
Citation: Chen, R.; Li, H.; Yan, G.;

Peng, H.; Zhang, Q. Hierarchical

Reinforcement Learning Framework

in Geographic Coordination for Air

Combat Tactical Pursuit. Entropy

2023, 25, 1409. https://doi.org/

10.3390/e25101409

Academic Editor: Wei Li

Received: 1 August 2023

Revised: 24 September 2023

Accepted: 25 September 2023

Published: 1 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Hierarchical Reinforcement Learning Framework in Geographic
Coordination for Air Combat Tactical Pursuit
Ruihai Chen 1 , Hao Li 2, Guanwei Yan 2, Haojie Peng 1 and Qian Zhang 3,*

1 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China;
crh@mail.nwpu.edu.cn (R.C.); sc4979@163.com (H.P.)

2 Chengdu Aircraft Design and Research Institute, Chengdu 610041, China
3 School of Aerospace, Northwestern Polytechnical University, Xi’an 710072, China
* Correspondence: snzq2020@nwpu.edu.cn

Abstract: This paper proposes an air combat training framework based on hierarchical reinforcement
learning to address the problem of non-convergence in training due to the curse of dimensionality
caused by the large state space during air combat tactical pursuit. Using hierarchical reinforcement
learning, three-dimensional problems can be transformed into two-dimensional problems, improv-
ing training performance compared to other baselines. To further improve the overall learning
performance, a meta-learning-based algorithm is established, and the corresponding reward func-
tion is designed to further improve the performance of the agent in the air combat tactical chase
scenario. The results show that the proposed framework can achieve better performance than the
baseline approach.

Keywords: hierarchical reinforcement learning; meta-learning; reward design; decision

1. Introduction

The application of reinforcement learning (RL) [1,2] in aerial combat has attracted a
lot of attention in recent years, and RL has been used to simulate the behavior of pilots and
aircraft and to optimize aerial combat strategies [3,4].

Challenges related to these simulations include establishing the interaction model
between pilots and aircraft [5,6]; simulating the behavior of pilots maneuvering the aircraft
and its impact [7]; introducing enemy aircraft and weapons; simulating the behavior of the
enemy aircraft and its impact [8]; and the simulation of multi-aircraft cooperative combat
behavior [9,10]. Of these, confrontation behavior in air combat is complex and variable,
with various modes [11], and it is difficult for traditional methods such as state machines
and differential games to completely characterize the real-time decision-making state of
pilots and devise further optimization according to different situations [12,13]. However, by
modeling the air combat process as a Markov process [14], reinforcement learning methods
can achieve continuous optimization of decision-making algorithms [15,16].

The first application of RL in aerial combat was proposed by Kaelbling et al. [17]. They
proposed a model-based RL approach for controlling an unmanned aerial vehicle (UAV)
in a simulated air-to-air combat environment. The UAV was equipped with a simulated
radar and missile system, and the RL agent was trained to select the optimal action for the
UAV to maximize its chances of survival. The results showed that the RL agent was able
to outperform the baseline agent in terms of survival rate. More recently, Hu et al. [18]
trained long and short-term memory (LSTM) in a deep Q-network (DQN) framework for
air combat maneuvering decisions, and this was more forward-looking and efficient in
its decision-making than fully connected neural-network- and statistical-principle-based
algorithms [19]. In addition, Li proposed a deep reinforcement learning method based
on proximal policy optimization (PPO) to learn combat strategies from observation in an
end-to-end manner [20,21], and the adversarial results showed that his PPO agent can beat

Entropy 2023, 25, 1409. https://doi.org/10.3390/e25101409 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25101409
https://doi.org/10.3390/e25101409
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7565-6595
https://orcid.org/0009-0004-7001-4747
https://doi.org/10.3390/e25101409
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25101409?type=check_update&version=1


Entropy 2023, 25, 1409 2 of 21

the adversary with a win rate of approximately 97%. Based on the deep deterministic policy
gradient algorithm framework, Lu designed and implemented an air warfare decision
policy and improved the efficiency of the training process via a preferred experience
playback strategy [22]. This method was able to achieve fast convergence while saving
training costs.

Because of the sparse nature of the air combat environment, the shaping of the re-
ward function has been a key challenge in the application of reinforcement learning to
air combat [23,24]. Piao constructed a high-fidelity air combat simulation environment
and proposed a critical air combat event reward-shaping mechanism to reduce episodic
win–lose signals [25,26], enabling fast convergence of the training process. The implemen-
tation results showed that reinforcement learning can generate a variety of valuable air
combat tactical behaviors under beyond-visual-range conditions. Hu et al. [27] designed
a reward function based on the original deep reinforcement learning method, and the
design dimension of the reward included the real-time gain due to the maneuver as well
as the final result gain. For the air combat maneuver decision problem with sparse re-
wards, Zhan et al. [28–30] applied a course-based learning approach to design a decision
course of angle, distance, and mixture which improved the speed and stability of training
compared to the original method without any course and was able to handle targets from
different directions.

