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Abstract: Symmetric extensions are essential in quantum mechanics, providing a lens through which
to investigate the correlations of entangled quantum systems and to address challenges like the
quantum marginal problem. Though semi-definite programming (SDP) is a recognized method
for handling symmetric extensions, it struggles with computational constraints, especially due to
the large real parameters in generalized qudit systems. In this study, we introduce an approach
that adeptly leverages permutation symmetry. By fine-tuning the SDP problem for detecting k-
symmetric extensions, our method markedly diminishes the searching space dimensionality and
trims the number of parameters essential for positive-definiteness tests. This leads to an algorithmic
enhancement, reducing the complexity from O(d2k) to O(kd2

) in the qudit k-symmetric extension
scenario. Additionally, our approach streamlines the process of verifying the positive definiteness
of the results. These advancements pave the way for deeper insights into quantum correlations,
highlighting potential avenues for refined research and innovations in quantum information theory.

Keywords: symmetric extension; irreducible representation of su(n); permutation symmetry;
computational complexity

1. Introduction

In the intricate domain of quantum mechanics, symmetric extensions stand out as a
cornerstone, providing a structured mathematical lens through which to explore the nature
and behavior of quantum states. A bipartite state ρAB is deemed symmetrically extendible
if there exists a multi-partite density matrix ρA1 A2 ...AmB1B2 ...Bn such that each of its reduced
density matrices, when traced over its complements, matches ρAB:

Tr(AjBk)c(ρA1 A2 ...AmB1B2 ...Bn) = ρAB, ∀j, k. (1)

Delving into the importance of symmetric extensions, they serve as a tangible frame-
work to probe the nature of quantum entanglement, offering a means to understand the
profound correlations present in entangled quantum systems [1–3]. Furthermore, they pave
the way for addressing the quantum marginal problem, which investigates the necessary
conditions under which a set of density matrices can correspond to a global state [4,5]. This
problem’s universality is showcased by its resonance with the N-representability problem
in quantum chemistry [6,7].

A common approach for identifying a k-extension is to cast the problem as a semi-
definite programming (SDP) problem [8–10]. SDP, a form of convex optimization, involves
minimizing a linear function subject to the constraints that the solution lies in the intersec-
tion of the cone of positive semi-definite matrices and an affine space. Given that density
matrices are inherently semi-definite, SDP has found extensive application in quantum
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information problems [11,12]. By leveraging the properties of SDP, we can devise efficient
algorithms for detecting k-extensions. For example, the algorithm used in QETLAB that
determines if a bipartite quantum state ρAB is k-symmetric extendible for the d-dimensional
subsystem B has the form:

find ρ̃

s.t.


ρ̃ � 0
Tr(AB1)

c(ρ̃) = ρAB(
1A ⊗ Pij

)
ρ̃
(
1A ⊗ Pij

)
= ρ̃, ∀i, j

(2)

where ρ̃ = ρAB1B2 ...Bk is the k-symmetric extension of ρAB and the operator Pij is an element
in the permutation group Sk. However, the substantial number of real parameters, notably
in the general qudit scenario, can present formidable computational obstacles. This is
largely due to the requirement of the entire extended Hilbert spaceHAB1B2 ...Bk , which scales
as O((d2)k). Such exponential scaling can make calculations intractable for larger systems
or higher dimensions.

In this work we are going to present a new optimization scheme, which not only
considers the permutation symmetry to reduce the total parameters, but also optimizes
the subroutine to determine positive definiteness, where the parameters for single-time
optimization grow no faster than

d−1

∏
m=1

1
m!

(
1 +

2k
d(d + 1)

)d(d−1)/2
,

for large k and d.
A testament to our methodology’s effectiveness is its application to the renowned

bipartite Werner state, where it exhibits a pronounced acceleration in comparison to the
established QETLAB software. This enhancement equips us to approach larger k-extension
challenges with unparalleled efficiency.

