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Abstract: This paper proposes an air combat training framework based on hierarchical reinforcement
learning to address the problem of non-convergence in training due to the curse of dimensionality
caused by the large state space during air combat tactical pursuit. Using hierarchical reinforcement
learning, three-dimensional problems can be transformed into two-dimensional problems, improv-
ing training performance compared to other baselines. To further improve the overall learning
performance, a meta-learning-based algorithm is established, and the corresponding reward func-
tion is designed to further improve the performance of the agent in the air combat tactical chase
scenario. The results show that the proposed framework can achieve better performance than the
baseline approach.

Keywords: hierarchical reinforcement learning; meta-learning; reward design; decision

1. Introduction

The application of reinforcement learning (RL) [1,2] in aerial combat has attracted a
lot of attention in recent years, and RL has been used to simulate the behavior of pilots and
aircraft and to optimize aerial combat strategies [3,4].

Challenges related to these simulations include establishing the interaction model
between pilots and aircraft [5,6]; simulating the behavior of pilots maneuvering the aircraft
and its impact [7]; introducing enemy aircraft and weapons; simulating the behavior of the
enemy aircraft and its impact [8]; and the simulation of multi-aircraft cooperative combat
behavior [9,10]. Of these, confrontation behavior in air combat is complex and variable,
with various modes [11], and it is difficult for traditional methods such as state machines
and differential games to completely characterize the real-time decision-making state of
pilots and devise further optimization according to different situations [12,13]. However, by
modeling the air combat process as a Markov process [14], reinforcement learning methods
can achieve continuous optimization of decision-making algorithms [15,16].

The first application of RL in aerial combat was proposed by Kaelbling et al. [17]. They
proposed a model-based RL approach for controlling an unmanned aerial vehicle (UAV)
in a simulated air-to-air combat environment. The UAV was equipped with a simulated
radar and missile system, and the RL agent was trained to select the optimal action for the
UAV to maximize its chances of survival. The results showed that the RL agent was able
to outperform the baseline agent in terms of survival rate. More recently, Hu et al. [18]
trained long and short-term memory (LSTM) in a deep Q-network (DQN) framework for
air combat maneuvering decisions, and this was more forward-looking and efficient in
its decision-making than fully connected neural-network- and statistical-principle-based
algorithms [19]. In addition, Li proposed a deep reinforcement learning method based
on proximal policy optimization (PPO) to learn combat strategies from observation in an
end-to-end manner [20,21], and the adversarial results showed that his PPO agent can beat
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the adversary with a win rate of approximately 97%. Based on the deep deterministic policy
gradient algorithm framework, Lu designed and implemented an air warfare decision
policy and improved the efficiency of the training process via a preferred experience
playback strategy [22]. This method was able to achieve fast convergence while saving
training costs.

Because of the sparse nature of the air combat environment, the shaping of the re-
ward function has been a key challenge in the application of reinforcement learning to
air combat [23,24]. Piao constructed a high-fidelity air combat simulation environment
and proposed a critical air combat event reward-shaping mechanism to reduce episodic
win–lose signals [25,26], enabling fast convergence of the training process. The implemen-
tation results showed that reinforcement learning can generate a variety of valuable air
combat tactical behaviors under beyond-visual-range conditions. Hu et al. [27] designed
a reward function based on the original deep reinforcement learning method, and the
design dimension of the reward included the real-time gain due to the maneuver as well
as the final result gain. For the air combat maneuver decision problem with sparse re-
wards, Zhan et al. [28–30] applied a course-based learning approach to design a decision
course of angle, distance, and mixture which improved the speed and stability of training
compared to the original method without any course and was able to handle targets from
different directions.

In the air combat decision-making process, the combination of various independent
states forms a very large situation space which leads to an explosion of state dimensions [31].
Current research focuses on the rationality of the decision logic after the introduction of
reinforcement learning training in a specific scenario [32,33], whereas this paper focuses
on making the existing decision algorithm rapidly scalable as more and more realistic
situations are introduced to quickly adapt to a more realistic air combat countermeasure
environment [34,35]. The state space curse of dimensionality problem often leads to
insensitivity in the model tracking which eventually fails to converge to a better stable
tracking state. Therefore, in this paper, a hierarchical reinforcement learning (HRL)-based
air warfare framework is proposed [36], which uses a hierarchical reinforcement learning
structure to implement three-dimensional air warfare. Experimental results show that the
proposed framework can achieve better performance than existing methods. The main
innovations of this study are as follows:

1. We propose a hierarchical reinforcement learning framework in geographic coordi-
nation for the training and use of senior and basic policies to solve the MDP in air
combat chase scenarios.

2. We propose a meta-learning algorithm applied to the framework proposed in this
paper for the complex sub-state and action space learning problem of air warfare. The
reward decomposition method proposed in this paper also alleviates the problem of
reward sparsity in the training process to some extent.

3. We independently built a three-degrees-of-freedom air combat countermeasure envi-
ronment and modeled the task as a Markov process problem. Specifically, we defined
the key elements of the Markov process, such as state, behavior, and reward functions
for this task.

4. We established a quantitative system to evaluate the effectiveness of reinforcement
learning methods for training in 3D air combat.