In the air combat decision-making process, the combination of various independent
states forms a very large situation space which leads to an explosion of state dimensions [31].
Current research focuses on the rationality of the decision logic after the introduction of
reinforcement learning training in a specific scenario [32,33], whereas this paper focuses
on making the existing decision algorithm rapidly scalable as more and more realistic
situations are introduced to quickly adapt to a more realistic air combat countermeasure
environment [34,35]. The state space curse of dimensionality problem often leads to
insensitivity in the model tracking which eventually fails to converge to a better stable
tracking state. Therefore, in this paper, a hierarchical reinforcement learning (HRL)-based
air warfare framework is proposed [36], which uses a hierarchical reinforcement learning
structure to implement three-dimensional air warfare. Experimental results show that the
proposed framework can achieve better performance than existing methods. The main
innovations of this study are as follows:

1. We propose a hierarchical reinforcement learning framework in geographic coordi-
nation for the training and use of senior and basic policies to solve the MDP in air
combat chase scenarios.

2. We propose a meta-learning algorithm applied to the framework proposed in this
paper for the complex sub-state and action space learning problem of air warfare. The
reward decomposition method proposed in this paper also alleviates the problem of
reward sparsity in the training process to some extent.

3. We independently built a three-degrees-of-freedom air combat countermeasure envi-
ronment and modeled the task as a Markov process problem. Specifically, we defined
the key elements of the Markov process, such as state, behavior, and reward functions
for this task.

4. We established a quantitative system to evaluate the effectiveness of reinforcement
learning methods for training in 3D air combat.

In Section 2, we describe the application of reinforcement learning algorithms to the
established air combat environment. In Section 3, we present the algorithm framework,
reward function design ideas, algorithm training, and usage process. In Section 4, we
establish a standard evaluation method and compare multiple SOTA models. In Section 5,
we discuss the experimental results and in Section 6, we summarize the whole paper.

2. Reinforcement Learning for Air Combat

This paper sets out a design for a hierarchical RL algorithm capable of learning
effective decision strategies in air combat countermeasure scenarios through interaction



Entropy 2023, 25, 1409 3 of 21

with a simulated environment. The core of the algorithm is the use of Markov decision
processes (MDPs) to model the decision process of combat aircraft in the presence of
uncertainty and dynamic adversaries [37,38]. In this context, the design of MDPs requires
careful consideration of factors such as state space representation, action selection, and
reward function design. In addition, the construction of realistic and challenging combat
environments is critical to evaluate the performance of the HRL algorithms constructed in
this paper [39,40].

2.1. Markov Decision Process

Figure 1 describes the feedback loop; each of the subscripts t and t + 1 representing
a time step refers to a different state: the state at moment t and the state at moment
t + 1. Unlike other forms of learning, such as supervised and unsupervised learning,
reinforcement learning can only be thought of as a series of sequential state–action pairs [41].

Entropy 2023, 25, x FOR PEER REVIEW 3 of 22 
 

 

reward function design ideas, algorithm training, and usage process. In Section 4, we es-

tablish a standard evaluation method and compare multiple SOTA models. In Section 5, 

we discuss the experimental results and in Section 6, we summarize the whole paper. 

2. Reinforcement Learning for Air Combat 

This paper sets out a design for a hierarchical RL algorithm capable of learning effec-

tive decision strategies in air combat countermeasure scenarios through interaction with 

a simulated environment. The core of the algorithm is the use of Markov decision pro-

cesses (MDPs) to model the decision process of combat aircraft in the presence of uncer-

tainty and dynamic adversaries [37,38]. In this context, the design of MDPs requires care-

ful consideration of factors such as state space representation, action selection, and reward 

function design. In addition, the construction of realistic and challenging combat environ-

ments is critical to evaluate the performance of the HRL algorithms constructed in this 

paper [39,40]. 

2.1. Markov Decision Process 

Figure 1 describes the feedback loop; each of the subscripts t and t + 1 representing a 

time step refers to a different state: the state at moment t and the state at moment t + 1. 

Unlike other forms of learning, such as supervised and unsupervised learning, reinforce-

ment learning can only be thought of as a series of sequential state–action pairs [41]. 

 

Figure 1. Markov process model. 

Intelligence in reinforcement learning requires information from the current state 

𝑠𝑡+1 and also from the previous state 𝑠𝑡 to make the best decision that maximizes its payoff 

[42]. A state signal is said to have Markovianity if it has the information necessary to de-

fine the entire history of past states. 

