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Abstract: Orthogonal time frequency space (OTFS) is a novel modulation scheme that enables reliable
communication in high-mobility environments. In this paper, we propose a Transformer-based
channel estimation method for OTFS systems. Initially, the threshold method is utilized to obtain
preliminary channel estimation results. To further enhance the channel estimation, we leverage the
inherent temporal correlation between channels, and a new method of channel response prediction is
performed. To enhance the accuracy of the preliminary results, we utilize a specialized Transformer
neural network designed for processing time series data for refinement. The simulation results
demonstrate that our proposed scheme outperforms the threshold method and other deep learning
(DL) methods in terms of normalized mean squared error and bit error rate. Additionally, the
temporal complexity and spatial complexity of different DL models are compared. The results
indicate that our proposed algorithm achieves superior accuracy while maintaining an acceptable
computational complexity.
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1. Introduction

Currently, orthogonal frequency division multiplexing (OFDM) is the main commu-
nication modulation technique used in long-term evolution (LTE) and fifth-generation
(5G) systems because of its excellent spectrum utilization [1]. However, OFDM is highly
susceptible to the effects of Doppler spread, as it relies on maintaining orthogonality be-
tween subcarriers [2]. Consequently, inter-subcarrier interference becomes prevalent in
high-mobility communication scenarios within an OFDM system [3]. To address this issue,
a novel modulation method called orthogonal time frequency space (OTFS) was introduced
in [4], specifically designed for high-mobility environments. The OTFS method extends
the signal into the time–frequency (TF) domain and introduces the delay-Doppler (DD)
domain through a two-dimensional transformation, thus modulating the signal in the DD
domain [5]. This transformation offers the advantage of converting the double-dispersive
channel in the TF domain into a time-invariant channel in the DD domain. As a result, all
the symbols within an OTFS frame encounter nearly identical sparse channels, reducing
the channel estimation overhead in time-varying channels and eliminating the need for
high-density pilots to estimate the channel response [6].

Accurately estimating the channel in the delay-Doppler (DD) domain is crucial for
successful signal detection at the receiver. In [7], the authors presented a channel estimation
algorithm that relies on a single pilot symbol. To enhance the accuracy of the channel
estimation, the authors in [7] incorporated a protection interval around the pilot to mitigate
interference between the pilot symbol and data symbols. Within this protection interval,
channel estimation was performed. Additionally, a data-aided channel estimation scheme
was proposed in [8]. In this particular scheme, the pilot symbols are directly embedded
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within the data symbols without the inclusion of a separate protection interval. This
approach leads to improved spectrum utilization while maintaining a similar bit error
rate (BER) performance compared to the scheme described in [7]. A new pilot pattern
was introduced in [9], building upon the single pilot scheme proposed in [7]. The authors
optimized the pilot pattern by removing the protection symbols on the right side of the pilot
symbol. Since the data symbols on the right side do not influence the pilot in terms of delay
domains, eliminating the protection symbols in this region enhances spectral efficiency
effectively. Apart from the single pilot channel estimation techniques, another approach
was introduced by the authors in [10], which involved a channel estimation method based
on compressed channel sensing. This method takes advantage of the sparsity property of
the channel in the DD domain and converts the channel estimation task into signal recovery.
By doing so, this method achieves more precise channel estimation while reducing the
required pilot overhead. A high-performance algorithm with low complexity is presented
in [11]. The memory approximate message passing (AMP) detector can exploit the sparsity
of the channel matrix and perform only matrix-vector multiplication in each iteration.
To alleviate the performance degradation caused by positive reinforcement during the
iteration process, the memory AMP detector utilizes all previous information to ensure the
orthogonality principle. In [12], the authors propose a scheme for joint channel estimation
and data detection in a hybrid reconfigurable intelligent surface-aided millimeter wave
OTFS system. The simulation results demonstrate that the proposed method can accurately
obtain the channel and the unknown data symbols.