In Section 2, we describe the application of reinforcement learning algorithms to the
established air combat environment. In Section 3, we present the algorithm framework,
reward function design ideas, algorithm training, and usage process. In Section 4, we
establish a standard evaluation method and compare multiple SOTA models. In Section 5,
we discuss the experimental results and in Section 6, we summarize the whole paper.

2. Reinforcement Learning for Air Combat

This paper sets out a design for a hierarchical RL algorithm capable of learning
effective decision strategies in air combat countermeasure scenarios through interaction
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with a simulated environment. The core of the algorithm is the use of Markov decision
processes (MDPs) to model the decision process of combat aircraft in the presence of
uncertainty and dynamic adversaries [37,38]. In this context, the design of MDPs requires
careful consideration of factors such as state space representation, action selection, and
reward function design. In addition, the construction of realistic and challenging combat
environments is critical to evaluate the performance of the HRL algorithms constructed in
this paper [39,40].

2.1. Markov Decision Process

Figure 1 describes the feedback loop; each of the subscripts t and t + 1 representing
a time step refers to a different state: the state at moment t and the state at moment
t + 1. Unlike other forms of learning, such as supervised and unsupervised learning,
reinforcement learning can only be thought of as a series of sequential state–action pairs [41].
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Intelligence in reinforcement learning requires information from the current state st+1
and also from the previous state st to make the best decision that maximizes its payoff [42].
A state signal is said to have Markovianity if it has the information necessary to define the
entire history of past states.

Markov decision processes (MDPs) represent decision-makers who periodically ob-
serve systems with Markovianity and make sequential decisions [42,43]. They are the
framework used for most problems in reinforcement learning. For each state s and action a,
the probability that the next state s′ may occur is

Pa
ss′ = Pr

{
st+1 = s′ | st = s, at = a

}
(1)

where P denotes the transfer probability, meaning the possible change of air combat
situation when a certain behavior a is executed in a specific state s. In this paper, the value
of P is fixed, and the expectation value of the next reward value R can be determined as

Vπ(s) = ∑
a

π(s, a)∑
s′

Pa
ss′
[
Ra

ss′ + γVπ
(
s′
)]

, ∀s ∈ S, ∀a ∈ A (2)

Intelligence tries to maximize its payoff over time, and one way to achieve this is to
optimize its strategy. A strategy π is optimal when it produces better or equal returns
than any other strategy, and π specifies the probability distribution of executing a certain
decision action in a given air combat situation. The equation for state values states that at
any state, strategy π is better than π’ if Vπ(s) ≥ Vπ’, ∀s ∈ S. The state value function and
the state action value function can be optimized according to the following two equations:

V∗(s) = max
π

Vπ(s), s ∈ S (3)

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S, ∀a ∈ A (4)

The above two equations can calculate the optimal state value V∗(s) and the optimal
action value Q∗(s, a) when using the strategy π. The Bellman optimal equation for V∗(s)
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can be used to calculate the value of states when the reward function Ra
ss′ and the transfer

probability Pa
ss′ are known without reference to the strategy; similarly, the Bellman optimal

equation constructed with the state action value function can be used as follows:

V∗(s) = max
a

∑
s′

Pa
ss′
[
Ra

ss′ +W
∗(s′)

]
Q∗(s, a) = ∑

s′
Pa

ss′

[
Ra

ss′ + γmax
a′

Q∗(s′, a′)
] (5)

The above two equations can calculate the optimal state value V∗(s) and the optimal
action value Q∗(s, a) when using the strategy π. Additionally, in the case of no reference
strategy, when the reward function Ra

ss′ and the transfer probability Pa
ss′ are known, the

Bellman optimal equation of V∗(s) can be used to calculate the value of states, representing
the expected cumulative returns associated with being in a given situation and subsequently
following the best decision strategy throughout the air combat. The Bellman optimal
equation constructed with the state action value function can also be used.

2.2. Air Combat Environmental Model

The defined air combat adversarial environment for the MDP is implemented as two
simulators Simui, i ∈ {Horizontal, Vertical}, where (Snext, Ri) = Simui(Si, Ai) and Ai is
the action of Agent i in state Si [44]. The simulator Simu(i) receives the action Ai and
then produces the next state Si and the reward Ri, where the state space Si consists of
the coordinates (x,y,z), velocity v and acceleration ∆ of the red and blue sides under the
geographic coordinate system:

S = (xr, yr, zr, vxr , vyr , vzr , ∆xr , ∆yr , ∆zr , xb, yb, zb, vxb , vxr , vyb , vzb
, ∆xb , ∆yb , ∆zb , ) (6)

In the next state, the geometric position, the spatial positions of the tracker, and the
target are updated after the input actions [45,46]. The action space in Horizontal space are
discrete, and they are defined as three different actions: forward, left, and right. Again,
action space Vertical is defined as three different actions: up, hold, and down. In addition,
we specifically set rules on height for this simulation to match realistic scenarios so that,
during training, if the tracker moves beyond the restricted height range, the simulator
limits its further descent or ascent and then receives a new movement [47]. We define
rewards Ri for the corresponding environment,i ∈ {Horizontal, Vertical}. The role of the
reward function is to encourage the tracker to continuously track the movement of the
target. It is defined as follows:

Ri = ω1SOT( ftarget, fstate) (7)

where ω1 is a parameter and is a positive parameter, ftarget represents the real position and
velocity of the target, and fstate represents the current position and velocity of the tracker.
SOT represents the status of tracking between fstate and ftarget. The DQN [14] algorithm is
applied to the learning of each agent in the simulation. It learns an optimal control policy
πi : Si, Gi → Ai, i ∈ {Horizontal, Vertical} .