Markov decision processes (MDPs) represent decision-makers who periodically ob-

serve systems with Markovianity and make sequential decisions [42,43]. They are the 

framework used for most problems in reinforcement learning. For each state s and action 

𝑎, the probability that the next state 𝑠′ may occur is 

𝑃𝑠𝑠′
𝑎 = Pr{𝑠𝑡+1 = 𝑠′ ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} (1) 

where 𝑃 denotes the transfer probability, meaning the possible change of air combat situ-

ation when a certain behavior 𝑎 is executed in a specific state 𝑠. In this paper, the value of 

𝑃 is fixed, and the expectation value of the next reward value 𝑅 can be determined as 

𝑉𝜋(𝑠) = ∑  

𝑎

𝜋(𝑠, 𝑎)∑  

𝑠′

𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)], ∀𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴 (2) 

Intelligence tries to maximize its payoff over time, and one way to achieve this is to 

optimize its strategy. A strategy 𝜋 is optimal when it produces better or equal returns than 

any other strategy, and 𝜋 specifies the probability distribution of executing a certain deci-

sion action in a given air combat situation. The equation for state values states that at any 

state, strategy π is better than 𝜋’ if 𝑉𝜋(𝑠) ≥ 𝑉𝜋’, ∀𝑠 ∈ 𝑆. The state value function and the 

state action value function can be optimized according to the following two equations: 

Figure 1. Markov process model.

Intelligence in reinforcement learning requires information from the current state st+1
and also from the previous state st to make the best decision that maximizes its payoff [42].
A state signal is said to have Markovianity if it has the information necessary to define the
entire history of past states.

Markov decision processes (MDPs) represent decision-makers who periodically ob-
serve systems with Markovianity and make sequential decisions [42,43]. They are the
framework used for most problems in reinforcement learning. For each state s and action a,
the probability that the next state s′ may occur is

Pa
ss′ = Pr

{
st+1 = s′ | st = s, at = a

}
(1)

where P denotes the transfer probability, meaning the possible change of air combat
situation when a certain behavior a is executed in a specific state s. In this paper, the value
of P is fixed, and the expectation value of the next reward value R can be determined as

Vπ(s) = ∑
a

π(s, a)∑
s′

Pa
ss′
[
Ra

ss′ + γVπ
(
s′
)]

, ∀s ∈ S, ∀a ∈ A (2)

Intelligence tries to maximize its payoff over time, and one way to achieve this is to
optimize its strategy. A strategy π is optimal when it produces better or equal returns
than any other strategy, and π specifies the probability distribution of executing a certain
decision action in a given air combat situation. The equation for state values states that at
any state, strategy π is better than π’ if Vπ(s) ≥ Vπ’, ∀s ∈ S. The state value function and
the state action value function can be optimized according to the following two equations:

V∗(s) = max
π

Vπ(s), s ∈ S (3)

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S, ∀a ∈ A (4)

The above two equations can calculate the optimal state value V∗(s) and the optimal
action value Q∗(s, a) when using the strategy π. The Bellman optimal equation for V∗(s)



Entropy 2023, 25, 1409 4 of 21

can be used to calculate the value of states when the reward function Ra
ss′ and the transfer

probability Pa
ss′ are known without reference to the strategy; similarly, the Bellman optimal

equation constructed with the state action value function can be used as follows:

V∗(s) = max
a

∑
s′

Pa
ss′
[
Ra

ss′ +W
∗(s′)

]
Q∗(s, a) = ∑

s′
Pa

ss′

[
Ra

ss′ + γmax
a′

Q∗(s′, a′)
] (5)

The above two equations can calculate the optimal state value V∗(s) and the optimal
action value Q∗(s, a) when using the strategy π. Additionally, in the case of no reference
strategy, when the reward function Ra

ss′ and the transfer probability Pa
ss′ are known, the

Bellman optimal equation of V∗(s) can be used to calculate the value of states, representing
the expected cumulative returns associated with being in a given situation and subsequently
following the best decision strategy throughout the air combat. The Bellman optimal
equation constructed with the state action value function can also be used.

2.2. Air Combat Environmental Model

The defined air combat adversarial environment for the MDP is implemented as two
simulators Simui, i ∈ {Horizontal, Vertical}, where (Snext, Ri) = Simui(Si, Ai) and Ai is
the action of Agent i in state Si [44]. The simulator Simu(i) receives the action Ai and
then produces the next state Si and the reward Ri, where the state space Si consists of
the coordinates (x,y,z), velocity v and acceleration ∆ of the red and blue sides under the
geographic coordinate system:

S = (xr, yr, zr, vxr , vyr , vzr , ∆xr , ∆yr , ∆zr , xb, yb, zb, vxb , vxr , vyb , vzb
, ∆xb , ∆yb , ∆zb , ) (6)

In the next state, the geometric position, the spatial positions of the tracker, and the
target are updated after the input actions [45,46]. The action space in Horizontal space are
discrete, and they are defined as three different actions: forward, left, and right. Again,
action space Vertical is defined as three different actions: up, hold, and down. In addition,
we specifically set rules on height for this simulation to match realistic scenarios so that,
during training, if the tracker moves beyond the restricted height range, the simulator
limits its further descent or ascent and then receives a new movement [47]. We define
rewards Ri for the corresponding environment,i ∈ {Horizontal, Vertical}. The role of the
reward function is to encourage the tracker to continuously track the movement of the
target. It is defined as follows:

Ri = ω1SOT( ftarget, fstate) (7)

where ω1 is a parameter and is a positive parameter, ftarget represents the real position and
velocity of the target, and fstate represents the current position and velocity of the tracker.
SOT represents the status of tracking between fstate and ftarget. The DQN [14] algorithm is
applied to the learning of each agent in the simulation. It learns an optimal control policy
πi : Si, Gi → Ai, i ∈ {Horizontal, Vertical} .