Deep learning (DL) has experienced significant advancements in image and speech
recognition, and its application has extended to the field of communication in recent
years [13]. In [14], the authors proposed a method that utilizes a deep neural network
(DNN) for both channel estimation and signal detection. They trained a neural network
model using the received signals and the original transmission data, allowing for online
recovery of the transmitted data through the trained model. In [15], the time–frequency
response of the fast-fading channel was treated as a two-dimensional image. By leveraging
the known values of the pilot, the unknown values of the channel response were reduced,
addressing the challenge of estimating the channel in the presence of fast fading. In [16],
a multi-layer neural network model based on a recurrent neural network (RNN) was
proposed to estimate the DD domain channel with embedded pilots. The simulation results
show that this method had better performance than that in [7]. In [17], the authors utilized
a deep convolutional neural network (CNN) to address the issue of interference and noise
in the channel matrix within the delay-Doppler (DD) domain. By applying the CNN
for denoising, they achieved improved channel estimation results compared to existing
methods. Additionally, this scheme demonstrated a notable enhancement in spectral
efficiency. In [18], a two-dimensional CNN was proposed to accomplish signal detection
in OTFS systems. The 2D-CNN can incorporate the imaginary part of the signal during
training and the online phase to acquire a three-dimensional array channel. This method
has a significant performance improvement over current methods in high-Doppler channels.
In [19], deep RNN was used for channel prediction for the MIMO system, the proposed
channel predictor contained a long short-term neural network (LSTM) and gated recurrent
unit (GRU) to predict the channel state information (CSI). The authors in [20] proposed a 2D-
convolutional long short-term memory network (2D-ConvLSTM) to estimate the channel
coefficients. In this context, the channel is considered a two-dimensional convolution in the
DD domain, which allows for the utilization of the 2D-ConvLSTM network to predict these
coefficients. In [21], a deep residual learning network (ResNet) was used to enhance the
performance of traditional channel estimation algorithms. The LSTM and implied temporal
correlation between channels were used in the channel prediction in [22,23].

In this work, we employ a predictive approach to enhance the performance of channel
estimation by considering the implied time correlation. By capturing and utilizing this time
correlation information, we aim to make predictions about the channel state and improve
the accuracy of the estimation process. First, we obtain preliminary channel estimation
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results by using the algorithm in the literature [6]. The preliminary results are considered
as time series due to the temporal correlation between channels, and then the series are put
into the neural network to obtain more accurate channel estimation results. The remainder
of this paper is outlined as follows: Section 2 describes the system model and threshold
channel estimation algorithm. Then, the proposed channel estimation algorithm based on a
transformer neural network is presented in Section 3. Simulation results are provided in
Section 4, and the paper concludes in Section 5.

2. System Model
2.1. Basic Concept

The OTFS modulation block diagram is shown in Figure 1. At the transmitter, data
symbols, x[k, l], of size N × M are placed in the DD domain, and the data symbols are
mapped to the TF domain symbols, X[n, m], by the inverse symplectic finite Fourier trans-
form (ISFFT):

X[n, m] =
1√
MN

N−1

∑
k=0

M−1

∑
l=0

X[k, l]e−j2π(ml
M−

nk
N ) (1)
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Figure 1. OTFS Modulation.

After that, X[n, m] is transformed from the TF domain to the time domain by the
Heisenberg transform:

s(t) =
N−1

∑
n=0

M−1

∑
m=0

X[n, m]ej2πm∆ f (t−nT)ptx(t− nT) (2)

where ptx(t) is the pulse shape at the transmitter, and ∆ f and T are the subcarrier interval
and the sampling interval, respectively.

