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Abstract: Seismic data have improved in quality and quantity over the past few decades, enabling
better statistical analysis. Statistical physics has proposed new ways to deal with these data to
focus the attention on specific matters. The present paper combines these two progressions to find
indicators that can help in the definition of areas where seismic risk is developing. Our data comes
from the IPOC catalog for 2007 to 2014. It covers the intense seismic activity near Iquique in Northern
Chile during March/April 2014. Centered in these hypocenters we concentrate on the rectangle
Lat−18
−22 and Lon−72

−68 and deepness between 5 and 70 km, where the major earthquakes originate.
The analysis was performed using two complementary techniques: Tsallis entropy and mutability
(dynamical entropy). Two possible forecasting indicators emerge: (1) Tsallis entropy (mutability)
increases (decreases) broadly about two years before the main MW8.1 earthquake. (2) Tsallis entropy
(mutability) sharply decreases (increases) a few weeks before the MW8.1 earthquake. The first one is
about energy accumulation, and the second one is because of energy relaxation in the parallelepiped
of interest. We discuss the implications of these behaviors and project them for possible future studies.

Keywords: Tsallis entropy; information theory; subduction seismicity

1. Introduction

We can approach a variety of problems in physics through statistical mechanics.
Some examples include real magnetization systems [1,2], spin models [3,4], molecular
interactions [5], fluids [6], space plasmas [7,8] among others. However, statistical mechanics
can be also useful in more complex systems such as social interactions [9], traffic [10], wind
energy [11], and earthquakes [12–17]. A common key element in this variety of applications
is entropy, which directly points to the accessible states under given conditions. Magnetic
systems and rocks under tension could both alter their configuration spaces making some
external manifestations more probable/improbable. When we speak about probability
of states we are reaching the domain of entropy, that “lives” in the configuration space.
Entropy can be defined in different ways. This paper focuses on two forms: Tsallis entropy
and mutability (or dynamical entropy).

In recent years, studies of entropy in earthquakes have been used to show the evolution
of the seismic systems in time. These studies have relied on datasets coming from different
zones of the Earth. In a quick summary, we can mention the following recent developments:
(i) Shannon entropy has been found useful in identifying earthquake risk areas [18]; (ii) a
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study established the way both the Shannon entropy and mutability reflect the seismic
activity [19]; (iii) researchers have recently tested Tsallis entropy in different seismic zones
of the world [20,21].

In addition, in all the studies previously mentioned we can use the concept of natural
time. This concept has proven to be very useful in the study of earthquakes. The natural
time allows one to follow a time series step-by-step through a scaling of the time such as
χk = k/N where k follows the occurrence of a seismic event in time [22,23]. In the present
paper, we will use it for comparison only so a simpler form is enough: the enumeration
of events.

In the present article, we revisit the same seismic area of our recent articles [19,24]
with the purpose of completing the study with the following recent developments: (a) for
the first time we report mutability on the sequence of magnitudes (before we investigated
it on intervals); (b) for the first time we compare and discuss Tsallis entropy and mutability
on the same footage: this allows us to call the later “dynamical entropy”; (c) we perform
a tuning process to detect the importance of the size of the time window to analyze the
dynamical process; (d) we conduct a progressive approximation to days and hours prior to
the large earthquake to detect premonitory signs and we believe we can report a couple of
them; (e) we conclude that the aftershock regime closed quickly in this area and energy
continues to accumulate at levels similar to those before the 2014 earthquakes.

2. Methodology
2.1. Data Source

Chile is placed close and almost parallel to the border of the subduction zone between
the Nazca Plate and the South American Plate. This is a source of seismicity in a wide
range of magnitudes along different geographical conditions. In recent years, scientists
have concentrated their attention on the seismicity of the northern zone of Chile. IPOC
is an outcome of this effort, which is a network of institutions from Europe and South
America. Its networks have measured earthquakes on the Peru-Chile coastal margin for
decades. This network’s seismic data is helpful to understand the seismic dynamics in
northern Chile and to identify potential risks.