Furthermore, our calculations have explicitly determined the dimensions of the search-
ing space and the number of parameters required for positive-definiteness tests. This effi-
ciency stems from our algorithm’s ability to undergo multiple distinct positive-definiteness
tests, each correlating to a unique Young diagram. Each individual test, though involving a
significantly smaller matrix, culminates in a comprehensive and efficient analysis.

Our findings contribute to a clearer understanding of quantum systems, potentially
aiding in the design of more proficient quantum algorithms and enhancing our grasp of
quantum information theory.

The structure of our paper is as follows: Section 2 delves into the intricacies of the
3-extension of the qutrit case as an illustrative example. Section 3 elucidates our methodol-
ogy to compute the reduced density matrix of global states for a general k-extendible state,
and underscores our rationale for dimensionality reduction. Section 4 shows a comparison
of our new algorithm and the traditional one. Concluding insights and discussions are
furnished in Section 5.

2. Qutrit Example

Before starting to solve the general problem, we first take a look at two simple ex-
amples, 2- and 3-extensions of qutrits. In fact, these two cases clearly demonstrate why
our new algorithm can greatly reduce the size of the searching space. We are going to
investigate how many real parameters are needed to fully describe the global symmetric
extended matrix ρA~B, which lies in Hilbert space V = VA ⊗ T constituted by parts A and
~B, with the constraints that Tr(AB1)c(ρA~B) = ρAB.
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2.1. 2-Qutrit Case

In this case, T ≡ V(1)⊗V(2) is constituted by the two qutrits B1 and B2, where V(1) and
V(2) represent B1 and B2, respectively. T is spanned by nine vectors {|00〉, |01〉, · · · , |22〉}.
According to different permutation symmetry, T can be decomposed as a 2-invariant
orthogonal subspace, a 6-dimensional bosonic one VB, and a 3-dimensional fermionic
one VF. It is clear that there does not exist any cross term of bosonic subspace and
fermionic subspace, therefore, we only have to consider the density matrix ρ̄A~B supporting
on End(VA)⊗ End(VB) and ρ̃A~B supporting on End(VA)⊗ End(VF).

The general form of ρ̄A~B reads

ρ̄A~B =
6

∑
α,β=1

ρ
(α,β)
A ⊗ p̄α,β|φα

~B
〉〈 φ

β
~B
|, (3)

where ρ
(α,β)
A ∈ End(VA), p̄α,β is a complex number and

{|φα
~B
〉} =

{
|00〉, |11〉, |22〉, 1√

2
(|01〉+ |10〉), 1√

2
(|02〉+ |20〉), 1√

2
(|12〉+ |21〉),

}
.

The reduced density matrix can be obtained by performing a partial trace over B2

2× TrV(2)(ρ̄A~B) =
2

∑
a,b=0

M̄ab ⊗ |a〉〈b|, (4)

where M̄ab is given by

M̄00 = 2p̄1,1ρ
(1,1)
A + p̄4,4ρ

(4,4)
A + p̄5,5ρ

(5,5)
A ,

M̄11 = 2p̄2,2ρ
(2,2)
A + p̄4,4ρ

(4,4)
A + p̄6,6ρ

(6,6)
A ,

M̄22 = 2p̄3,3ρ
(3,3)
A + p̄5,5ρ

(5,5)
A + p̄6,6ρ

(6,6)
A ,

M̄01 = M̄†
10 =

√
2p̄4,1ρ

(4,1)
A +

√
2p̄2,4ρ

(2,4)
A + p̄6,5ρ

(6,5)
A ,

M̄02 = M̄†
20 =

√
2p̄5,1ρ

(5,1)
A +

√
2p̄3,5ρ

(3,5)
A + p̄6,4ρ

(6,4)
A ,

M̄12 = M̄†
21 =

√
2p̄6,2ρ

(6,2)
A +

√
2p̄3,6ρ

(3,6)
A + p̄5,4ρ

(5,4)
A . (5)

It is noticed that each term of the right-hand side in Equation (4) does not contain
every p̄α,β. In fact, the nonzero coefficients before p̄α,β in the term |a〉〈b| are exactly the
nonzero entries of the representation matrix T(ab) over this bosonic invariant subspace
(You may find the representation of su(3) for this case and the following case in standard
textbooks on group theory, such as [13,14]).