The horizontal position between the aircraft and the target is indicated by C = (ϕu, D),
where D is the azimuth of the aircraft and the distance between the two aircraft, respectively.
Figure 2 depicts the position of the tracker relative to the target. The subscripts u and t
indicate the tracker aircraft and the target, respectively, and ϕt indicates the azimuth of the
tracker relative to the target.

The most important platform capability in air combat countermeasures training sys-
tems is flight capability, so this paper presents designs for a set of motion models to model
the aircraft platform, which mainly reflect the flight trajectory under the limitation of
aircraft flight performance. The six degrees of freedom for aircraft require consideration
of the warplane as a rigid body, the complexity of the aircraft structure, and its longitudi-
nal coupling. Here, a three-degrees-of-freedom model is used, ignoring the aircraft as a
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rigid body, treating it as a mass, and assuming that the flight control system can respond
accurately and quickly to form a maneuver trajectory. The core of the maneuvering de-
cision problem is the rapid generation of the dominant maneuvering trajectory, and the
aircraft three-degrees-of-freedom model can meet the solution requirements. The aircraft
three-degrees-of-freedom model includes a mass point model of the aircraft platform and a
dynamics model; the control model is shown in Figure 3. The specific models are

.
V = g(nx − sin(θ))
.
θ = g(nzcos(γ)−cos(θ))

V
.
ϕ = g(nzsin(γ))

Vcos(θ)
.

X = Vcos(θ)cos(ϕ)
.

Y = Vcos(θ)sin(ϕ)
.
Z = −Vsin(θ)

(8)

where x, y, and z denote the position of the aircraft in the geographic coordinate system; V
is the flight speed; θ is the velocity inclination angle, i.e., the angle between the velocity
direction and the horizontal plane, with upward as positive; ϕ is the heading angle, i.e., the
angle between the velocity direction on the horizontal plane and the due north direction,
with clockwise as positive; and where it is assumed that the velocity direction is always in
line with the direction in which the nose is pointing, i.e., the angle of attack and the sideslip
angle are zero.
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θ, ϕ, γ denote the trajectory inclination angle, track deflection angle, and roll angle,
respectively; nx and nz denote the tangential overload along the velocity direction and the
normal overload in the vertical velocity direction, respectively; and g is the gravitational
acceleration. In the above equation, the first three terms are the mass kinematics model
and the last three terms are the aircraft dynamics model; the state variables include x, y,
z, θ, ϕ, γ,
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In this paper, we propose a hierarchical reinforcement learning training framework
that comprises two parts: environment design and framework building. The purpose of
the environment design is primarily to define the input and output state data available to
the agent and the reward functions that can be obtained, and the framework building is
primarily to establish the corresponding hierarchical network structure, realize the reward
mapping corresponding to the course learning, and design the optimization algorithm and
the corresponding training strategy.

3.1. Geometric Hierarchy in the Aircombat Framework

We formulate the intelligent body motion decision for a 3D air combat 1V1 confronta-
tion as a Markov decision process (MDP), supplemented by a goal state G that we want
the two agents to learn. We define this MDP as a tuple (S, G, A, T, µ), where S is the set
of states, G is the goal, A is the set of actions, and T is the transition probability function.
In this paper, a hierarchical reinforcement learning-based approach called a hierarchical
reinforcement learning framework in geographic coordination for air combat, referred to as
HRL-GCA, is used to build a shared multilevel structure. The method uses a technique
called meta-learning, which learns from a set of tasks and applies this knowledge to new
tasks. The algorithm can effectively build a shared multilevel structure, thus improving
learning efficiency.

As shown in Figure 4, the global state S is a geometric representation of the tracker and
target aircraft in a 3D simulated air combat scenario, including the positions
S = (x, y, z) and velocities v = (vx, vy, vz) of both aircraft. At the beginning of each
episode of each state si in the MDP, for a given initial state s0 and target gi, the solu-
tion to the sub-policy ω is a control policy πi: Si, Gi → Ai that maximizes the following
value function:

vπi (si, gi)
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(9)

An agent consists of an algorithm that updates a parameter vector (θ, ω) defining
a stochastic policy πθ,ω(s|a) , where theω parameter is shared among all sub-policies,
whereas the θ parameter is learned for each senior policy starting from zero, encoding
the state of the learning process on that task. In the considered setup, an MDP is first
sampled from the PS, the agent is represented by the shared parameter ω and the randomly
initialized θ parameter, and the agent iteratively updates its θ parameter during the T-step
interaction with the sampled MDP. The objective of the HRL-GCA is to optimize the value
contributed by the sub-policy over the sampled tasks:

V = maximizeθES∼PS ,k=0,...,T−1[vπ(sk, gk)] (10)

where π consists of a set of sub-policies π1, π2, . . ., πN , and each sub-policy πi is defined
by a subvector ωn. The network constructed by the parameter θ works as a selector. That
is, the senior policy parameterized by θ selects the most appropriate behavior from index
nε{1, 2, . . . , N} to maximize the global value function V.
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3.2. Reward Shaping

The senior action reward is used to train senior behaviors, which guide the sub-action
to make further behavioral decisions. We take inspiration from the Meta-Learning Shared
Hierarchies architecture to train the sub-policy independently, solidify its parameters, and
then train senior action adaptively. Our approach is similar to Alpha-Dogfight [48], but we
differ in that we implement further layering in the behavioral layer and map global rewards
to local rewards by transformations under geographic coordination, and experimental
results demonstrate that performance in the behavioral layer is further enhanced.