Scientists are interested in the Northern zone of Chile because of its frequent earthquakes
and the fact that there have been no major earthquakes in the recent past. The last historical
mega-thrust earthquake in the northern zone of Chile was in 1877 [25–27]. A partial list of
important recent earthquakes is: Antofagasta (1991) Mw8.0 [28], Tarapaca (2005) Mw7.7 [29],
Tocopilla (2007) Mw7.7 [30], and Iquique (2014) Mw6.6, Mw8.1, Mw7.6 [31,32]. Each one
of the previous large seisms generated a powerful chain of aftershocks. This seismicity
is mainly shallow at intermediate depths (less than 80 km). The quality of the data has
improved with time due to better stations, more stations, and more coordination among
seismological institutions. This is the main reason to consider only a few years before 2014,
up to 2007 considering the Tocopilla seism as the last previous event.

The Iquique earthquake has a complex structure that deserves a dedicated investigation.
In its simplest form, it can be viewed as a triple earthquake in 2014: Mw6.6 on 03.16, Mw8.1
on 04.01 and Mw7.6 on 04.03. Each of the previous earthquakes generated aftershock
activity. Even the first one (the weakest of the three) had two important aftershocks Mw6.4
on 03.17 and on 03.23, and several others over Mw6.0. Alternatively, one can consider that
the Mw8.1 seism is the important one here, declaring all previous activity in the area as pre-
shock and what came afterwards as aftershock activity; the Mw7.6 earthquake is absorbed
within the aftershock of the larger one. However, one can also choose to consider this last
seism on its own, with its aftershock regime and rupture area. This is an anticipation of the
results and discussions to be represented below.
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It is also important to consider some previous discussions concerning the aftershock
activity in this region [31–33], and a zone with a low coupling [27]. Socquet et al. in
2017 [34] showed that the major shock was led by an acceleration that started aproximately
eigth months before the large earthquake. Jara et al. 2017 [35] found a strong link between
shallow and intermediate depth seismic activity, showing that it may have caused the
Iquique earthquake. All this evidence points to the understanding of the physical process
behind the occurrence of a great earthquake and it is to this understanding that this work
also contributes.

2.2. Handling of Data

We center our attention on the large Iquique earthquake (1 April 2014) with Mw 8.1
located at 19.589◦ South Latitude and 70.940◦ West Longitude; its depth was 19.91 km (data
from IPOC catalogue [36]), its preshock activity and the aftershock activity recorded in the
IOPC catalogue. The epicenter was situated 95 km Northwest of Iquique city and a tsunami
alert was issued for Chile, Peru and Ecuador, which was later extended to Colombia and
Panama. Viewed in this way, the major shock is preceded by an intense foreshock sequence
and followed by a large Mw7.6 [37] as is shown in Figure 1.

Figure 1. Number of daily earthquakes in the selected IPOC catalogue from years 2007 to 2014, fully
displayed in the inset. On the abscissa axis in the main body, day 0 corresponds to 1 April 2014,
coinciding with the Mw8.1 earthquake. It can be noticed that the pre−shock activity appears about
17 days before. The aftershock response extended months afterwards.

Preparing the initial dataset comprises three steps. First, we chose the epicentral area
according to the main event coordinates. We drew a “rectangle” with Lat−18

−22 and Lon−72
−68

based on the main event coordinates, and found 65,050 seisms in the IPOC catalogue. We
considered all these seisms to calculate the Gutenberg-Richter relationship to define the
threshold magnitude M0 (we used the MAXC technique [38] because it is a simple method
for the goals we pursue). The second step involved setting up a M02.2 that is shown in the
peak of the red triangles in Figure 2.

We consider all the seisms within the parallelepiped defined by Lat−18
−22 and Lon−72

−68
and 200 km depth. Longitude and depth are used as coordinates to make a map of all
earthquakes, regardless of latitude. Dots represent the location of seisms in Figure 3. A
careful look at this figure unveils the two plates, with the subduction front defining a
downward diagonal from West to East.
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Figure 2. We analyzed the data from the IPOC catalog using the Gutenberg-Richter law, including
earthquakes from 2007 to 2014 with epicenters within 18 ◦S–22 ◦S and 68 ◦W–72 ◦W. Circles denote the
cumulative number of earthquakes; triangles denote the abundance of earthquakes for a magnitude.
Based on the maximum curvature (MAXC) technique (Wiemer and Wyss, 2000), M0 = 2.2.