The horizontal position between the aircraft and the target is indicated by C = (ϕu, D),
where D is the azimuth of the aircraft and the distance between the two aircraft, respectively.
Figure 2 depicts the position of the tracker relative to the target. The subscripts u and t
indicate the tracker aircraft and the target, respectively, and ϕt indicates the azimuth of the
tracker relative to the target.

The most important platform capability in air combat countermeasures training sys-
tems is flight capability, so this paper presents designs for a set of motion models to model
the aircraft platform, which mainly reflect the flight trajectory under the limitation of
aircraft flight performance. The six degrees of freedom for aircraft require consideration
of the warplane as a rigid body, the complexity of the aircraft structure, and its longitudi-
nal coupling. Here, a three-degrees-of-freedom model is used, ignoring the aircraft as a



Entropy 2023, 25, 1409 5 of 21

rigid body, treating it as a mass, and assuming that the flight control system can respond
accurately and quickly to form a maneuver trajectory. The core of the maneuvering de-
cision problem is the rapid generation of the dominant maneuvering trajectory, and the
aircraft three-degrees-of-freedom model can meet the solution requirements. The aircraft
three-degrees-of-freedom model includes a mass point model of the aircraft platform and a
dynamics model; the control model is shown in Figure 3. The specific models are

.
V = g(nx − sin(θ))
.
θ = g(nzcos(γ)−cos(θ))

V
.
ϕ = g(nzsin(γ))

Vcos(θ)
.

X = Vcos(θ)cos(ϕ)
.

Y = Vcos(θ)sin(ϕ)
.
Z = −Vsin(θ)

(8)

where x, y, and z denote the position of the aircraft in the geographic coordinate system; V
is the flight speed; θ is the velocity inclination angle, i.e., the angle between the velocity
direction and the horizontal plane, with upward as positive; ϕ is the heading angle, i.e., the
angle between the velocity direction on the horizontal plane and the due north direction,
with clockwise as positive; and where it is assumed that the velocity direction is always in
line with the direction in which the nose is pointing, i.e., the angle of attack and the sideslip
angle are zero.

Entropy 2023, 25, x FOR PEER REVIEW 5 of 22 
 

 

Y

t
v

X

Z

o

u


u
v

t

v


h

t


u

v


h

u


 

Figure 2. Vehicle situational model. 

The most important platform capability in air combat countermeasures training sys-

tems is flight capability, so this paper presents designs for a set of motion models to model 

the aircraft platform, which mainly reflect the flight trajectory under the limitation of air-

craft flight performance. The six degrees of freedom for aircraft require consideration of 

the warplane as a rigid body, the complexity of the aircraft structure, and its longitudinal 

coupling. Here, a three-degrees-of-freedom model is used, ignoring the aircraft as a rigid 

body, treating it as a mass, and assuming that the flight control system can respond accu-

rately and quickly to form a maneuver trajectory. The core of the maneuvering decision 

problem is the rapid generation of the dominant maneuvering trajectory, and the aircraft 

three-degrees-of-freedom model can meet the solution requirements. The aircraft three-

degrees-of-freedom model includes a mass point model of the aircraft platform and a dy-

namics model; the control model is shown in Figure 3. The specific models are 

{
 
 
 
 

 
 
 
 
�̇� = 𝑔(𝑛𝑥 − sin(𝜃))

�̇� =
𝑔(𝑛𝑧cos(𝛾) − cos(𝜃))

𝑉

�̇� =
𝑔(𝑛𝑧sin(𝛾))

𝑉cos(𝜃)

�̇� = 𝑉cos(𝜃)cos(𝜑)

�̇� = 𝑉cos(𝜃)sin(𝜑)

�̇� = −𝑉sin(𝜃)

 (8) 

where 𝑥, 𝑦, and 𝑧 denote the position of the aircraft in the geographic coordinate system; 

𝑉 is the flight speed; 𝜃 is the velocity inclination angle, i.e., the angle between the velocity 

direction and the horizontal plane, with upward as positive; 𝜑 is the heading angle, i.e., 

the angle between the velocity direction on the horizontal plane and the due north direc-

tion, with clockwise as positive; and where it is assumed that the velocity direction is al-

ways in line with the direction in which the nose is pointing, i.e., the angle of attack and 

the sideslip angle are zero. 