Similarly, one can write down the general form of ρ̃A~B supporting on End(VA) ⊗
End(VF)

ρ̃A~B =
3

∑
α,β=1

ρ
(α,β)
A ⊗ p̃α,β|ψα

~B
〉〈ψβ

~B
|, (6)

where ρ
(α,β)
A ∈ End(VA), p̃α,β is a complex number and {|ψα

~B
〉} is{

1√
2
(|01〉 − |10〉), 1√

2
(|02〉 − |20〉), 1√

2
(|12〉 − |21〉),

}
.

The reduced density matrix can be obtained by performing a partial trace over B2

2× TrV(2)(ρ̃A~B) =
2

∑
a,b=0

M̃ab ⊗ |a〉〈b|, (7)
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where M̃ab is given by

M̃00 = 2p̃1,1ρ
(1,1)
A + p̃2,2ρ

(2,2)
A ,

M̃11 = p̃1,1ρ
(1,1)
A + p̃3,3ρ

(3,3)
A ,

M̃22 = p̃2,2ρ
(2,2)
A + p̃3,3ρ

(3,3)
A ,

M̃01 = M̃†
10 = p̃3,2ρ

(3,2)
A ,

M̃02 = M̃†
20 = − p̃3,1ρ

(3,1)
A ,

M̃12 = M̃†
21 = p̃2,1ρ

(2,1)
A . (8)

Taking both ρ̄A~B and ρ̃A~B into account, far fewer real parameters are needed: the
original algorithm searches the entire Hilbert space and, thus, the number of parameters
is 92d2

A, while usage of permutation symmetry can reduce this number to (62 + 32)d2
A.

It should be stressed that such a simplification comes from the fact that the cross terms
between subspaces corresponding to different permutation symmetries are forbidden.

However, the simple usage of symmetry, such as simply symmetrizing the Gell–Mann
matrices over B1 and B2, has to determine the positive definiteness of one matrix with
dimensions (62 + 32)d2

A. As a comparison, our method involves determining the positive
definiteness of two matrices, whose dimensions are 62d2

A and 32d2
A, respectively.

2.2. 3-Qutrit Case

In this case, T ≡ V(1) ⊗ V(2) ⊗ V(3) is constituted by the three qutrits B1, B2, and
B3, where V(i) represents Bi. Similar to the procedure in the previous subsection, one
can decompose T as the direct sum of the subspace according to different permutation
symmetries, and further more, there does not exist a cross term between subspaces corre-
sponding to different permutation symmetries. The permutation symmetry of the 3-qutrit
case is much more complicated than the 2-qutrit case. It is easy to verify that there exist a
10-dimensional bosonic subspace and a 1-dimensional fermionic subspace. Therefore, one
can solve this problem by imitating the previous subsection and obtaining the constraint
equations. In this situation, the dimensions of the searching space can be reduced from
272d2

A to (102 + 162 + 12)d2
A.

However, more room is left for simplification. According to Weyl duality, the 16-
dimensional subspace can be further decomposed as two orthogonal 8-dimensional invari-
ant subspaces T [2,1]

1 and T [2,1]
2 , and both are loaded with an equivalent su(3)-irreducible

representation, described by a two-row Young diagram [2, 1]. Here, [λ] ≡ {λ1, λ2, · · · , λn}
is a partition of integer k, where all λi are integers satisfying λ1 ≥ λ2 ≥ · · · ≥ λn ≥
0, ∑n

i=1 λi = k. Such a partition is denoted by an n-row Young diagram.