The third step is the right panel of Figure 3 where now depth is the only variable
while seisms result in a histogram giving the abundance of seisms as a function of
depth. A bimodal is clearly appreciated, where the lower component receives most of its
contributions from a mixture of tectonic (Continental Plate) and intra-plate earthquakes.
The large deep distribution is originated within the Nazca plate. The first group of
earthquakes deserves our full attention, as those earthquakes caused the most damage
and could trigger deadly tsunamis. For this reason, we set the deepness filter at 70 km,
corresponding to the minimum of the distribution in the right panel of Figure 3.

Moreover, we left out the shallower first 5 km to avoid contamination coming from
the mining work conducted in the area. Earthquakes from 5 to 70 km will be handled in the
rest of this paper. We make this cut in the dataset to focus this analysis in the zone close to
the hypocenter. The number of earthquakes left for study after previous filtering is 10,640.

Figure 3. Depth distribution of earthquakes at different longitudes. Seisms at different latitudes are
accumulated on this two−dimensional view. A histogram with respect to depth is presented on the
right panel.

Finally, Figure 4 presents the epicentral zone with the selected earthquakes.
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Figure 4. Epicentral map of the area under study: the black circle marks the city of Iquique, 95 km
from the epicenter. Magnitude of the seisms are illustrated by both a proportional diameter and the
color of the circles: yellow 3.0 ≤ Mw ≤ 3.9, cyan 4.0 ≤ Mw ≤ 4.9, pink 5.0 ≤ Mw ≤ 5.9, orange
6.0 ≤ Mw ≤ 6.9. The red star positions the great earthquake of Iquique with Mw8.1, while the red
triangle shows the epicenter of its main aftershock with Mw7.6.

2.3. Tsallis Entropy

Let start by considering an earthquake as a critical phenomenon in a complex system
(fracture zone) that experiences a phase transition from a non-equilibrium state (where
stresses and strain in crust lead to fault slip) to another state (where stresses and strain
have become to relax); several physical models have been developed to describe their
essential properties [13,15,23,39–42]. Thereby, the maximum entropy principle has widely
been applied in many out-of-equilibrium systems in physics (and other sciences), providing
novel insights into their macroscopic states [43]. Sotolongo-Costa and Posadas (2004) [20]
introduced the fragment-asperity interaction model for earthquake dynamics (SCP model)
based on the non-extensive statistical formalism; in this model, the released seismic energy
is related to the size of the fragments that fill the space between fault blocks. According to
the SCP model, if N (>M) is the cumulative distribution of the number of earthquakes N
with magnitude greater than M, then:

log(N(> M)) = log(N) +
2− q
1− q

log
(

1 + a(q− 1)(2− q)
1−q
q−2 102M

)
. (1)

where a is a real number expressing the proportionality between the released seismic
energy and the size of the fragments, and q is the entropic index from Tsallis entropy.
Equation (1) appropriately generalizes the Gutenberg–Richter relationship over a broad
range of magnitudes [43] and exhibits an excellent fit to earthquake datasets [14,20,44,45].
In fact, the Gutenberg–Richter law can be easily deduced as [12,46]:

b = 2
2− q
q− 1

. (2)
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Moreover, q values obtained from different regions of the world [12] are all q ≈ 1.5− 1.7,
suggesting the universality of this constant.

Recently, Posadas and Sotolongo-Costa (2023) [24] established the entropy of fragments
and asperities within fault fractures (i.e., within gouge fault zones) and determine their
behavior during an earthquake. Authors assume the hypothesis that prior to an earthquake,
the state of the system, characterized by a range of fragment sizes and stress distribution
forms many “microstates” compatible with fragment distribution; such entropy can be
assumed to be (relatively) large. During an earthquake, fragments are broken, while
asperities and barriers are overcome. Furthermore, fragment sizes become homogenized
and this decreases the number of possible “microstates”, as such, entropy decreases. As
this process is abrupt and rapid, the entropy decreases suddenly; it subsequently recovers
as stress starts to re-accumulate. From a statistical mechanics perspective, the higher the
number of microstates, the higher the entropy and vice versa.