𝜃,𝜑, 𝛾 denote the trajectory inclination angle, track deflection angle, and roll angle, 

respectively; 𝑛𝑥 and 𝑛𝑧 denote the tangential overload along the velocity direction and the 

normal overload in the vertical velocity direction, respectively; and 𝑔 is the gravitational 

acceleration. In the above equation, the first three terms are the mass kinematics model 

and the last three terms are the aircraft dynamics model; the state variables include 𝑥, 𝑦, 

𝑧, 𝜃, 𝜑, γ, 𝜓, and 𝑉; the control variables include 𝑛𝑥, 𝑛𝑧, and 𝛾. Because an ideal mass 

Figure 2. Vehicle situational model.

Entropy 2023, 25, x FOR PEER REVIEW 6 of 22 
 

 

point model is used in this study, the flight performance, control inputs, and control re-

sponse parameters are restricted to make the trajectory and maneuvers of the target air-

craft reasonable. Specifically, the values of 𝑛𝑥 and 𝑛𝑧 are limited to within 2 g and 5 g, 

respectively. 

 

Figure 3. Vehicle control model. 

3. Hierarchical Reinforcement Learning Design 

In this paper, we propose a hierarchical reinforcement learning training framework 

that comprises two parts: environment design and framework building. The purpose of 

the environment design is primarily to define the input and output state data available to 

the agent and the reward functions that can be obtained, and the framework building is 

primarily to establish the corresponding hierarchical network structure, realize the re-

ward mapping corresponding to the course learning, and design the optimization algo-

rithm and the corresponding training strategy. 

3.1. Geometric Hierarchy in the Aircombat Framework 

We formulate the intelligent body motion decision for a 3D air combat 1V1 confron-

tation as a Markov decision process (MDP), supplemented by a goal state G that we want 

the two agents to learn. We define this MDP as a tuple (S, G, A, T, 𝜇), where S is the set of 

states, G is the goal, A is the set of actions, and T is the transition probability function. In 

this paper, a hierarchical reinforcement learning-based approach called a hierarchical re-

inforcement learning framework in geographic coordination for air combat, referred to as 

HRL-GCA, is used to build a shared multilevel structure. The method uses a technique 

called meta-learning, which learns from a set of tasks and applies this knowledge to new 

tasks. The algorithm can effectively build a shared multilevel structure, thus improving 

learning efficiency. 

As shown in Figure 4, the global state S is a geometric representation of the tracker 

and target aircraft in a 3D simulated air combat scenario, including the positions 𝑆 = (x, y, 

z) and velocities v = (vx, vy, vz) of both aircraft. At the beginning of each episode of each 

state s𝑖 in the MDP, for a given initial state 𝑠0  and target 𝑔𝑖, the solution to the sub-policy 

𝜔 is a control policy 𝜋𝑖: 𝑆𝑖, 𝐺𝑖 → 𝐴𝑖 that maximizes the following value function: 

𝑣𝜋𝑖
(𝑠𝑖 , 𝑔𝑖) ≔ 𝐸𝜋𝑖

[∑ 𝜇i𝑡𝑅𝑡
𝑖

∞

𝑡=0
|𝑠0

𝑖 = 𝑠𝑖 , 𝑔𝑖 = 𝐺𝑖] (9) 

An agent consists of an algorithm that updates a parameter vector(𝜃, 𝜔) defining a 

stochastic policy 𝜋θ,ω(𝑠|𝑎) , where the 𝜔  parameter is shared among all sub-policies, 

whereas the θ parameter is learned for each senior policy starting from zero, encoding the 

state of the learning process on that task. In the considered setup, an MDP is first sampled 

𝜑 

𝑉 

𝜃 

𝑉 

X

Z

Y

𝑁𝑥  

γ 

𝑁𝑧  

Figure 3. Vehicle control model.



Entropy 2023, 25, 1409 6 of 21

θ, ϕ, γ denote the trajectory inclination angle, track deflection angle, and roll angle,
respectively; nx and nz denote the tangential overload along the velocity direction and the
normal overload in the vertical velocity direction, respectively; and g is the gravitational
acceleration. In the above equation, the first three terms are the mass kinematics model
and the last three terms are the aircraft dynamics model; the state variables include x, y,
z, θ, ϕ, γ,

Entropy 2023, 25, x FOR PEER REVIEW 5 of 22 
 

 

Y

tv

X

Z

o

uϕ uv

t
vϕ

h
tϕ

u
vϕ

h
uϕ

 
Figure 2. Vehicle situational model. 