3.3. Senior Policy Reward

The senior policy performs discrete actions at a frequency five times lower than the
sub-policy, which is 1 Hz and is trained using the same DQN as the sub-policy. The state
space of the senior policy differs from that of the sub-policy, which is described in detail
later in this paper. The reward for senior policy is given by

rtotal = αrangle + βrdis (11)

where α and β are positive parameters and α + β = 1.
Firstly, the angle reward rangle can help the model learn how to control the angle

of the aircraft toward the target, and ϕu is related to the limits of the detection angle of
the airborne radar and the off-axis angle of the missile. Specifically, the attack advantage
increases the closer ϕu is to the desired angle, and rangle reaches its maximum when
ϕu = 0◦, i.e., when the velocity is aligned with the target:

rangle = e(−abs(f(ϕu)−f(ϕt))/180) (12)

Secondly, the distance redirection rdis is designed based on the distance between the
aircraft and the target, which can help the model learn how to control the position of
the aircraft to achieve a reasonable position about the target. Specifically, the smaller the
distance D between the aircraft and the target, the higher the rdis value:

rdis = e(−abs(f(D))/100) (13)

We used the above rewards for the initial training, and then in subsequent experiments,
for comparison with other models, we adjusted the design of the reward to achieve the
same state as the baseline. A description of how the three model rewards are adjusted in
this paper can be found in Appendix A.
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3.4. Sub-Policy Reward

However, the objective of this paper requires the mapping of rewards to the two
subtask spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes
of control, as shown in Figure 3, rtotal is achieved by mapping ϕu and D to the x-y and x-z
planes using the function δ to reconstruct the Gi.

rh
total

(
δ(ϕu)

h, δ(ϕt)
h, δ
(
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difference and, as much as possible, encourage the aircraft to be at the same altitude level
as the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also
applied to its rewards in the comparisons with other baselines.

3.5. Hierarchical Training Algorithm

In this paper, a course learning approach is used for hierarchical training; the definition
of the algorithm is detailed in Appendix C, and the policy network is trained to interact
with the environment at a frequency of 10 Hz. The same observation space is used for
both policies.

We then explore cooperative learning between Agent 1 and Agent 2 in the training
of horizontal control and height control policies. In each iteration of the learning, firstly,
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes;
secondly, the next state s1

t+1 and the intermediate state s2
t update after action a1

t ; and thirdly,
Agent 2 moves the tracker on the x-z surface. The next state s2

t+1 updates after a2
t .

Initial conditions: These initial conditions are divided into tracking targets that start
moving from different positions and take different forms of motion in the height and
horizontal planes. Concerning stochastic multistep payoffs, for time–distance learning,
multistep payoffs tend to lead to faster learning when appropriately tuned for the number
of steps to be used in the future. Instead of tuning a fixed value, we define the maximum
number of steps in the future and uniformly sample the maximum value. A common
expression for future value is

Q
(
S′, A

)
← Q(S, A) + ∂

(
R + τmax

a′
Q(S′, a′)−Q(S, A)

)
(19)
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The tactical objective of the horizontal plane tracking subtask is to enable the tracker to
continuously track the target aircraft in the x-y plane. Formally, motion in the x-y plane is
achieved by outputting horizontal motion, successive horizontal left turns, and successive
horizontal right turns at each simulation step with a constant steering speed of 18◦/s. The
initial and termination conditions for the x-y subtasks are designed as shown in Figure 2.
The tactical objective of the altitude tracking subtask is to enable the tracker to follow
the target aircraft consistently at altitude. The mission can start in any state. Formally,
motion in the x-z plane is achieved by outputting horizontal motion, continuous climb,
and continuous descent in each simulation step, with a constant climb and descent rate of
20 m/s.

This in turn contains one output, namely, the value of Q(s, xi). The activation function
is the logsoftmax function:

Q(s, xi) = (xi − xm)− log(∑n
j=0 exj−xm) (20)

and Equation (20) directly outputs the value of each action using the logsoftmax nonlinear
function, where xm is the largest element of X = (x1, x2, . . . xn).