T [2,1]
1 and T [2,1]

2 are spanned by the vectors {ϕ
α,(1)
~B
} and {ϕ

α,(2)
~B
}:{

1√
6
(2|001〉 − |010〉 − |100〉), 1√

6
(2|002〉 − |020〉 − |200〉), 1√

6
(|011〉 − |101〉 − 2|110〉),

1√
12

(2|012〉 − |021〉+ 2|102〉 − |120〉 − |201〉 − |210〉), 1√
4
(|021〉 − |120〉+ |201〉 − |210〉),

1√
6
(|022〉+ |202〉 − 2|220〉), 1√

6
(2|112〉 − |121〉 − |211〉), 1√

6
(|122〉+ |212〉 − 2|221〉)

}
,
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{
1√
2
(|010〉 − |100〉), 1√

2
(|020〉 − |200〉), 1√

2
(|011〉 − |101〉),

1√
4
(|021〉+ |120〉 − |201〉 − |210〉), 1√

12
(2|012〉+ |021〉 − 2|102〉 − |120〉 − |201〉+ |210〉),

1√
2
(|022〉 − |202〉), 1√

2
(|121〉 − |211〉), 1√

2
(|122〉 − |212〉),

}
.

Under the constraint condition imposed in Equation (1), the general form of global
state ρ̂A~B supporting on End(VA)⊗ End(T [2,1]

1 ⊕ T [2,1]
2 ) must be of the following form:

ρ̂A~B =
8

∑
α,β=1

ρ
(α,β)
A ⊗ p̂α,β

(
|ϕα,(1)

~B
〉〈ϕβ,(1)

~B
|+ |ϕα,(2)

~B
〉〈ϕβ,(2)

~B
|
)

, (9)

The reduced density matrix can be obtained by performing a partial trace over B2

3
2
× TrV(2)(ρ̂A~B) =

2

∑
a,b=0

M̂ab ⊗ |a〉〈b|, (10)

where M̃ab is given by

M̂00 = 2p̂1,1ρ
(1,1)
A + 2p̂2,2ρ

(2,2)
A + p̂1,1ρ

(1,1)
A + p̂4,4ρ

(4,4)
A + p5,5ρ

(5,5)
A + p̂6,6ρ

(6,6)
A ,

M̂11 = p̂1,1ρ
(1,1)
A + 2p̂3,3ρ

(3,3)
A + p̂4,4ρ

(4,4)
A p̂5,5ρ

(5,5)
A + 2p̂7,7ρ

(7,7)
A + p̂8,8ρ

(8,8)
A ,

M̂22 = p̂2,2ρ
(2,2)
A + p̂4,4ρ

(4,4)
A + p̂5,5ρ

(5,5)
A + 2p̂6,6ρ

(6,6)
A + p̂7,7ρ

(7,7)
A + 2p̂8,8ρ

(8,8)
A ,

M̂01 = M̂†
10 = − 1√

2
p̂4,1ρ

(4,1)
A +

√
3
2

p̂5,1ρ
(5,1)
A + p̂6,2ρ

(6,2)
A +

1√
2

p̂8,4ρ
(8,4)
A −

√
3
2

p̂8,5ρ
(8,5)
A − p̂7,3ρ

(7,3)
A ,

M̂02 = M̂†
20 = p̂2,1ρ

(2,1)
A +

1√
2

p̂4,3ρ
(4,3)
A +

√
3
2

p̂5,3ρ
(5,3)
A +

1√
2

p̂6,4ρ
(6,4)
A +

√
3
2

p̂6,5ρ
(6,5)
A + p̂2,1ρ

(2,1)
A ,

M̂12 = M̂†
21 = p̂3,1ρ

(3,1)
A +

√
2p̂4,2ρ

(4,2)
A + p̂7,4ρ

(7,4)
A + p̂8,7ρ

(8,7)
A . (11)

Due to the permutation requirement, the number of real parameters is less than
(102 + 82 + 12)d2

A, since some pairs of α and β may contribute nothing when computing the
one-body reduced density matrix (but these numbers cannot be set to 0 directly, since they
may affect the positive definiteness). It should be stressed that the simplification comes
not only from the fact that the cross terms between subspaces corresponding to different
permutation symmetries are forbidden, but also arises from the fact that the majority of
the cross terms within subspaces corresponding to identical permutation symmetries are
also forbidden. It should also be noticed that, via our method, one can check the positive
definiteness of the global state by successively checking the positive definiteness of the
density matrix corresponding to different permutation symmetries.