The most important platform capability in air combat countermeasures training sys-
tems is flight capability, so this paper presents designs for a set of motion models to model 
the aircraft platform, which mainly reflect the flight trajectory under the limitation of air-
craft flight performance. The six degrees of freedom for aircraft require consideration of 
the warplane as a rigid body, the complexity of the aircraft structure, and its longitudinal 
coupling. Here, a three-degrees-of-freedom model is used, ignoring the aircraft as a rigid 
body, treating it as a mass, and assuming that the flight control system can respond accu-
rately and quickly to form a maneuver trajectory. The core of the maneuvering decision 
problem is the rapid generation of the dominant maneuvering trajectory, and the aircraft 
three-degrees-of-freedom model can meet the solution requirements. The aircraft three-
degrees-of-freedom model includes a mass point model of the aircraft platform and a dy-
namics model; the control model is shown in Figure 3. The specific models are 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑉 = 𝑔(𝑛 − sin (𝜃))𝜃 = 𝑔(𝑛 cos (𝛾) − cos(𝜃))𝑉𝜑 = 𝑔(𝑛 sin (𝛾))𝑉cos(𝜃)𝑋 = 𝑉cos(𝜃)cos(𝜑)𝑌 = 𝑉cos(𝜃)sin(𝜑)𝑍 = −𝑉sin(𝜃)

 (8)

where 𝑥, 𝑦, and 𝑧 denote the position of the aircraft in the geographic coordinate system; 𝑉 is the flight speed; 𝜃 is the velocity inclination angle, i.e., the angle between the velocity 
direction and the horizontal plane, with upward as positive; 𝜑 is the heading angle, i.e., 
the angle between the velocity direction on the horizontal plane and the due north direc-
tion, with clockwise as positive; and where it is assumed that the velocity direction is al-
ways in line with the direction in which the nose is pointing, i.e., the angle of attack and 
the sideslip angle are zero. 𝜃, 𝜑, 𝛾 denote the trajectory inclination angle, track deflection angle, and roll angle, 
respectively; 𝑛  and 𝑛  denote the tangential overload along the velocity direction and the 
normal overload in the vertical velocity direction, respectively; and 𝑔 is the gravitational 
acceleration. In the above equation, the first three terms are the mass kinematics model 
and the last three terms are the aircraft dynamics model; the state variables include 𝑥, 𝑦, 𝑧,  𝜃,  𝜑,  γ, 𝜓, and 𝑉; the control variables include 𝑛 , 𝑛 , and 𝛾. Because an ideal mass , and V; the control variables include nx, nz, and γ. Because an ideal mass
point model is used in this study, the flight performance, control inputs, and control
response parameters are restricted to make the trajectory and maneuvers of the target
aircraft reasonable. Specifically, the values of nx and nz are limited to within 2 g and 5 g,
respectively.

3. Hierarchical Reinforcement Learning Design

In this paper, we propose a hierarchical reinforcement learning training framework
that comprises two parts: environment design and framework building. The purpose of
the environment design is primarily to define the input and output state data available to
the agent and the reward functions that can be obtained, and the framework building is
primarily to establish the corresponding hierarchical network structure, realize the reward
mapping corresponding to the course learning, and design the optimization algorithm and
the corresponding training strategy.

3.1. Geometric Hierarchy in the Aircombat Framework

We formulate the intelligent body motion decision for a 3D air combat 1V1 confronta-
tion as a Markov decision process (MDP), supplemented by a goal state G that we want
the two agents to learn. We define this MDP as a tuple (S, G, A, T, µ), where S is the set
of states, G is the goal, A is the set of actions, and T is the transition probability function.
In this paper, a hierarchical reinforcement learning-based approach called a hierarchical
reinforcement learning framework in geographic coordination for air combat, referred to as
HRL-GCA, is used to build a shared multilevel structure. The method uses a technique
called meta-learning, which learns from a set of tasks and applies this knowledge to new
tasks. The algorithm can effectively build a shared multilevel structure, thus improving
learning efficiency.

As shown in Figure 4, the global state S is a geometric representation of the tracker and
target aircraft in a 3D simulated air combat scenario, including the positions
S = (x, y, z) and velocities v = (vx, vy, vz) of both aircraft. At the beginning of each
episode of each state si in the MDP, for a given initial state s0 and target gi, the solu-
tion to the sub-policy ω is a control policy πi: Si, Gi → Ai that maximizes the following
value function:

vπi (si, gi)

Entropy 2023, 25, x FOR PEER REVIEW 6 of 22 
 

 

point model is used in this study, the flight performance, control inputs, and control re-
sponse parameters are restricted to make the trajectory and maneuvers of the target air-
craft reasonable. Specifically, the values of 𝑛  and 𝑛  are limited to within 2 g and 5 g, 
respectively.  

 
Figure 3. Vehicle control model. 

3. Hierarchical Reinforcement Learning Design 
In this paper, we propose a hierarchical reinforcement learning training framework 

that comprises two parts: environment design and framework building. The purpose of 
the environment design is primarily to define the input and output state data available to 
the agent and the reward functions that can be obtained, and the framework building is 
primarily to establish the corresponding hierarchical network structure, realize the re-
ward mapping corresponding to the course learning, and design the optimization algo-
rithm and the corresponding training strategy. 

3.1. Geometric Hierarchy in the Aircombat Framework 
We formulate the intelligent body motion decision for a 3D air combat 1V1 confron-

tation as a Markov decision process (MDP), supplemented by a goal state G that we want 
the two agents to learn. We define this MDP as a tuple (S, G, A, T, 𝜇), where S is the set of 
states, G is the goal, A is the set of actions, and T is the transition probability function. In 
this paper, a hierarchical reinforcement learning-based approach called a hierarchical re-
inforcement learning framework in geographic coordination for air combat, referred to as 
HRL-GCA, is used to build a shared multilevel structure. The method uses a technique 
called meta-learning, which learns from a set of tasks and applies this knowledge to new 
tasks. The algorithm can effectively build a shared multilevel structure, thus improving 
learning efficiency. 