From [3], the channel model in the DD domain can be expressed as

h(τ, ν) =
P

∑
i=1

hiδ(τ − τi)δ(ν− νi) (3)

where P is the number of paths, and hi, τi, νi stand for channel path gain, delay, and Doppler
shift, respectively. The time domain signal, r(t), is obtained at the receiver after passing
through the channel, which can be written as

r(t) =
∫

ν

∫
τ

h(τ, ν)ej2πv(t−τ)s(t− τ)dτdν + n(t) (4)

where n(t) denotes Gaussian noise.
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The Wigner transform converts the received signal, r(t), into the TF domain signal,
Y[n, m]:

Aprx,r (t, f ) ,
∫

p∗rx(t
′ − t)r(t)e−j2π f (t′−t)dt′ (5)

Y[n, m] = Aprx,r (t, f )
∣∣∣t=nT, f=m∆ f (6)

where prx(t) represents the receive pulse shape, and (•)∗ represents the complex conjugate
operation. Finally, the TF domain signal is converted to the DD domain signal by SFFT:

y[k, l] =
1√
MN

N−1

∑
k=0

M−1

∑
l=0

Y[n, m]e−j2π( nk
N −

ml
M ) (7)

From (1)–(7), we can obtain the input–output relationship formula in the DD domain:

y[k, l] =
N−1

∑
k′=0

M−1

∑
l′=0

x[k′, l′]hω [(k− k′)N , (l − l′)M] + n[k, l] (8)

where n[k, l] is the Gaussian noise term with power spectral density, No, and hω [k, l] denotes
the equivalent channel matrix in the DD domain. It is worth mentioning that the pulse
used in Equation (4) is the ideal pulse. However, in real systems, non-ideal pulses can
lead to cases of fractional Doppler [24]. In this paper, we focus on the ideal pulse case, and
Equation (8) is only applicable to that specific scenario.

2.2. The Threshold Scheme

The pilot placement of the threshold scheme in [7] is shown in Figure 2. For a given
maximum delay index, lmax, and Doppler index, kmax, since each symbol in the DD domain
is considered to experience similar fading, only one pilot symbol is needed to complete
the channel estimation. The pilot symbol at the transmitter in the DD domain can be
represented as

x[k, l] =


xp k = kp,l = lp

0
k ∈ [kp − 2kmax, kp + 2kmax],

l ∈ [lp − lmax, lp + lmax]
xd otherwise.

(9)

where xp denotes the pilot symbol, xd denotes the data symbols, and we have
Nn = (2lmax + 1)(4kmax + 1)− 1 as guard symbols.
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We can rewrite the input–output relationship of the pilot according to (8) as

y[k, l] = b[k− kmax, l − lmax]ĥ[k− kmax, l − lmax]xp + n[k, l] (10)

At the receiver, for the channel estimation part, k ∈ [kp − kmax, kp + kmax], l ∈ [lp, lp +
lmax], we set a threshold, Γ = 3

√
No, where No represents the power spectral density of

noise. If |y[k, l]| ≥ Γ, we can assume that b[k− kmax, l− lmax] = 1 and ĥ[k− kmax, l − lmax] =
y[k, l]/xp. Otherwise, the result can be written as ĥ[k− kmax, l − lmax] = n[k, l]. This means
that if the path exists, the received signal after this algorithm is a pilot containing Gaussian
noise. Otherwise, it is only noise.

2.3. Minimum Mean Square Error Detection Algorithm

The BER is also a measure of channel estimation performance. We assume that in the
received signal, x̂ = Wy, where W denotes the weighted matrix, the error of estimation
is e = x̂− x = Wy− x, and the mean square error can be written as eMSE = E‖Wy− x‖2.
The minimum mean square error (MMSE) detection algorithm minimizes the mean square
error between the actual signal and the estimated signal using the minimum mean square
error as a criterion. When eMSE is minimized, the weighed matrix can be written as

WMMSE = HH(HH H + σ2 I)
−1

(11)

where H represents the effective channel matrix of size MN ×MN, and σ2 represents the
variance of noise. The recovered signal after using this algorithm can be represented as
x̂ = WMMSEy.