Tsallis entropy (Equation (1)) for a continuous distribution p(σ) of fragments of sizes
σ is given by (for simplicity we set k = 1):

S =
1−

∫ ∞
0 pq(σ)dσ

q− 1
, (3)

subject to two restrictions: ∫ ∞

0
p(σ)dσ = 1 (4)

and ∫ ∞

0
σpq(σ)dσ = 〈〈σ〉〉q, (5)

where 〈〈σ〉〉q is the mean of the distribution. Therefore, the maximum entropy principle
allows us to form the following Lagrangian:

L(p) =
1−

∫ ∞
0 pq(σ)dσ

q− 1
− α

∫ ∞

0
p(σ)dσ− β

∫ ∞

0
σpq(σ)dσ. (6)

where α and β are the Lagrange multipliers. Imposing the Lagrangian to be extreme:

∂L
∂p

= 0 (7)

after some algebra it is possible to find that:

p(σ) =

[
1−q

q α
] 1

q−1

[1 + βσ(q− 1)]
1

q−1
, (8)

where, implicitly, a cut-off condition has been used for the denominator [47]. Finally, by
substituting Equation (8) into that of non-extensive entropy (Equation (3)) and solving the
integral in the numerator [21], we can obtain:

S =
1−

∫ ∞
0 pq(σ)dσ

q− 1
=

1− (2− q)
1

2−q

q− 1
. (9)

This equation allows us to find the value of the entropy for a dataset and to study its
behavior as a function of the non-extensive q parameter; therefore, if a windowing process
is carried out (i.e., choosing a certain number of earthquakes and sliding the window in
time), it is possible to visualize the dynamic evolution of the seismic series in terms of
non-extensive entropy. The process is as follows:

1. First, the time window W is determined for the calculation of entropy; in other
words, the minimum number of earthquakes used to calculate S from Equation (9). In
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general, the final window size is a reasonable compromise between the required resolution
and smoothing results.

2. Second, parameter b from the Gutenberg–Richter relationship for the chosen
window W is determined; this can be calculated from the classical expression of Aki
(1965) [48] and the subsequent correction by Utsu (1965) [49]:

b =
log(e)

M̄−
(

M0 − ∆M
2

) , (10)

where M0 is the threshold magnitude; ∆M is the resolution of the magnitude (usually
∆M = 0.1); and M̄ is the average value of all possible magnitudes, which is given by:

M̄ =
∫ ∞

M0

Mp(M)dM. (11)

The estimation of M0 is performed, as we noted before, using the maximum curvature
(MAXC) technique [38].

3. Finally, approximation according to Sarlis et al. (2010) [12] Equation (2) is used
to determine q; then, the non-extensive entropy is computed for each time t following
Equation (9). By convention, the time attributed to each point of the analyses is the time of
the last seismic event considered in each window.

2.4. Mutability

Information content is valuable information leading to entropy in different ways [50–52].
During the last decade or so a dynamical entropy called mutability has been introduced in an
empirical way to characterize information content in a data sequence [53].

To obtain the value of mutability, we first create a vector file with the sequence or
time series to be recognized (Monte Carlo simulation of the magnetization of a system,
magnitude of consecutive earthquakes in a given region, variations in the value of a given
economical asset, and similar sequences of measurable evolving quantities). All registers
have the same number of digits filling with zeroes the empty positions. The number of
bytes occupied by this vector file is w. This file is then compressed and the compressed file
occupies w∗ bytes. Then, the value of the mutability for this sequence is defined as the ratio:

µ(α) =
w∗

w
, (12)

where α represents the set of parameters that characterize the system (size, temperature, etc.).
In principle any data compressor can accomplish this task and blzip2 was used

previously [54]. However, data compressors are based on search for repetitive chains
of characters, which can accidentally occur without a physical meaning. To cope with
this inaccuracy, a data compressor based on exact matching of physically meaningful
information was developed under the name “world length zipper” (wlzip for short)
which will be summarized next [54].