3. Complexity of Improved SDP

In this section, we are going to give the general form of a global state that corresponds
to the given quantum marginals ρAB.

Consider the symmetric extension problem described in Equation (2). It is required
that the global state ρAB1···Bk is invariant under any exchange of Bi and Bj, but it does not
require that ρAB1···Bk must support on a subspace with specific permutation symmetry. E.g.,
for a 2-symmetric extendible state, its extension can be bosonic, which supports on the
symmetric subspace only, or fermionic, whose support only resides on the antisymmetric
subspace, or more generally, can be a mixture of both.
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Consider a Hilbert space T =
⊗k

i=1 V(i) constituted by the k qudits B1, B2, · · · , Bk, whose
computational basis is

{
Φi1,i2,··· ,ik ≡ |i1, i2, · · · , ik〉

}
, where i1, i2, · · · , ik = 0, 1, · · · , d− 1.

Each subsystem V(i) is invariant under SU(d) ’rotation’, and transforms according to
the d-dimensional fundamental irreducible representation D[1], which corresponds to the
Young diagram [1] (this is the one block Young diagram �).

Therefore, the Lie algebra su(d), which is constituted by three series of zero-trace
Hermitian matrices and describes the infinitely small rotation of SU(d), has the following
matrix forms on each identical V(j) if we set |i〉 to be the natural basis,(

T(1)
mn

)
st

=
1
2
(δmsδnt + δnsδmt),(

T(2)
mn

)
st

=
−i
2
(δmsδnt + δnsδmt),

(
T(3)

p

)
st

=


δst[2(p + 1)p]−

1
2 , s < p,

−δst[p/(2p + 2)]
1
2 , s = p,

0, s > p,
,

where m < n, and 1 ≤ p ≤ d− 1. Taking the global phase into account, one should also
include the identity matrix. Therefore, one can obtain a new basis for Lie algebra u(d) by

{Tab|(Tab)st = δasδbt, 0 ≤ a, b ≤ d− 1}.

T is also invariant under the global U(d) transformation, whose corresponding Lie al-
gebra is given by {Tab|Tab = ∑i T(i)

ab } (here, T(i)
ab denotes that the i-th subsystem transforms

according to Tab while others transform according to the identity operator). T transforms
under representation ⊗k[1], which is not irreducible, but can be decomposed as the direct
sum of a series of irreducible representations,

⊗k
D[1] =

⊕
[λ]

m[λ]D
[λ], (12)

where m[λ] is the multiplicity of the irreducible representation D[λ]. This is equivalent
to saying that T can be partitioned as the direct sum of subspaces. (Please note that
subspaces corresponding to different Young diagrams are orthogonal to each other, while
those corresponding to the same Young diagram are not. However, it is guaranteed that
the intersection of two such different subspaces is zero.)

T =
⊕
[λ]

m[λ]T [λ]. (13)

It can be easily shown that such a T [λ] has a particular permutation symmetry de-
scribed by Young diagram [λ], and the multiplicity m[λ] equals the dimension of the
irreducible representation of Sk corresponding to the identical Young diagram [λ], which
gives the equation

dk = ∑
[λ]

m[λ]D
[λ]. (14)

Two irreducible representation spaces T [λ]
µ and T [λ]

ν corresponding to the same Young
diagram but different Young tableaus are orthogonal to each other. Although there might
probably be multiplicity in some weight subspace for a general irreducible subspace, one
can uniquely label a vector within an arbitrary given irreducible subspace by its weight ~ω
in su(d) and the subgroup chain su(d) ⊃ su(d− 1) ⊃ · · · ⊃ su(2) [15]. Thus, one can safely
use the weight ~ω to label different states inside an irreducible subspace T [λ]

µ . Therefore,
{|[λ], µ, ~ω〉} labels a complete basis of T one by one, where [λ] denotes non-equivalent
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su(d) representations, and µ differentiates equivalent ones. Together they determine an
orthogonal irreducible subspace, and ~ω labels every different vector inside.