As shown in Figure 4, the global state S is a geometric representation of the tracker 
and target aircraft in a 3D simulated air combat scenario, including the positions 𝑆 = (x, y, 
z) and velocities v = (vx, vy, vz) of both aircraft. At the beginning of each episode of each 
state s  in the MDP, for a given initial state 𝑠  and target 𝑔 , the solution to the sub-policy 𝜔 is a control policy 𝜋 : 𝑆 , 𝐺  → 𝐴  that maximizes the following value function: 𝑣 𝑠 ,𝑔 ≔ 𝐸 [ 𝜇i 𝑅 |𝑠 = 𝑠 ,𝑔 = 𝐺 ] (9)

An agent consists of an algorithm that updates a parameter vector(𝜃,𝜔) defining a 
stochastic policy 𝜋 , (𝑠|𝑎) , where the  𝜔  parameter is shared among all sub-policies, 
whereas the θ parameter is learned for each senior policy starting from zero, encoding the 
state of the learning process on that task. In the considered setup, an MDP is first sampled 

𝜑 
𝑉 

𝜃 

𝑉 

X

Z

Y

𝑁𝑥  γ 

𝑁𝑧  

Eπi

[
∑∞

t=0 µitRi
t

∣∣∣si
0 = si, gi = Gi

]
(9)

An agent consists of an algorithm that updates a parameter vector (θ, ω) defining
a stochastic policy πθ,ω(s|a) , where theω parameter is shared among all sub-policies,
whereas the θ parameter is learned for each senior policy starting from zero, encoding
the state of the learning process on that task. In the considered setup, an MDP is first
sampled from the PS, the agent is represented by the shared parameter ω and the randomly
initialized θ parameter, and the agent iteratively updates its θ parameter during the T-step
interaction with the sampled MDP. The objective of the HRL-GCA is to optimize the value
contributed by the sub-policy over the sampled tasks:

V = maximizeθES∼PS ,k=0,...,T−1[vπ(sk, gk)] (10)

where π consists of a set of sub-policies π1, π2, . . ., πN , and each sub-policy πi is defined
by a subvector ωn. The network constructed by the parameter θ works as a selector. That
is, the senior policy parameterized by θ selects the most appropriate behavior from index
nε{1, 2, . . . , N} to maximize the global value function V.



Entropy 2023, 25, 1409 7 of 21

Entropy 2023, 25, x FOR PEER REVIEW 7 of 22 
 

 

from the 𝑃𝑆, the agent is represented by the shared parameter 𝜔 and the randomly initial-

ized θ parameter, and the agent iteratively updates its θ parameter during the T-step in-

teraction with the sampled MDP. The objective of the HRL-GCA is to optimize the value 

contributed by the sub-policy over the sampled tasks: 

𝑉 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜃 𝐸𝑆~𝑃𝑆,𝑘=0,…,𝑇−1[𝑣𝜋(s𝑘 , g𝑘)] (10) 

where π consists of a set of sub-policies 𝜋1,𝜋2,…,𝜋𝑁, and each sub-policy 𝜋𝑖 is defined by 

a subvector 𝜔𝑛. The network constructed by the parameter 𝜃 works as a selector. That is, 

the senior policy parameterized by 𝜃 selects the most appropriate behavior from index 

nϵ{1,2, … , N} to maximize the global value function 𝑉. 

 

Figure 4. Model structure and training framework. 

3.2. Reward Shaping 

The senior action reward is used to train senior behaviors, which guide the sub-action 

to make further behavioral decisions. We take inspiration from the Meta-Learning Shared 

Hierarchies architecture to train the sub-policy independently, solidify its parameters, and 

then train senior action adaptively. Our approach is similar to Alpha-Dogfight [48], but 

we differ in that we implement further layering in the behavioral layer and map global 

rewards to local rewards by transformations under geographic coordination, and experi-

mental results demonstrate that performance in the behavioral layer is further enhanced. 

3.3. Senior Policy Reward 

The senior policy performs discrete actions at a frequency five times lower than the 

sub-policy, which is 1 Hz and is trained using the same DQN as the sub-policy. The state 

space of the senior policy differs from that of the sub-policy, which is described in detail 

later in this paper. The reward for senior policy is given by 

r𝑡𝑜𝑡𝑎𝑙 = 𝛼r𝑎𝑛𝑔𝑙𝑒 + 𝛽r𝑑𝑖𝑠 (11) 

where α and β are positive parameters and 𝛼 + 𝛽 = 1. 