2.5. Algorithm of the Data Recognizer

The compressed or recognized file is a map constructed from the original, according
to an algorithm that obeys the following rules:

(a) Navigate to the first register of the original file, copy it onto the compressed file as
a first register followed by a space and then the digit 0 to indicate the beginning or
origin of the new file.

(b) Select the following register in the original file and compare it to the already stored
register(s) in the compressed file.
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- If this register already exists then navigate to its row, leave a space and write to
the right the “distance” or number of registers since it was previously found in
the original file.

- If the register repeats itself immediately after, place a comma and the number of
consecutive repetitions.

- If this register is new, then write it at a new row followed a space and then the
distance to the first register.

(c) Navigate to next register and repeat the procedure given in (b) until the last register
in the file.

So now we have the original file with weight w and the compressed file with weight
w∗. According to Equation (12) the mutability of the original file measured in this way is
w∗/w.

We illustrate the concept of mutability and the use of wlzip by two sequences of
50 seisms each, both obtained from the filtered catalog defined above.

The first sequence, called “Before”, lists the magnitudes of the 50 seisms beginning
on 1 February 2014, covering a few days before the 6.6 earthquake. Their sequential
magnitudes are: 2.4, 4.0, 3.8, 4.0, 2,2, 4.6, 3.5, 2.9, 2.2, 3.0, 4.1, 3.1, 3.1, 4.3, 4.3, 3.6, 5.5, 3.5, 2.4,
3.5, 2.7, 2.5, 2.2, 2.5, 2.3, 2.5, 2.6, 3.3, 2.4, 2.9, 2.6, 2.8, 2.3, 2.2, 2.2, 2.4, 3.8, 4.1, 2.8, 2.4, 2.5, 2.2,
2.5, 2.8, 2.3, 2.5, 3.4, 4.0, 4.0, 2.9.

The second one, called “After”, gathers the sequence of magnitudes of the 50 seisms
beginning with the 6.6 earthquake of March 16, 2014 and obtains the 49 following seisms.
The list is the following: 6.6, 4.5, 4.8, 4.1, 3.1, 5.2, 4.8, 4.2, 3.8, 3.5 3.1, 4.8, 3.7, 3.1, 3.6, 3.3, 3.1,
4.0, 2.7, 3.5 3.2, 4.8, 2.8, 3.5, 2.4, 4.7, 3.0, 2.9, 3.2, 4.1 4.3, 4.0, 5.1, 3.3, 4.3, 3.4, 3.8, 4.7, 3.1, 3.1
2.6, 4.7, 3.4, 3.3, 3.7, 4.7, 3.0, 3.1, 3.7, 3.4.

The procedure is illustrated in Table 1. The left-hand-side is the compressed file of
“Before” called “BeforeC” and the right-hand-side is the compressed file of “After”, namely,
“AfterC”.

Let us begin with “Before”. We obtain its first register in the first row of “BeforeC”
followed by its position 0 at the origin. The following register is 4.0 (new) and just one
position from the first one. The next register is 3.8 (new), two positions from the origin.
The next one is 4.0, which is already listed so we navigate to its row in BeforeC and write a
2 to the right, meaning that its new position is two rows below its previous appearance.
The next register is 2.2 which is new and four positions from the origin. Similarly, we
continue with the new ones 4.6, 3.5 and 2.9. However, then we find 2.2 which we found
found positions before so we add a 4 to its row. We continue to the magnitude 3.0 found
nine positions from the origin. Next is also a new one: 4.1, ten positions distant from the
origin. The following one is 3.1, also new, but repeats itself immediately so we write its
coordinate 11 then a comma and then the number of repetitions which is two. Something
similar happens with magnitude 4.3 coming next. In this way we can continue applying
the rules above to complete the file “Before”. We perform a similar procedure to the file
“After”.

One first results is obvious: The length of “After” is larger than the one of “Before”
and so it is its span of values. When the mutability is measured for these two files the
result is 0.94 for “Before” and 1.00 for “After”. It is clear that the aftershock regime brings
in a larger variety of magnitudes so the information content increases and so does the
mutability (dynamical entropy).