3.6. Hierarchical Runtime Algorithm

In the hierarchical runtime algorithm, we explore the cooperation of Agent 1 and
Agent 2 in a 3D simulated air combat situation. The algorithm is defined in detail in
Appendix D. In each iteration of learning, firstly, Agent 1 moves in the x-y plane of the 3D
air combat scenario; secondly, the next state st1+1 and intermediate state st2

are updated
after action; and thirdly, Agent 2 moves up or down in the x-z plane. The next state st2+1 is
updated after at2

.
For each action mi, a minimum period t = 1500 milliseconds and a maximum period

ui = 4 milliseconds are set. When the reinforcement learning intelligence outputs the action
mi (including the stop action) at moment T, it starts to execute mi if no action is executed
at the previous moment T − 1. If moment T – 1 performs action mj and the execution
time is greater than or equal to t, then at moment T, the agent will be allowed to execute
mi to replace the action mj, otherwise not. If moment T – 1 performs action mj and the
execution time is less than tj, then the output behavior mi at moment T is ignored. When
the reinforcement learning intelligence outputs no behavior (which is not the same as the
stopping behavior) at moment T, if the previous moment T – 1 performed the behavior mk
and the execution time is greater than or equal to ui, then the execution of the no-behavior
starts; otherwise, the execution of the behavior mk continues. The setting of the min-max
period can to some extent prevent incorrect behavior of the flight unit.

4. Results
4.1. Experimental Environment Setup

The experiments in this paper use a hierarchical reinforcement learning framework
to solve the problem in an air combat simulation environment. The hardware envi-
ronment used in the experiments is an Intel Core i7-8700K CPU, 16 GB RAM, and an
NVIDIA GeForce GTX 4090 Ti graphics card. The size of the 3D space in the experiment is
100 km × 100 km × 10 km; there are 20,000 × 480 s training episodes for each model;
and the actual data sampling frequency is 10 HZ. The experimental results show that the
performance of the algorithm improves significantly after the training of 20,000 episodes.

4.2. Performance Metrics during Training and Validation

To select the best-performing agent, we create an evaluation metric to compare the
training results of various methods. The qualitative and quantitative results demonstrate
the usefulness of our proposed model. The tracking performance of the tracker is evaluated
when the target is moving at 0–180◦ relative north in an air combat environment. For com-
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parison, we trained 2400 episodes for each angle type, for a total of 11.5 × 106 simulation
steps, and tested 500 samples for the corresponding angle types.

The meanings of each indicator are as follows: miss distance represents the average
distance between the tracker and the target during the entire tracking process; miss angle
represents the average track angle ϕu between the tracker and the target during the entire
tracking process; approach time represents the time taken to approach the target for the
first time to a certain distance; hold distance time is the length of time that the tracker stays
within a certain distance of the target; hold angle time is the time that the tracker stays
within a certain angle of the target; and cost time refers to the time spent by each strategy
model when outputting the current action command.

P(Miss Distance) =
acc(total dis)

tepoch time
(21)

P(Miss Angle) =
acc(track angle ϕu)

tepoch time
(22)

P(Approach time) = τTOA − τ0 (23)

P(Hold distance time) =
τ(dis ≤ σ)

τ(epoch time)
(24)

P(Hold angle time) =
τ(angle ≤ ∂)

τ(epoch time)
(25)

P(Cost Time) = τ(θ) (26)

4.3. Validation and Evolution of the Hierarchical Agents

In this experiment, we reproduce the models and algorithms in three papers [9,15,49],
and apply the hierarchical reinforcement learning framework established in this paper
to learn and train them, respectively, while mapping the reward functions shaped in the
three papers in the corresponding sub-state spaces; then, in the air combat environment
established in this paper, different models are compared in the same test scenarios, and the
performance of the three original models is compared with that of the models after applying
HRL. We use the benchmark performance comparison method proposed in Section 4.2 to
compare the models proposed in the paper, as shown in Table 1. Models 1, 2, and 3 denote
the performance of the three models. The experimental results show that the HRL-GCA
proposed in this paper can achieve higher scores in all three dimensions under the six test
metrics compared with the other three models: the miss distance, miss angle, and approach
time decreased by an average of 5492 m, 6.93 degrees, and 34.637 s, respectively, and the
average improvement of angle maintenance and distance maintenance time is 8.13% and
16.52%, respectively. Of the other models, Model 2 has the highest hold distance and hold
angle time with percentages of 41.12 and 15.44, respectively. In addition, the HRL-GCA
model can converge faster and achieve higher accuracy in the training process. Therefore,
we conclude that HRL-GCA demonstrates better performance in this experiment.

As shown in Table 1, the implementation of HRL models results in a 40–50% increase
in runtime compared to the baseline models. This can be attributed to the fact that HRL
models involve more complex computations and require more processing time. This is
mostly because HRL incorporates several learning layers. Consequently, the HRL will
execute over two extra neural networks in addition to the base models.

Notwithstanding, we consider the time cost to be acceptable based on the comparative
results presented in Table 1. For instance, Model 2 benefited from HRL improvement, requir-
ing only a minimum of 87.56 s for Approach Time and making approximately 65 decisions
for the approach to the target. In contrast, the corresponding model without HRL improve-
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ments required 137.06 s for Approach Time, making about 145 decisions for the approach
to the goal. The HRL-improved model achieves its goal with only 65 decisions compared
to the original model’s 145, resulting in a 55% improvement in decision-making efficiency.
This increase in efficiency of the HRL-improved model (55%) offsets the additional time
overhead required to execute the model (43.40%).

Furthermore, as an example, Model 2 shows improved Hold Distance Time and Hold-
ing Angle Time by 16.33% and 8.24%, respectively, after implementing HRL. Furthermore,
compared to the model without HRL improvement, the distance and angle tracking stability
are enhanced by 65% and 114%, respectively. In summary, although the computation time
spent increased by 43.40%, the HRL improvement resulted in a 55% increase in decision ef-
ficiency within the same timeframe. The distance and angle tracking stability also increased
by 65% and 114%, respectively. Therefore, this improvement is deemed reasonable.