On the other hand, {|[λ], µ, ω〉} can be interpreted in another way: ~ω describes the
weight, and [λ] denotes non-equivalent Sk representations, thus, these two parameters
differentiate orthogonal invariant subspaces, while µ labels vectors inside. From now on,
we shall use

∣∣∣~ω[λ]
µ

〉
as short for |~ω, [λ], µ〉.

Any matrix ρAB1B2···Bn ∈ End(VA)⊗ End(T ) can be expressed as

ρAB1B2···Bk = ∑
α,α′

∑
[λ],[λ′ ]

∑
µ,µ′

∑
~ω,~ω′

∣∣∣ψα
~ω,[λ],µ

〉〈
ψα′
~ω′ ,[λ′ ],µ′

∣∣∣⊗ ∣∣∣~ω[λ]
µ

〉〈
~ω′

[λ′ ]
µ′

∣∣∣∣, (15)

where
∣∣∣ψα

~ω,[λ],µ

〉
are non-normalized states in VA and α labels different states in VA.

Inserting Equation (15) into Equation (2), ∀π ∈ Sk, we obtain a series of constraints for
ρAB1B2···Bk :

∀[λ], [λ′]~ω, ~ω′ and µ, µ′,

∑
α,α′

∣∣∣ψα
~ω,[λ],µ

〉〈
ψα′
~ω′ ,[λ′ ],µ′

∣∣∣∑
ν,ν′
A(π)

[λ]
µ,νA(π)

[λ′ ]∗
ν′ ,µ′

∣∣∣~ω[λ]
ν

〉〈
~ω′

[λ′ ]
ν′

∣∣∣∣
= ∑

α,α′

∣∣∣ψα
~ω,[λ],µ

〉〈
ψα′
~ω′ ,[λ′ ],µ′

∣∣∣∣∣∣~ω[λ]
µ

〉〈
~ω′

[λ′ ]
µ′

∣∣∣∣, (16)

where A[λ] and A[λ′ ] are irreducible representations of the permutation group Sk.
Define matrix

M(~ω, ~ω′, [λ], [λ′]) ≡ ∑
µ,µ′

M(~ω, ~ω′, [λ], [λ′])µµ′

∣∣∣~ω[λ]
µ

〉〈
~ω′

[λ′ ]
µ′

∣∣∣∣, (17)

where
M(~ω, ~ω′, [λ], [λ′])µµ′ ≡ ∑

α,α′

∣∣∣ψα
~ω,[λ],µ

〉〈
ψα′
~ω′ ,[λ′ ],µ′

∣∣∣, (18)

thus, ∀π ∈ Sk

A[λ](π)M(~ω, ~ω′, [λ], [λ′])A[λ′ ](π)† = M(~ω, ~ω′, [λ], [λ′]). (19)

Schur’s lemma guarantees that,

a. when [λ] 6= [λ′], M = 0;
b. when [λ] = [λ′], M is invertible.∣∣∣~ω[λ]

µ

〉
should be chosen carefully such that the representations A[λ] are identical,

not just an isomorphic matrix, for different weights ω. Then, all M(~ω, ~ω′, [λ], [λ]) can be
proportional to the corresponding identity matrix. Therefore, one can eliminate the majority
of cross terms and restrict ρAB1B2···Bk to

ρAB1B2···Bk = ∑
[λ]

∑
~ω,~ω′

f ([λ], ~ω, ~ω′)σ([λ], ~ω, ~ω′)⊗∑
µ

∣∣∣~ω[λ]
µ

〉〈
~ω
′[λ]
µ

∣∣∣, (20)

where f ([λ], ~ω, ~ω′) is the coefficient and σ([λ], ~ω, ~ω′) ∈ End(VA) (this does not have to be
a density matrix!), both of which correspond to the Sk-irreducible representation described
by the Young diagram [λ] and different weights ~ω and ~ω′.
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Our next task is to determine the RDM of the global state given by Equation (20). For
every given [λ], ~ω, and ~ω′, one can temporally ignore system A and concentrate on group
{B1, B2, · · · , Bk},

d−1

∑
i,j=0

Bij|i〉〈j| = TrBc
1

(
∑
µ

∣∣∣~ω[λ]
µ

〉〈
~ω
′[λ]
µ

∣∣∣)