Columns identified by fB and fA give the abundance or frequency of this value in
the sequence. So these columns give the histograms for the sequences Before and After,
respectively. However, columns marked as MapB and MapA also represent a histogram,
but with an internal structure related to the dynamics of the sequence. This is the basis
of the difference between the mutability and other forms of entropy where it is only the
distribution of values that matters, regardless of the way the sequence was produced.
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Table 1. Illustration of the generation of the compressed files. The first column is just an enumeration
of lines. The second, third and fourth (sixth, seventh and eighth) columns refer to the rules applied to
file “Before” (“After”), giving the magnitude M, the relative coordinates to construct the map and the
corresponding frequencies of the magnitudes of that row. Details are given in the text.

Before After

n M MapB fB M MapA fA

1 2.4 0 18 10 7 4 5 6.6 0 1

2 4.0 1 2 44,2 4 4.5 1 1

3 3.8 2 34 2 4.8 2 4 5 10 4

4 2.2 4 4 14 11,2 8 6 4.1 3 26 2

5 4.6 5 1 3.1 4 6 3 3 22,2 9 7

6 3.5 6 11 2 3 5.2 5 1

7 2.9 7 22 20 3 4.2 7 1

8 3.0 9 1 3.8 8 28 2

9 4.1 10 27 2 3.5 9 10 4 3

10 3.1 11,2 2 3.7 12 32 4 3

11 4.3 13,2 2 3.6 14 1

12 3.6 15 1 3.3 15 18 10 3

13 5.5 16 1 4.0 17 14 2

14 2.7 20 1 2.7 18 1

15 2.5 21 2 2 15 2 3 6 3.2 20 8 2

16 2.3 24 8 12 3 2.8 22 1

17 2.6 26 4 2 2.4 24 1

18 3.3 27 1 4.7 25 12 4 4 4

19 2.8 31 7 5 3 3.0 26 20 2

20 3.4 46 1 2.9 27 1

21 4.3 30 4 2

22 5.1 32 1

23 3.4 35 7 7 3

24 2.6 40 1

2.6. Tuning the Information Recognizer

The algorithm is now a powerful program that we offer for free—email
ee.vogel@ufrontera.cl to download it. This allows us to distinguish and process different
data according to what is appropriate for each system. The following adjustments need
to be made:

(i) Is this a static calculation (entire file, just once) or a dynamical calculation through
time windows? Answer: it is dynamic through windows with W registers.

(ii) Are these successive independent or overlapping windows? Answer: we use overlapping
successive windows.

(iii) If they overlap, what is the size of the overlap? We consider here a displacement of
just one register between consecutive windows so the overlap is W − 1 events.

(iv) In step (b) of the algorithm described above, a numeric comparison is performed
between two registers. How many digits and which digits bear the most sensitive
information to perform this comparison? An estimation is possible after inspecting
the data, but we let wlzip itself find the digits that lead to a better precision. The
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comparison is restricted to the r digits from position i and the following r− 1 digits;
this is denoted (i,r). In the examples of Table 1, all comparisons were for i = 1, r = 3
(the dot needs to be compared as well).

(v) If precision is needed, wlzip has the feature of handling different numeric bases
(quaternary, binary, . . . ) which can help to discriminate intermediate positions.

WLZIP applies to any parameter P(t) stored in a vector file and indeed it has been
used to recognize phase transitions or criticality in different fields: magnetism [54,55],
econophysics [56], polymer deposition on surfaces [57,58], wind energy optimization [59].

The first application of wlzip to seismology came recently using data from a Chilean
catalogue measured by CSN [60] finding the variations in wlzip results years and months
prior to large earthquakes [61]. Then the study was extended to four zones along the
subduction trench, comparing their dynamics by means of Shannon entropy and
mutability [19]. More recently, a deepness analysis of the same “rectangle” near Iquique
was performed by means of Tsallis entropy [24].

3. Results

The earthquakes of 2014 have raised several questions concerning their dynamics.
Here, we addressed their study computing the Tsallis entropy for the first time focusing on
the magnitude of the quakes, complemented by the mutability on the same data. For the
first time, we will compare these two entropies based on an analysis over time.

