing the analyst down; too much, and the analyst becomes overwhelmed and will most
likely abandon the machine teammate. As such, we are currently exploring more complex
methodologies that analyze uncertainty modeling as a control process with the threshold
of failure determined at every iteration.

The detection of concept drift, as demonstrated in Du et al. [23], could greatly improve
the precision of uncertainty models for iterative streaming problems. We are currently
working towards incorporating active learning methods for detecting drift into the closed-
loop uncertainty model.

7. Patents

A provisional patent has been filed for the system and method of uncertainty feedback
for an iterative interactive machine learning model.
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Appendix A

Appendix A.1. Index of Terms

Uncertainty—A measure of the classifier’s probability of making an incorrect classifica-
tion.

Confidence—The complement of uncertainty. Con f idence = 1−Uncertainty.

Accuracy—The ratio of correct classifications to total classifications.
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Sample Points—One hundred evenly spaced points on a trial graph, collectively forming
a sigmoid curve.

Trial—An individual graph with human placement, machine placement, and associated
data.

Phase—A set of seven trials with conceptually fixed trial graph complexity.

Realization—A complete run of the experiment, consisting of 35 trials and 5 phases.
In total 30 realizations were performed.

Baseline Uncertainty Model—The first-order uncertainty model awaiting calibration.

Performance—How well the confidence values from the uncertainty model align with the
probability of correctness.

Human Placed Threshold—The threshold location chosen by the analyst, marking the
point where the sigmoid curve signal is no longer considered high.

Machine Placed Threshold—The predicted location of the human-placed threshold by
the machine.

Tolerance (T)—A parameter representing the maximum horizontal distance between the
machine-placed and human-placed thresholds for correct classification.

Optimal Policy—At any given step or trial in the realization, the policy that chooses the
action associated with the maximum estimated action value function.

Present Policy—A modification of the optimal policy at a specific step or trial in the
realization. The state associated with the trial receives a random action, and this
state–action pair replaces the corresponding pair in the optimal policy. All other
state–action pairs remain unchanged in the present policy.

Appendix A.2. Sensitivity Analysis

Throughout the process of defining CLU, several decisions had to be made regarding
the value of key parameters. There was the forgetting integer f of the classifier presented
in Section 4.2, the window size w for the reward function presented in Section 4.4.4, the size
of the state space (which determines the values of the constants in Equation (5)), and the
number of available actions (which determines the members of the set in Equation (6)).

In order to make these selections, sensitivity analyses were conducted. The approach
for each of the parameters involved in the MDP was to hold all other parameters fixed
and to run the experiment for a large set of the parameter in question. Then, results were
collected using Equation (18) to calculate 1−MAE. The parameter value with the highest
1−MAE, across all trials and realizations, was then used for evaluation.

Appendix A.2.1. Forgetting Integer

The classifier, which estimates the location of the human place threshold, is trained
on a certain number of previous trials, referred to as the forgetting integer denoted as
f . To determine the most optimal f , all non-trivial values were tested within the range
{ f ∈ N| f ∈ [1, 34]}. For each value of f , the distances between the machine placement and
the human placement were averaged across all trials in all realizations of the experiment.

As shown in Figure A1, the forgetting integer that yields the smallest mean absolute
distance is f = 6.
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Figure A1. The forgetting integer ( f ) which results in the smallest average distance between the
machine placement and the human placement is f = 6.

Appendix A.2.2. Window Size for Reward Function

For the purpose of the MDP, the window size w was the first parameter analyzed. The
size of the state space was held fixed at 3, and the number of possible actions was held
fixed at 41. The set of values tested was {w ∈ N|2 ≤ w ≤ 25}.