3. Proposed Transformer Estimation Algorithm
3.1. Architecture of the Proposed Channel Estimation Algorithm

Our proposed Transformer estimation structure is shown in Figure 3. The Transformer
estimation algorithm is divided into two phases: offline training and online prediction.
During the offline training phase, the neural network is trained using a substantial amount
of channel data. This training process aims to optimize the parameters of the Transformer
neural network for accurate channel estimation. In the subsequent online prediction phase,
the preliminary result obtained from the threshold channel estimation algorithm is utilized
as input to the trained neural network. By feeding this preliminary result into the network,
the algorithm produces a more accurate output for channel estimation.
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In [25], a transformer based on a self-attentive mechanism was first proposed. As
shown in Figure 3, the Transformer estimation structure consists of two parts: the encoder
and the decoder. To balance performance and computational complexity, our Transformer
estimation model retains the encoder–decoder structure of the original model and changes
the number of encoder and decoder layers from six layers to two layers.

In the encoder, the time series data [ht−L, ht−L+1, · · · , ht−1] are mapped into multiple
high-dimensional vectors through the feedforward fully connected layer at the input, where
L denotes the time step. Subsequently, the temporal position information of the series
is encoded in the position encoding area. The role of position encoding is to provide
position information to the model through the linear variation of sin and cos functions. The
positional encoding can be represented as

PE(pos, 2i) = sin(pos/10, 0002i/dmodel) (12)

PE(pos, 2i + 1) = cos(pos/10, 0002i/dmodel) (13)

where pos represents the location index of information for each moment of the series,
i represents the dimensional index of high-dimensional vectors obtained by mapping the time
series through the input layer, and dmodel is the dimension of high-dimensional vectors.

Then, the positional encoding information is added to the output of the input layer.
Concatenating these vectors together yields a matrix, H′ = [h

′
t−L+1, h

′
t−L, · · · , h′t], as the

input, and three vectors are generated from H′ at each moment, which are the query vector,
q, key vector, k, and value vector, v [26]:

qt = Wqht
kt = Wkht
vt = Wvht

(14)

where W denotes the weighting matrix. The vectors at each moment are spliced into
matrices: Q, K, V.

Matrices Q, K, V are calculated by the self-attentive mechanism to obtain the
estimation results:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (15)

The multi-headed attention mechanism is the integration of multiple independent
attention modules, which is similar to multiple convolutional kernels in convolutional
neural networks (CNN) to help the network extract richer features:

MultiHead(Q, K, V) = Concat(head1, · · · , headi)Wo (16)

where Concat(•) denotes the matrix splicing operation, and Wo denotes the weighting ma-
trix. Finally, the residual network is applied to solve the problems of gradient disappearance
and weight matrix degradation.

The results obtained from the multi-attention mechanism are subjected to residual
connection layer and layer normalization operations to obtain the final outputs. In [27],
ResNet was proposed to solve the problem of the difficult optimization of multilayer neural
networks. The input–output relationship of the ResNet can be written as

G(x) = F(x) + x (17)

where x denotes the input, and F(x) represents the nonlinear variation function. Compared
to the non-residual network, when using the ResNet to calculate a partial derivative of x, a
constant term is added to the derivation result, which keeps the model from losing gradient
during training. Layer normalization serves to normalize all dimensions of each input
sequence, thus speeding up model convergence and alleviating the gradient dispersion
problem in deep network engineering.
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3.2. Training Process

The proposed Transformer estimation algorithm training process can be described
as follows: The inputs of the training data are the results of the conventional channel
estimation algorithm, and the labels are actual channel responses. Because the channel
response is a complex form, our training data splices the real and imaginary parts together.
The channel responses from the previous L moments are used to predict the output of the
next moment as follows:

ht = fTrans f ormer(ht−L+1, · · · , ht−1) (18)

where the timestep, L, can be determined by using the partial autocorrelation coefficient
(PACF). The PACF is the linear correlation of the sequence, {ht}, with the sequence {ht−k},
with lag of order, k, and removes the linear dependence of

{
ht−1, ht−2, · · · , ht−(k−1)