Figure 5 plots the Tsallis entropy for successive overlapping time windows defined by
the last W seisms. (A) W = 256; (B) W = 512; (C) W = 1024; (D) W = 2048. Abscissas reflect
real time in days with major ticks close to a year mark. Let us examine plot (A) where, apart
from oscillations, we see a broad valley around day 800, a maximum or “swelling” around
day 1600, and stronger oscillations with a sharp decrease near day 2600, which roughly
coincides with the big earthquake. Then, Tsallis entropy partially recovers in an oscillatory
way during the aftershock regime. In Figure 5B–D we can observe similar behaviors, except
that oscillations are damped due to a larger statistics upon increasing the window spans.
The larger W values also displaces the texture of the curves a bit to the right. The three
main earthquakes that mark these complex seismic behaviors are shown by stars with the
magnitudes displaced in the inset. They were vertically split since otherwise they would
overlap at this scale.

It is interesting to notice how these four figures show a consistent increment in the
Tsallis entropy before an abrupt decay. We believe this is a manifestation of the subduction
process where the large fragments in between the Nazca plate and the South American
plate prevent sliding. However, possibilities in which the dynamics can change increase
with time leading to an increase in Tsallis entropy [21]. This effect begins about two years
before the large earthquake which is in agreement with Socquet et al. in 2017 [34], who
detected an increase in the acceleration in the displacement of the plates several months
before the large earthquake.

When the fragments fracture, smaller pieces tend to fill in the interspace, thus lubricating
the sliding of one plate with respect to the other. This leads to a sudden decrease in the Tsallis
entropy to denote the time of the major seism and the beginning of the aftershock regime.

In addition, we should mention that prior to the large earthquakes events are mostly
independent: their epicenters are at different locations, no time correlation is observed, and
magnitudes are moderate. Thus, during the apparent calm period, mostly uncorrelated
seisms are produced. The large Mw8.1 earthquake fractures the fragments, unleashing
a variety of correlated seismic chains in little time, causing an abrupt decrease in Tsallis
entropy. As the underground layers settle, the near equilibrium goes back to the situation
months or years before the violent earthquake.

In Figure 6A–D we present the mutability results for the same seisms, using the same
time windows of previous figure. In all cases the plots sharply increase when the moving
windows reach the time of three main earthquakes; for more clarity their times are marked
using particular symbols as given in the inset. The main feature of these figures is the
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abrupt growth of mutability during the earthquake period. Larger time windows moderate
the oscillations, but the sharp peak near day 2600 prevails in all of them. A more subtle
feature becomes more pronounced as the time window increases: for years before the
activity of 2010, the mutability goes through a maximum then it decreases reaching a
minimum. It then quickly recovers, maximizing during the great seismic activity.

Figure 5. Tsallis entropy on magnitude sequence in terms of real time, using four different dynamic
windows W as indicated in the code on top. (A) With 256 seismic events, (B) with 512 seismic events,
(C) with 1024 seismic events and (D) with 2048 seismic events. Stars give the time of the most
important earthquakes of the series whose magnitude is given in the inset.

Figures 5 and 6 show an inverse behavior. To understand the behavior of the mutability
we must remember that it is essentially based on the special kind of histogram constructed
in the way shown in Table 1. Just before the main seisms, the series are comparable to
the case of BeforeC in Table 1: lower mutability. During and after the large seisms, the
mutability is closer to the situation represented by the column AfterC in Table 1, namely,
larger mutability values. So the mutability decreases during the calm periods before an
earthquake at the same time the Tsallis entropy grows. During the large seisms and their
immediate aftershock activity the mutability sharply grows at the same time Tsallis entropy
sharply decreases. Turning to the aftershock period, Tsallis entropy gradually increases
while the mutability gradually decreases, both in oscillatory ways.

In Figure 7 we use a window of 512 seismic events and we compute the Tsallis entropy
and the mutability before the large earthquake of magnitude Mw8.1, stopping short before
including the main earthquake. Thus this series presents the instant picture 80, 40, 20
and 2 days before the major earthquake. Several features are of interest here. First, Tsallis
entropy and mutability progress in complementary ways; this is probably due to the fact
that Tsallis entropy is based on the real space, while mutability looks at the states in the
configuration space. Second, a rather pronounced change in the dynamics of both Tsallis
entropy and mutability is already noticeable 80 days before April 1, where no important
seism has been reported. Third, this is confirmed 40 days prior the large earthquake, where
both curves present a slight turn back. This picture remained frozen until 20 days before.
Then, in the picture taken 2 days before, we have a pronounced change in both curves—a
product of the 6.6 seism of March 16 and the subsequent aftershock activity. Fourth, this
premonitory behavior is additional and shorter in time than the previously mentioned
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maximization (minimization) of the Tsallis entropy (mutability) around the years 2011 and
2012, namely, two years in advance.