=
d−1

∑
i,j=0
|i〉〈j|Tr

(
T(1)

ji ∑
µ

∣∣∣~ω[λ]
µ

〉〈
~ω
′[λ]
µ

∣∣∣)

=
d−1

∑
i,j=0
|i〉〈j|Tr

(
1
k

Tji ∑
µ

∣∣∣~ω[λ]
µ

〉〈
~ω
′[λ]
µ

∣∣∣)

=
d−1

∑
i,j=0
|i〉〈j|

(m[λ]

k

〈
~ω′[λ]

∣∣∣Tji

∣∣∣~ω[λ]
〉)

, (21)

where
〈
~ω′[λ]

∣∣∣Tji

∣∣∣~ω[λ]
〉

is exactly the matrix element of irreducible representation corre-
sponding to Young diagram [λ] for generator Tji in Lie algebra u(d) (do not worry about
this part, the general matrix form of Tji in irreducible representation D[λ] of u(d) has been
calculated by mathematicians and you can refer to [15]). Taking subsystem A into account,
one can obtain

Tr(AB1)c
(
ρAB1B2···Bk

)
= ∑

[λ]

dA−1

∑
m,n=0

d−1

∑
i,j=0
|m〉〈n| ⊗ |i〉〈j|

× ∑
~ω,~ω′

σ([λ], ~ω, ~ω′)mn
m[λ]

k

〈
~ω′[λ]

∣∣∣Tji

∣∣∣~ω[λ]
〉

f ([λ], ~ω, ~ω′). (22)

For every given [λ], the number of different values for ~ω and ~ω′ is just the dimension
of the u(d)-irreducible representation D[λ]. Therefore, ignoring the size of subsystem A,
the size of the searching space in dealing with symmetric extension is given by

∑
(

D[λ]
)2

=

(
d2 − 1 + k

k

)
< d2k, (23)

where the summation runs over all possible proper Young diagrams. One may conclude
that the dimensions of the entire searching space grow no faster than O(kd2

), which is
significantly smaller than the original O(d2k), therefore, the efficiency of SDP can be greatly
improved when dealing with symmetric extension problems.

To guarantee the positive definiteness of the solved global matrix, one can test whether
the density matrix corresponding to a different permutation is positive definite, and hence
each testing needs far fewer resources.

To investigate the amount of resources needed for each single testing, one should
focus on the growth rates of D[λ] and m[λ]. The asymptotic behavior of the upper bound of
D[λ] is given by

d−1

∏
m=1

1
(m)!

(
1 +

2k
d(d + 1)

) d(d−1)
2

, (24)

which corresponds to the irreducible representation that satisfies λi− λi+1 ≈ 2k/d(d− 1) [16].
For a given k, the number of different valid Young diagrams whose number of rows
is less than or equal to d is hard to compute analytically, but for a sufficiently large k,
the asymptotic value is 1

d! (
k+d−1

k ). To find a partition (not necessarily a partition that
corresponds to a valid Young diagram!) that satisfies ∑k

i λi = k is equivalent to inserting
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d− 1 separators between a line of k balls, which reads (k+d−1
k ). Since some λi’s might be

identical, the number of valid different Young diagrams should be less than 1
d! (

k+d−1
k ),

but when k is sufficiently large, the odds of any λi’s being identical approaches 0, so the
asymptotic number of valid Young diagrams is given by 1

d! (
k+d−1

k ).

4. Numerical Results

First, we apply our algorithm to the famous bipartite Werner state ρW,d(α) ∈ Hd ⊗Hd

ρW,d(α) =
1

d2 − dα
I − α

d2 − dα ∑
ij
|ij〉〈ji|, α ∈ [−1, 1].