Figure A2 shows that the window size that resulted in the best performance was
w = 24. However, there was not a major difference between highest- and lowest-performing
window sizes (note the y-axis in Figure A2). Although the window size is important, small
changes in the window size do not result in large changes in the overall performance
of CLU.
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Figure A2. A window size of w = 24 is demonstrated to be the highest-performing.
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Appendix A.2.3. Size of the State Space

The general definition of the state space is

St(∆Ct) = b
σ− 1

2
∆Ct +

σ + 1
2
c. (A1)

where σ ∈ N is the number of states.
In Figure A3, a smaller state space is shown to outperform a larger state space, with a

peak performance at size 3. One possible reason for this is that a larger state space requires
more time to explore and may never be fully utilized within the limited 35 trials for each
realization. It is important to recall that one of the conditions for the convergence of
Q-learning is that all actions are repeatedly sampled in all states [35].

Figure A3 shows that CLU is sensitive to the size of the state space, as different state
space sizes result in significantly different performances of CLU.

0.60

0.64

0.68

5 10 15 20

Size of State Space (σ)

1−
M

A
E

Sensitivity of State Space Size

Figure A3. A state space of size 3 performs best, and performance generally decreases with higher
state space size.

Appendix A.2.4. Action Space Size

The general set of possible actions is

A = {x ∈ Q| − 1 ≤ x ≤ 1, x =
b

α−1
2

, b ∈ I, α ∈ 2N+ 1} (A2)

where α is the number of possible actions. The value for α was required to be an odd
number greater than or equal to 3, so that an action of 0 (i.e., the action that does nothing)
was always possible, and every positive action had an equivalent negative action.

Figure A4 shows that the choice of α does not significantly alter the performance of
CLU, provided α > 3. For α > 3, the worst-performing α and the best-performing α do not
result in a significant difference in overall performance, indicating that CLU is not highly
sensitive to the size of the action space.

As shown in Figure A4, when α is set to 15, 39, and 43, the performance is nearly
identical. For the purpose of evaluation α was set to 15, because the state–action space is
smaller than the latter two options, which means fewer iterations are needed to explore the
state–action space.
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Figure A4. The performance of CLU with different action space sizes.

Appendix A.3. Convergence of CLU

The question of the convergence of CLU to well-calibrated probabilities is difficult to
answer. It is understood that Q-learning converges to the optimal action values provided
discrete state–action values are repeatedly sampled [35]. Therefore, CLU will converge to
an optimal policy that guarantees the highest possible reward, but the definition of reward
is essential.

If the MDP is defined in such a way that gives higher rewards for a poorer performing
uncertainty model, then the result will be CLU converging to poor uncertainty values.
Furthermore, if the reward function is meaningless, (e.g., set equal to a random value) then
the number of trials needed to converge will be prohibitively large. If the state–action space
is poorly defined or too large, then the convergence to the optimal policy slows.

In addition, the question of whether CLU converges may be dependent on the choice
for the baseline uncertainty model. Appendix A.4 shows that there are several other
baseline models that could be conceived that would benefit from the methods embedded
in CLU; however, it is also possible to conjure up a baseline model that in no way benefits
from CLU. That being said, we have not yet found a baseline model that is adversely
affected by CLU.

However, given a properly defined MDP, CLU has the potential to converge to well-
calibrated uncertainty values for a wide variety of baseline uncertainty models.

Appendix A.4. Alternative Baseline Models

Three alternative baseline uncertainty models to the naïve Bayes baseline discussed in
Section 4.3 were tested with CLU. This was performed not only to check assumptions of
the naïve Bayes baseline model by drawing comparisons, but also to investigate the extent
to which CLU can improve a traditional uncertainty model.

In the KDE model we investigated a kernel density estimation (KDE) technique for
the distributions used to calculate the posterior probabilities in naïve Bayes. As discussed
in Section 3, this method provides a useful means to convert distributions from discrete
variables into continuous probability distributions.
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The induction model calculates the confidence of each machine placement by equating
it to the accuracy of the previous trial. If the previous trial had a correct placement (i.e., one
in which the machine placement is within a tolerance of the human placement), then the
confidence value of the current trial is 1. If the previous trial had an incorrect placement,
then the confidence value of the current trial is 0.