}
. In

Figure 4, the magnitude of the correlation coefficients of the PACF is compared between
the real parts and imaginary parts at different lags of order, k. The black solid line and the
red dashed line in the Figure 4 represent the lags of order and the correlation coefficient
when the data is approximately uncorrelated, respectively. It is clear to see that the PACF
value drops below 0.1 when lags of order k = 18, so we can assume that the correlation is
almost nonexistent. It is worth mentioning that choosing a lag that is too short may result
in incomplete learning of the temporal correlation within the sequence. Conversely, an
excessively large lag could introduce extraneous noise during training, thereby impacting
its effectiveness.
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In the training phase, the mean square error (MSE) is selected as the loss function [28]:

JMSE =
1
L

N

∑
i=1

( fTrans f ormer(ht−L+1, · · · , ht−1)− Hlabel)
2 (19)

where Hlabel is the actual value and N is the total number of samples in the training set.
The adaptive moment estimation (ADAM) algorithm is applied to update our dataset
adaptively [29]. The sizes of our training set and test set are 8000 and 2000, respectively.
The learning rate, batch size, and epochs are adjusted to 0.001, 128, and 150.

4. Performance Evaluation
4.1. NMSE and BER Performance

In this section, the simulation results of our proposed algorithm are given to verify
the better performance than the threshold method and other deep learning methods. The
parameters of our simulation are given in Table 1.
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Table 1. Simulation parameters.

Parameter Value

Carrier frequency 3.35 GHz
No. of subcarriers (M) 32

No. of OTFS symbols (N) 32
No. of channel paths 3

Subcarrier spacing (∆f ) 15 kHz
Channel model Rayleigh Channel

Path delay [0, 0.2, 0.4] µs
Path power [0, −10, −10] dB

Modulation alphabet 4-QAM

The NMSE of our channel estimation method is computed as

NMSE =
‖H′ − H‖2

‖H‖2 (20)

where H′ denotes the predicted value, and H is the true value.
In Figure 5, we compared the NMSE performance at different SNR when the SNRp

is fixed at 30 dB, where SNRp = Epilot/Edata. The NMSE curves are close to a horizontal
line because the transmitter power is constant, which leads to a reduction in the impact of
the SNR. Furthermore, we can observe that the performance of DL methods is better than
that of the threshold method. Among these neural networks, the performance of RNN and
LSTM exceeds that of DNN. This is because RNN and LSTM have a powerful time series
processing capability that DNN does not provide. LSTM slightly outperforms RNN due to
the short-term dependency bottleneck inherent in RNN. The NMSE performance of our
proposed Transformer estimation method exceeds the threshold method by approximately
18 dB. The Transformer estimation method outperforms LSTM due to its utilization of
the multi-headed attention mechanism. This mechanism correlates the input sequences
of the encoder with those of the decoder, enabling the model to focus on the encoder
input sequences that exhibit a higher correlation with the predicted outputs. As a result, it
reduces the impact of irrelevant information and enhances the prediction performance.
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In Figure 6, the SNR is fixed at 25 dB, and the NMSE performance is compared at
different SNRp. It is evident that the channel estimation performance improves as the SNRp
increases. This is because in the case of the lower SNRp, the interference of noise is extremely
serious, thus causing the threshold method to fail. We have observed that even at lower
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SNRp, our proposed scheme surpasses the performance of the threshold scheme in terms of
channel estimation. For example, the NMSE of the threshold scheme is about 12 dB when
the SNRp = 30 dB, while our Transformer estimation model requires a SNRp of only 10 dB to
achieve similar performance, which allows for a reduction in pilot power overhead.

Entropy 2023, 25, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 6. NMSE performance curves between different algorithms under different SNRp. 

Figure 7 illustrates the NMSE capability of the threshold scheme and other neural 
networks at different speeds. We can observe a decrease in NMSE performance with in-
creasing velocity; this is because the channel we utilize changes at a slower rate in low-
speed scenarios, and the channel estimation results are expected to be slightly superior 
compared to rapidly changing channels in high-speed scenarios. Although the NMSE per-
formance decreases, the variety is not significant, only about 1~2 dB per 100 km/h; this is 
due to the good robustness of the OTFS system to high Doppler spread.  