Previous work [17] proved that the Werner state is (1, k)-extendible for α ∈ [−1, k+d2−d
kd+d−1 ].

As k goes to infinity, it gives the separable Werner state α ∈
[
−1, 1

d

]
. To obtain such a

(1, k)-extendible boundary α∗k , one can solve the following semi-definite programming

max c,

s.t.


ρAB1···Bk � 0,(
1

A ⊗ Pij
)
ρAB1···Bk

(
1

A ⊗ Pij
)
= ρAB1···Bk ,

TrBc
1

(
ρAB1···Bk

)
= (1− c)ρo + cρW,d(1),

where ρ0 denotes the maximally mixed state (as semi-definite programming requires linear
or affine equation constraints, we convert the non-linear expression α in the Werner state
into a linear interpolation (1− c)ρ0 + cρW,d(1) used in the optimization), and the boundary
can be calculated from the optimal value α∗k = c∗d

c∗+d−1 .
The results are shown in Table 1. We compare the time required with the software

QETLAB [18], a widely used MATLAB package in the quantum information community.
The benchmark is performed on a standard laptop, AMD R7-5800H, 16 CPU cores (hy-
perthread enabled), 16 GB memory, and our algorithm is implemented in the CVXPY
package [19] with the MOSEK solver [20]. The solved boundary α∗k is within an absolute
error of 10−8 compared with the analytical results. From the results, a significant speedup
can be observed and a much larger k-extension problem can be handled by our algorithm.

We explicitly calculate the dimensions of the searching space and the number of
parameters required to be tested for positive definiteness, which demonstrates the efficiency
of our algorithm, as shown in Table 2 (our algorithm needs to undergo multiple different
positive-definiteness tests, where each different Young diagram corresponds to its own test,
but each individual test involves a significantly smaller matrix, and hence the efficiency
is improved).

Table 1. Time usage for calculating the Werner (1, k)-extendible boundary. The dashed line “-”
indicates the optimization failed due to memory limitation or intolerable time usage.

(d, k) QETLAB (s) irrep (s) α∗
k

(2, 8) 0.19 0.16 0.588
(2, 10) 12.60 0.16 0.571
(2, 16) - 0.32 0.545
(2, 32) - 3.18 0.523
(2, 32) - 51.96 0.512

(3, 3) 0.62 0.51 0.818
(3, 4) 7.96 2.38 0.714
(3, 5) - 11.56 0.647
(3, 6) - 55.60 0.6
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Table 2. Dimensions and number of parameters needed in positive definiteness.

(d, k) #Searching Space
(QETLAB, irrep) #Positive Definiteness (QETLAB, irrep)

(3, 3) (729, 165) (729, 102 + 82 + 12)
(3, 4) (6561, 495) (6561, 152 + 152 + 62 + 32)
(3, 5) (59,049, 1287) (59,049, 212 + 242 + 152 + 62 + 32)
(3, 6) (531,441, 3003) (531,441, 282 + 352 + 272 + 102 + 102 + 82 + 12)
(4, 3) (4096, 816) (4096, 202 + 202 + 42)
(4, 4) (65,536, 3876) (65,536, 352 + 452 + 202 + 152 + 12)
(4, 5) (1,048,576, 15,504) (1,048,576, 562 + 842 + 602 + 362 + 202 + 42)

5. Discussion

The complexity of our new algorithm for dealing with k-symmetric extensions of
quantum states is O(kd2

), which is an improvement over the original algorithm with O(d2k)
complexity. However, it is important to note that the complexity of detecting entanglement
is a QMA problem, which means that it is generally considered to be computationally
hard. Although our new algorithm reduces the computational complexity of the problem,
it does not change the fundamental difficulty of detecting entanglement. This is due to
the fact that the size of the input of this problem is given by O(log k, d), and hence the
resources needed in our algorithm still grow exponentially relative to the input. Therefore,
while our algorithm presents some advance, it does not contradict the known fact that
detecting entanglement is a QMA problem. The challenge of detecting entanglement
remains an important area of research, with many open questions and opportunities for
new breakthroughs.
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