Table 1. Comparison of experimental results with and without the HRL framework.

Reward
Type

Miss Distance (m) Miss Angle (◦) Approach Time (s)

without
hrl with hrl Ratio of

Decrease
without

hrl with hrl Ratio of
Decrease

without
hrl with hrl Ratio of

Decrease

Model 1 44,378.83
(±4020.2)

38,900.41
(±3778.3) 12.34% 32.56

(±5.73)
25.71

(±1.46) 21.04% 141.99
(±19.89)

101.459
(±20.09) 28.54%

Model 2 41,696.70
(±3692.7)

35,797.28
(±3494.9) 14.14% 31.68

(±2.66)
28.726

(±8.39) 9.32% 137.06
(±21.32)

87.56
(±17.83) 36.11%

Model 3 43,526.82
(±2332.4)

38,427.20
(±2371.3) 11.71% 36.69

(±6.93)
25.69

(±6.41) 29.98% 102.89
(±25.18)

89.01
(±18.66) 13.49%

Reward
Type

Hold Distance Time (%) Hold Angle Time (%) Cost Time (ms)

without
hrl with hrl Ratio of

Increase
without

hrl with hrl Ratio of
Increase

without
hrl with hrl Ratio of

Increase

Model 1 17.15%
(±6.39%)

33.14%
(±3.87%) 15.99% 5.23%

(±0.22)
11.38%

(±0.99%) 6.15% 0.97 1.427 47.11%

Model 2 24.79%
(±4.99%)

41.12%
(±4.67%) 16.33% 7.2%

(±0.63%)
15.44%

(±1.67%) 8.24% 0.94 1.348 43.40%

Model 3 19.30%
(±4.61%)

36.56%
(4.51%) 17.26% 4.06%

(±1.07%)
14.07%

(±1.72%) 10.01% 0.91 1.410 54.95%

5. Discussion
5.1. Trajectory of Air Combat Process

As shown in Figures 5–8, we deploy the algorithm of this paper in a typical air combat
scenario and compare its tracking of the target aircraft with a model that does not use this
algorithm. During air combat, continuous tracking of the target aircraft in a given scenario
is necessary to shoot it down. In the test cases, the target aircraft maneuvers continuously at
altitude and moves away from the tracker by turning away from it, as seen in the 3D and 2D
tracking trajectories, but the tracker ensures continuous alignment with the target in both
altitude and direction. In contrast, the use of the other model fails to achieve continuous
tracking of the target in either direction or altitude. Furthermore, the red dashed line in
Figures 6 and 8 shows the desired tracking trajectory for the target.

In our experiments, we use a hierarchical reinforcement learning framework to opti-
mize and enhance the vehicle tracking trajectories. The trajectories in Figure 9 show the
tracking states of the modified model 2 based on HRL and the model set out in this paper
in the XY plane, XZ plane, and XYZ 3D space, respectively. Of these, in Figure 10, the red
line is the tracking flight, the blue line is the tracked flight, and the number represents the
flight trajectory sequence of both flights. The experimental results show that the use of
the hierarchical reinforcement learning framework can effectively improve the accuracy
and stability of aircraft tracking trajectories and can effectively reduce their deviation. It
is found that Model 3 is more sensitive to the weighting parameters α,β in Equation (11)
and has the best test results when the two reward ratios in the original paper are set to 0.5,
0.5. Irrespective of the rewards in Models 1, 2, and 3 or the rewards used in this paper, in
Figures 11 and 12, the tracking performance of a single network simultaneously controlling
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the motion of the horizontal plane and the motion of the height layer is inferior to that of
multiple networks controlling them separately. In addition, the experimental results show
that the use of the reinforcement learning method can effectively improve the accuracy of
aircraft tracking trajectories, thus improving the timeliness of target tracking.
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Figure 7. Comparison of the height tracking performance of the models ((a–f) represents the vertical
tracking trajectory of model 1 with HRL frame, the vertical tracking trajectory of model 2 with HRL
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5.2. Training Process

The analysis of the experimental results in this paper shows that we can compare
the changes in reward and loss of Models 1, 2, and 3 with the HRL-GCA model during
the training process. From the experimental results, the reward and loss of HRL-GCA
converge as the episodes increase and reach their optimal state after stabilization. In
Figure 13, from the change in reward, our research model reward reaches its maximum at
episode 21, whereas the rewards of the three standard models still show large fluctuations
at episode 21, indicating that the reward of our research model has better convergence
performance. Figure 14 illustrates the loss parameters during training after normalization.
From the change in loss, the loss of our research model reaches its minimum at episode 592,
whereas the losses of the three standard models still show a large fluctuation at episode
592, indicating that our research model has a better convergence performance of loss.
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In summary, Figures 13 and 14 show that our research model has the best convergence
performance during the training process, as well as an optimal state after stabilization.
Therefore, when introducing a new sub-policy, the framework in this paper can achieve fast
adaptation in training and learning for the corresponding task. Furthermore, in Figure 13,
Model 3 and the proposed model decrease significantly after the first peak around episode
21; such behavior makes these models inferior to Model 2. This is mainly due to overfitting.
From Equations (9) and (10) in Section 1, it can be deduced that each sub-policy πi can
quickly learn its corresponding subvector ωn after the initial learning phase, but ωn learns
only a tiny portion of the state space, and it needs to further learn the θ corresponding to
the selector to maximize the global value function V.