A constant model, in which all confidence values are set to 0.5, was used to test the
assumption that the naïve Bayes model can provide more information about the uncertainty
than assuming the odds of a correct classification were like a coin flip. This model provides
evidence that CLU can operate as a first-order uncertainty model.

The parameters set during the sensitivity analysis discussed in Appendix A.2 are kept
fixed throughout this process of testing other baselines.

Appendix A.4.1. Kernel Density Estimation Baseline Model

The advantage of using KDE is that it allows the interpretation of discrete variables
in a continuous manner, which is particularly advantageous in the early phases of each
realization where there is much less complexity.

As shown in Figure A5, the KDE baseline model achieves higher 1−MAE than the
Gaussian naïve Bayes model outlined in Section 4.2 in some trials. However, the CLU
model performed somewhat worse. CLU does still make a noticeable improvement to the
baseline in this case.
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Baseline 1−MAE CLU 1−MAE Machine Placement Accuracy

KDE: Avg Across Tolerances 0.02 − 0.2

Figure A5. Results as shown in Figure 5, but using KDE as the baseline uncertainty model.

Appendix A.4.2. Induction

We define an induction baseline uncertainty model as one in which the value for
confidence is defined as 1 if the previous trial had a correct classification and as 0 if the
previous trial had an incorrect classification. That is,

Ct =

{
1 if pt−1 = 1
0 if pt−1 = 0

(A3)

In practice, there is always a probability of an incorrect classification that is neither
0 nor 1. As a result, this model is inherently either as overconfident as possible or as
underconfident as possible.
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The motivation behind this model was to assess whether CLU could calibrate a
baseline that provides no information about the current trial. Figure A6 shows that this
baseline model results in confidence values that are highly susceptible to concept drift,
as evident at the start of phases II and III. This susceptibility is likely due to the fact that,
as per Equation (A3), confidence is a function of the accuracy of the classifier. In addition,
CLU does not do much in the way of improving the performance. In fact, the induction
model slightly outperforms CLU in phase I (while CLU warms up), and therafter, CLU and
this baseline stay close, with CLU slightly outperforming the baseline starting at phase III.

One possible reason for this is the baseline does not indicate much information in the
definition of the state space. It is not clear whether or not a model similar to CLU could
still improve upon this induction baseline if there were a reformulation of the state space to
include information that is not encoded in successive baseline confidence values.
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Baseline 1−MAE CLU 1−MAE Machine Placement Accuracy

Induction: Avg. Across Tolerances 0.02 − 0.2

Figure A6. Results as shown in Figure 5, but using induction as the baseline uncertainty model.

Appendix A.4.3. Constant

A baseline model that assumes every classification has a confidence of 0.5 is equivalent
to assuming the classification is as good as a coin flip. This model was used to compare
with the Gaussian naïve Bayes baseline, which had confidence values below 0.5. In Figure 4
and Figure 5, during phase I, the confidence values are quite low. However, this is also the
phase where the classifier performed with perfect accuracy. This inconsistency motivated
the implementation of the constant baseline model.

Figure A7 shows CLU outperforms the constant baseline. This suggests that CLU
could improve upon a very simple baseline without any nuance.
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Figure A7. Results as shown in Figure 5, but using the constant model as the baseline uncer-
tainty model.

Appendix A.5. Subjectivity in Trials

Throughout this experiment, ground truth from analysts was used to test how the
uncertainty models respond to feedback. To accomplish this, a dataset consisting of 30
thresholds placed by an analyst was collected before any experimentation was performed.
The analyst was only told to choose the point at which the signal transitioned to a low state,
which left room for subjectivity in the experiment.

The majority of realizations have ground truth that tends to designate 0.5 as the thresh-
old where the signal is no longer high, while about a fifth of the realizations designate
this threshold at a slightly higher value, around 0.75. In the noisier phases (Phases III-V),
the subjectivity regarding where to place this threshold becomes more significant, as the sig-
nal may temporarily dip below the threshold and then immediately rise above it to varying
degrees due to noise. CLU calibrates the baseline uncertainty model using human feedback,
enabling it to overcome noise in the later phases and leading to improved performance.
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