 
Figure 7. NMSE performance curves between different algorithms under different velocities. 

In Figure 8, we show the BER comparison under different SNR, where the case of 
perfect channel estimation is also taken into account. It is observed that the BER decreases 
with increasing SNR. In the case of low SNR, the impact of noise can hinder the ability 
to accurately reflect the difference in channel estimation performance between individual 
algorithms. As SNR increases, the performance of the Transformer estimation algorithm 
acquires acceptable BER results. The threshold method exhibits the worst BER due to its 
inferior channel estimation performance.  

Figure 6. NMSE performance curves between different algorithms under different SNRp.

Figure 7 illustrates the NMSE capability of the threshold scheme and other neural
networks at different speeds. We can observe a decrease in NMSE performance with
increasing velocity; this is because the channel we utilize changes at a slower rate in low-
speed scenarios, and the channel estimation results are expected to be slightly superior
compared to rapidly changing channels in high-speed scenarios. Although the NMSE
performance decreases, the variety is not significant, only about 1~2 dB per 100 km/h; this
is due to the good robustness of the OTFS system to high Doppler spread.
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In Figure 8, we show the BER comparison under different SNR, where the case of
perfect channel estimation is also taken into account. It is observed that the BER decreases
with increasing SNR. In the case of low SNR, the impact of noise can hinder the ability
to accurately reflect the difference in channel estimation performance between individual
algorithms. As SNR increases, the performance of the Transformer estimation algorithm
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acquires acceptable BER results. The threshold method exhibits the worst BER due to its
inferior channel estimation performance.
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4.2. Computational Complexity

Space and time are two important metrics for evaluating the computational complexity
of a DL model. In this paper, the quantity of parameters is chosen as the space evaluation
metric, and the quantity of floating-point operations (FLOPs) is selected for the time aspect.
As the number of parameters in a model increase, it necessitates a larger amount of data to
effectively train the model. However, this can lead to a higher risk of overfitting, where
the model becomes overly specialized to the training data. Additionally, excessive time
complexity can significantly prolong the training and prediction processes.

The quantity of parameters refers to how many parameters the model contains and
directly ascertains the size of the model. Usually, the parametric quantities of a model are
analyzed to determine the memory usage of a computer. Assuming that the DL models
contain multiple hidden layers, the formula for calculating the quantity of parameters for
DNN, RNN, LSTM, and Transformer can be written respectively as

QDNN = n1
h × ni + n1

h +
I

∑
i=2

(
ni−1

h × ni
h + ni

h

)
+ nI

h × no + no (21)

QRNN =
(

n1
h + ni

)
× n1

h + n1
h +

I

∑
i=2

[(
ni−1

h + ni
h

)
× ni

h + ni
h

]
+ nI

h × no + no (22)

QLSTM =
[(

n1
h + ni

)
× n1

h + n1
h

]
× 4 + 4×

I

∑
i=2

[(
ni−1

h + ni
h

)
× ni

h + ni
h

]
+ nI

h × no + no (23)

where I denotes the number of hidden layers, and ni, no, n1
h, ni

h represent the number of neurons
in the input layer, the output layer, the first hidden layer, and the i-th hidden layer, respectively.

The Transformer estimation model constructed in Section 3.1 is then analyzed for
spatial complexity. First, a matrix transformation in a fully connected layer that does not
contain activation operations can be written as

Ro = TiW + B (24)
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where Ro ∈S×O, Ti ∈S×I denotes the output and the input of the network at that layer,
respectively. W represents the weighting matrix, and B represents the bias matrix. Then,
the number of parameters for a fully connected layer can be written as

Q = (I + S)×O (25)

The quantity of FLOPs can be understood as the amount of computation, which is
used to measure the complexity of the model time. Individual FLOPs generally refer to
a single addition, subtraction, multiplication, or division operation. In neural networks,
since the number of operations of the activation function is very small, it is not considered
in FLOPs. Assuming that the DL models contain multiple hidden layers, the formula for
calculating the quantity of FLOPs for DNN, RNN, LSTM, and Transformer can be written,
respectively, as