In addition, the θ corresponding to the selector can be learned from the ωn subvector,
but due to the large amount of training data required to train θ, as πθ,ω(s|a) performs
stochastic exploration, the variance is large, resulting in a decrease in vπ(sk, gk) until
S ∼ PS accumulates sufficiently to train a valid θ parameter. Furthermore, model 2 can
maintain a more stable exploration-utilization capability throughout the training process,
but the model proposed in this paper has a higher final reward value compared to the other
models due to a better memory of what has been learned. Finally, we use black dashed
lines in Figures 13 and 14 to show the variation of reward and loss with the training process
in the ideal case.

6. Conclusions

The hierarchical reinforcement learning framework in geographic coordination for air
combat proposed in this paper trains two types of neural networks using distance reward,
angle reward, and a combination of both to control the vehicle in multiple dimensions. The
model has achieved good results in tracking targets in multiple dimensions. In thousands of
tests, it achieved an average improvement of 8.13% in angle tracking and 16.52% in distance
tracking over the baseline model, demonstrating its effectiveness. However, the model has
limitations, especially in complex environments or when the goal is to perform complex
maneuvers, and it is not yet able to achieve optimal control. Future research should focus
on improving the tracking performance in such scenarios, along with exploring additional
reward functions to improve stability and accuracy. Furthermore, numerous challenges
remain, such as addressing two-agent game combat and extending to 2v2 and multi-agent
combat scenarios in air combat pair control, which warrant further exploration. In addition,
the application potential of this model in other real-world scenarios should be investigated.
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Appendix A. Design of Reward Functions

We adjusted the reward functions in the three models appropriately according to the
characteristics and goals of the tasks. Reward functions play a crucial role in reinforcement
learning in that they guide model learning and decision-making. However, in complex
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real-world tasks, it is very challenging to design ideal reward functions that apply to all
situations. To realize the model in this paper to adapt the reward functions of the three
models [9,15,49], we mainly adjust the f(ϕu), f(ϕt), and f(D) in Equations (12) and (13).

In model 1:

f(ϕu) =

{
1− |ϕu|

150 0 ≤ |ϕu| ≤ 30

030 ≤ |ϕu| ≤ 180

f(ϕt) = −
(180− |ϕt|)π

180
,−180 ≤ ϕt ≤ 180

f(D) =


1D < 10

−D−10
30 10 ≤ D ≤ 40

0D > 40

In model 2:
f(ϕu) = 0

f(ϕt) =
360− |ϕu| − |ϕt|

360
, 0 ≤ |ϕu| ≤ 180, 0 ≤ |ϕt| ≤ 180

f(D) =


0D ≥ 80

−D−60
40 60 < D ≤ 80

−D−40
20 40 < D ≤ 60
120 < D ≤ 40

0D ≤ 20

In model 3:
f(ϕu) = −(ϕu − 30)2, 0 ≤ |ϕu| ≤ 180

f(ϕt) = −(ϕt − 60)2, 0 ≤ |ϕt| ≤ 180

f(D) = −(R/80)2

Appendix B. The Spatial Projection

The main role of the spatial mapping operator δ is to map the base auto-morphisms of
the reward function to the x-y and x-z planes, such that the x-y and x-z planes share the
same reward function form but have different auto-morphisms.

Where
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Algorithm A1 The hierarchical training algorithm 
Initialize a one-on-one air combat simulation environment 
Initialize replay buffer R1,R2 to capacity N 
Initialize the action-value function Q with random weights 
Initialize Agent DQN1with (Q,R1), DQN2 with (Q,R2) 
for episode = 1, MAX do 

Initialize state 𝑠  = env.reset() 
for t = 1, T do 

Agent 1 samples action 𝑎  =  𝑎 , (𝑠 ) + 𝜀  using DQN1  
Execute  𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  
Agent 2 samples action 𝑎  = 𝑎 , (𝑠 ) + 𝜀  using DQN2  
Execute 𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  

end for 
Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R1, Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R2 
if the Update condition is reached, then 

Sample random mini-batch of m from the replay buffer  
Calculate the target Q value for each both DQN in each transition 𝑄 = 𝑟 +𝜆𝑚𝑎𝑥 𝑄 (𝑠 ,𝑎 (𝑠 );𝜃) 
Compute gradient estimation ∆𝜃  and ∆𝜃  
Update the parameters of DQN1 and DQN2 based on the optimizer using ∆𝜃  and ∆𝜃  
end for 

end for 

Appendix D. Algorithm A2 
In practice, the hierarchical reinforcement learning algorithm proposed in this paper 

gradually improves the performance and decision-making ability of the whole system 
through the steps of hierarchical structure, policy execution, reward signaling, and 
parameter updating. Through decision-making and learning at different levels, the 
hierarchical reinforcement learning algorithm can be more flexible in solving complex, 
high-dimensional tasks and achieve improved adaptability and generalization ability. 