Figure 6. Mutability on magnitude sequence in real time using four different dynamic windows W
as indicated in the insets. Construction is similar to previous figure but this time we choose to report
the time in days, grouped in years. Stars report the three major earthquakes as given in the inset.

Figure 7. Approximation to the main shock by a dynamical window of W = 512 events. The data
is the same in the four plots but time is stopped at 80, 40, 20 or 2 days before the strongest Mw8.1
quake. Eventually, a video could be a more appropriate way to represent this evolution, but the most
relevant information is obtained from these four pictures. The black curve represents mutability and
the blue curve Tsallis entropy.
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These results show how the Tsallis entropy and the dynamic entropy could notify a
change in the configuration of the seismic system days before the occurrence of a large
earthquake being a contribution to the evaluation of seismic hazards in this zone. Eventually,
this way of introducing the approach to the critical moment could be presented in video
formto further stress the anticipation signals the system emitted before the breakdown.

Finally, Figure 8 is a remake of Figure 6 but now using the 10,640 seismic events as
natural time along the abscissa axis. In this way the sequence is better appreciated. Thus,
for instance, the symbols marking the three main earthquakes indicated in the inset open
up, allowing to appreciate the role of each seism in each plot. The decrease in mutability
before the leading earthquake is clearly manifested, especially for W = 512 and over.

More work has to be performed before claiming this could evolve into a method to
diagnose seismic risk, but at the moment we leave it as a proposal or hypothesis. To delve
deeper into this matter, catalogues of quality similar to IPOC are necessary, validated over
many years or decades in different regions of the world. We shall attempt to conduct this
with time whenever is possible.

Figure 8. Mutability on magnitude sequence in natural time using four different dynamic windows
W as indicated in the insets. Despite that the data is the same as in Figure 6, the texture of the curve
looks different. In particular, the stars denoting the main seisms now open up.

4. Conclusions

The accommodation of the ground layers under the Earth’s surface is accompanied
by a variation in the energy of the system which is at times released in sudden ruptures
and slides with catastrophic consequences in the events known as earthquakes. However,
this transit from states prior and after the seism mean also a change in the entropy of the
system (“cube” formed by the rectangle on the globe and the defined deepness).

This is an out-of-equilibrium system, since external fields act on it to provoke changes.
In our case, the Nazca plate is coming from the West submerging under the Continental
plate. Asperities make this process a discontinuous one. For many years, large rocks can
prevent the flow of the plates until they fracture. The number of possible states for the
system is not constant and varies with time according to the hidden physics under the
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planet’s surface. However, we can have an indication of the way they change looking at
the sequence of seismic data they produce.

The simultaneous application of both Tsallis entropy and mutability (dynamical
entropy) to the magnitude series for the first time proved to render valuable information.
Despite that magnitudes span no more than about 50 different values between 2.2 to about
7, they can recognize meaningful states on which a statistical analysis can be performed.
In the past, mutability was applied to interval series [61], where meaningful values span
about three orders of magnitude with intervals expressed in minutes as the time unit.

Tsallis entropy of magnitudes grows during the time the system accumulates tension
and energy. Mutability on the same magnitude series decreases during that period. This
behavior can be highlighted by choosing appropriate observation windows to analyse
the dynamics. Thus, Tsallis entropy responds to the conditions in the real space, while
mutability is driven by the accessible states in the configuration space.

We can perform the analysis of the seismic sequence either in real time or in natural
time. Therefore, the combination of both pictures is very useful for a detailed understanding
of the dynamical process. The most recent results within the data provided by the IPOC
catalogue show that this zone recovered rather quickly to the conditions before the major
earthquakes, which is a clear sign that energy accumulation resumed.
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