FDNN = 2ni × n1
h +

I

∑
i=2

(
2nI−1

h × nI
h

)
+ 2nI

h × no (26)

FRNN =
((

ni + n1
h

)
× n1

h

)
× 2 + 2×

I

∑
i=2

[(
nI−1

h + nI
h

)
× nI

h

]
+ 2nI

h × no (27)

FLSTM =
((

ni + n1
h

)
× n1

h

)
× 2× 4 + 4× 2×

I

∑
i=2

[(
nI−1

h + nI
h

)
× nI

h

]
+ 2nI

h × no (28)

The number of FLOPs for a fully connected layer in the Transformer estimation model
can be written as

F = S× 2IO (29)

where the significance of each parameter is consistent with the space complexity analysis,
so we do not explain it in detail.

Table 2 shows the complexity analysis of different neural network models. The
32-bit system and NVIDIA V100 with 14.13 TFLOPs, manufactured by the American
company NVIDIA Corporation headquartered in Santa Clara, California, United States,
are used as examples. As observed from the table, the number of parameters required
by the Transformer estimation model is fewer than that of the LSTM and RNN. The
higher parameter requirement in RNN and LSTM can be attributed to the inclusion of self-
connecting feedback loops. These loops necessitate processing information from previous
time steps before computing the hidden layer state for the next time step. Consequently, the
historical hidden layer state information needs to be preserved until all time step inputs are
processed, resulting in a substantial memory overhead. On the other hand, the Transformer
estimation model eliminates the need for such sequential dependencies, leading to a smaller
parameter count. The Transformer estimation model enables parallel processing of the input
time series by using a multi-head attention mechanism, which greatly reduces the number
of parameters in the model, and thus takes up only a small amount of memory space. A
comparison of the FLOPs of the different models shows that the Transformer estimation
model has the highest FLOPs. The higher FLOPs in the Transformer estimation model
can be attributed to its extensive use of matrix transformations. These transformations
involve a larger number of parameters and consequently result in longer computational
time. However, this increased computational complexity allows the Transformer estimation
model to effectively capture complex patterns and dependencies in the data, leading to
superior performance in various tasks. Despite the additional computational requirements,
the benefits of the Transformer estimation model make it a compelling choice.
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Table 2. Complexity analysis of different DL models.

DL Model

Space Complexity Time Complexity

Number of
Parameters

Memory Usage
Size (MB)

Number of
FLOPs

Computational
Time (µs)

DNN 11,392 0.043 30,720 2.17 × 10−9

RNN 37,154 0.141 70,989 5.02 × 10−9

LSTM 148,609 0.567 354,596 2.51 × 10−8

Transformer
estimation 14,077 0.0537 935,680 6.62 × 10−8

5. Conclusions

In this paper, we focus on exploring the channel estimation algorithm for OTFS systems
and propose a novel approach that incorporates the Transformer model. The inclusion of
Transformer in our work stems from its exceptional capability to handle time series data
more effectively when compared to other neural network architectures. Initially, we employ
the threshold method to obtain preliminary channel estimation results. However, in order
to achieve superior channel estimation performance, we consider the inherent temporal
correlation present in channel responses. To leverage this correlation, we treat the data as
time series and utilize them for predicting channel responses. The proposed Transformer
estimation algorithm demonstrates better NMSE and BER performance than the threshold
method proposed in the literature and conventional neural networks under the same SNR,
SNRp, and velocity. Moreover, through simulations, we validate the robustness of OTFS
in scenarios with high Doppler spread. Additionally, our work highlights the potential
of employing time series-based channel response prediction methods for accurate channel
estimation. We also take into account the time complexity and spatial complexity of different
models, where our proposed algorithm achieves the highest accuracy while maintaining
acceptable computational complexity. Overall, our findings contribute to advancing the field
of channel estimation in OTFS systems, demonstrating the effectiveness of incorporating
Transformer models and highlighting their benefits in handling time series data.
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