represent the velocity vectors of the tracker and target in the geo-
graphic coordinate system, respectively, with scalar forms (vu,x, vu,y, vu,z) and (vt,x, vt,y, vt,z).
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represents the vector expression of the line that connects the center of gravity of the
tracker and the center of gravity of the target in the geographic coordinate system, and its
scalar form is (dx, dy, dz). As shown in Figure 2, ϕu is the angle between vector
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Appendix D. Algorithm A2 
In practice, the hierarchical reinforcement learning algorithm proposed in this paper 

gradually improves the performance and decision-making ability of the whole system 
through the steps of hierarchical structure, policy execution, reward signaling, and 
parameter updating. Through decision-making and learning at different levels, the 
hierarchical reinforcement learning algorithm can be more flexible in solving complex, 
high-dimensional tasks and achieve improved adaptability and generalization ability. 
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strategies suitable for the task. Through iteration and optimization of these steps, we can 
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Compute gradient estimation ∆𝜃  and ∆𝜃  
Update the parameters of DQN1 and DQN2 based on the optimizer using ∆𝜃  and ∆𝜃  
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end for 

Appendix D. Algorithm A2 
In practice, the hierarchical reinforcement learning algorithm proposed in this paper 

gradually improves the performance and decision-making ability of the whole system 
through the steps of hierarchical structure, policy execution, reward signaling, and 
parameter updating. Through decision-making and learning at different levels, the 
hierarchical reinforcement learning algorithm can be more flexible in solving complex, 
high-dimensional tasks and achieve improved adaptability and generalization ability. 
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Appendix D. Algorithm A2 
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gradually improves the performance and decision-making ability of the whole system 
through the steps of hierarchical structure, policy execution, reward signaling, and 
parameter updating. Through decision-making and learning at different levels, the 
hierarchical reinforcement learning algorithm can be more flexible in solving complex, 
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gradually improves the performance and decision-making ability of the whole system 
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Appendix C. Algorithm A1

The training algorithm for hierarchical reinforcement learning proposed in this paper
involves the steps of hierarchical policy optimization, subtask policy optimization, hierar-
chical reward design, and network parameter training. Among them, the reward function
of each layer can be adjusted and optimized according to the objectives and characteristics
of the task. By reasonably designing the reward function, the hierarchical reinforcement
learning network can be guided to learn decision-making and behavioral strategies suitable
for the task. Through iteration and optimization of these steps, we can obtain a hierarchical
reinforcement learning model adapted to the complex task.

Algorithm A1 The hierarchical training algorithm

Initialize a one-on-one air combat simulation environment
Initialize replay buffer R1,R2 to capacity N
Initialize the action-value function Q with random weights
Initialize Agent DQN1with (Q,R1), DQN2 with (Q,R2)
for episode = 1, MAX do

Initialize state s1
t = env.reset()

for t = 1, T do
Agent 1 samples action a1

t = at,θ1
(
s1

t
)
+ εtusing DQN1

Execute a1
t in an air combat simulation environment

The aircraft observes s1
t+1, reward r1

t
Agent 2 samples action a2

t = at,θ2
(
s2

t
)
+ εtusing DQN2

Execute a2
t in an air combat simulation environment

The aircraft observes s2
t+1, reward r2

t
end for

Store (s1
t , a1

t , r1
t , s1

t+1) into R1, Store (s2
t , a2

t , r2
t , s2

t+1) into R2

if the Update condition is reached, then

Sample random mini-batch of m from the replay buffer

Calculate the target Q value for each both DQN in each transition Q̂m = rm + λmaxaθ′Qm
(st+1

m , aθ′
(
st+1

m
)
; θ)

Compute gradient estimation ∆θ1 and ∆θ2
Update the parameters of DQN1 and DQN2 based on the optimizer using ∆θ1 and ∆θ2
end for

end for

Appendix D. Algorithm A2

In practice, the hierarchical reinforcement learning algorithm proposed in this paper
gradually improves the performance and decision-making ability of the whole system
through the steps of hierarchical structure, policy execution, reward signaling, and parame-
ter updating. Through decision-making and learning at different levels, the hierarchical
reinforcement learning algorithm can be more flexible in solving complex, high-dimensional
tasks and achieve improved adaptability and generalization ability.



Entropy 2023, 25, 1409 19 of 21

Algorithm A2 The hierarchical running algorithm

Load trained neural networks Q1(s, a, θ1), Q2(s, a, θ2)
Initialize the state of the tracker and target (su

T=0, st
T=0)

Initialize target maneuver strategy π(a|s) t
for step = 1 to max step do

for i in (θ1, θ2) do
Calculate (ϕh

u, ϕh
t , D)

Execute at ∼ πθ1 (at
∣∣su

T)∣∣∣∆Xh
T , ∆Yh

T , ∆Zh
T

∣∣∣is obtained according to (2)
Get the next state su

T+1
Calculate (ϕv

u, ϕv
t , D)

Execute at ∼ πθ2 (at
∣∣su

T+1)
|∆Xv

T , ∆Yv
T , ∆Zv

T |is obtained according to (2)
Get the next state su

T+2
su

T = su
T+2

end for
The target moves to the next state st

T+1 according to the strategy π(a|s) t
st

T = st
T+1

end for
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