Firstly, the angle reward r𝑎𝑛𝑔𝑙𝑒  can help the model learn how to control the angle of 

the aircraft toward the target, and 𝜑u is related to the limits of the detection angle of the 

airborne radar and the off-axis angle of the missile. Specifically, the attack advantage in-

creases the closer 𝜑u is to the desired angle, and r𝑎𝑛𝑔𝑙𝑒  reaches its maximum when 𝜑u = 0°, 

i.e., when the velocity is aligned with the target: 

r𝑎𝑛𝑔𝑙𝑒 = 𝑒(−𝑎𝑏𝑠(f(φu)−f(φt))/180) (12) 

Figure 4. Model structure and training framework.

3.2. Reward Shaping

The senior action reward is used to train senior behaviors, which guide the sub-action
to make further behavioral decisions. We take inspiration from the Meta-Learning Shared
Hierarchies architecture to train the sub-policy independently, solidify its parameters, and
then train senior action adaptively. Our approach is similar to Alpha-Dogfight [48], but we
differ in that we implement further layering in the behavioral layer and map global rewards
to local rewards by transformations under geographic coordination, and experimental
results demonstrate that performance in the behavioral layer is further enhanced.

3.3. Senior Policy Reward

The senior policy performs discrete actions at a frequency five times lower than the
sub-policy, which is 1 Hz and is trained using the same DQN as the sub-policy. The state
space of the senior policy differs from that of the sub-policy, which is described in detail
later in this paper. The reward for senior policy is given by

rtotal = αrangle + βrdis (11)

where α and β are positive parameters and α + β = 1.
Firstly, the angle reward rangle can help the model learn how to control the angle

of the aircraft toward the target, and ϕu is related to the limits of the detection angle of
the airborne radar and the off-axis angle of the missile. Specifically, the attack advantage
increases the closer ϕu is to the desired angle, and rangle reaches its maximum when
ϕu = 0◦, i.e., when the velocity is aligned with the target:

rangle = e(−abs(f(ϕu)−f(ϕt))/180) (12)

Secondly, the distance redirection rdis is designed based on the distance between the
aircraft and the target, which can help the model learn how to control the position of
the aircraft to achieve a reasonable position about the target. Specifically, the smaller the
distance D between the aircraft and the target, the higher the rdis value:

rdis = e(−abs(f(D))/100) (13)

We used the above rewards for the initial training, and then in subsequent experiments,
for comparison with other models, we adjusted the design of the reward to achieve the
same state as the baseline. A description of how the three model rewards are adjusted in
this paper can be found in Appendix A.



Entropy 2023, 25, 1409 8 of 21

3.4. Sub-Policy Reward

However, the objective of this paper requires the mapping of rewards to the two
subtask spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes
of control, as shown in Figure 3, rtotal is achieved by mapping ϕu and D to the x-y and x-z
planes using the function δ to reconstruct the Gi.

rh
total

(
δ(ϕu)

h, δ(ϕt)
h, δ
(

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

)h
)
= αhrh

angle

(
δ(ϕu)

h, δ(ϕt)
h
)
+ βhrh

dis

(
δ(ϕu)

h, δ
(

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

)h
)

rv
total

(
δ(ϕu)

v, δ(ϕt)
v, δ
(

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

)v)
= αvrv

angle
(
δ(ϕu)

v, δ(ϕt)
v)+ βvrv

dis

(
δ(ϕu)

v, δ
(

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

)v) (14)

Here,
rh

angle

(
δ(ϕu)

h, δ(ϕt)
h
)
= e(−abs(f(ϕh

u)−f(ϕh
t ))/180), (15)

rh
dis

(
δ(ϕu)

h, δ
(

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

)h
)
= e(−abs(Dh∗ f (ϕh

u)/100), (16)

rv
angle

(
δ(ϕu)

v, δ(ϕt)
v) = e(−abs(f(ϕv

u)−f(ϕv
t ))/180), (17)

rv
dis

(
δ(ϕu)

v, δ
(

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

)v)
= e(−abs(Dv∗f(ϕv

u))/100). (18)

The redistribution of rewards is achieved by the function δ. The δ function is a
spatial projection operator that maps reward elements ϕu, ϕt, and

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

to the x-y and x-z
planes, respectively. This ensures that the reward functions rh

total and rv
total , which are

used for training in the x-y and x-z planes, have the same expression. However, their
auto-covariates are the result of the projection through the δ posterior: ϕh

u, ϕh
t , Dh, and ϕv

u,
ϕv

t , Dv, respectively, as detailed in Appendix B. Of these, reward rh
total allows the tracker to

follow the target better on the x-y surface, and reward rv
total is used to suppress the altitude

difference and, as much as possible, encourage the aircraft to be at the same altitude level
as the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also
applied to its rewards in the comparisons with other baselines.

3.5. Hierarchical Training Algorithm

In this paper, a course learning approach is used for hierarchical training; the definition
of the algorithm is detailed in Appendix C, and the policy network is trained to interact
with the environment at a frequency of 10 Hz. The same observation space is used for
both policies.

We then explore cooperative learning between Agent 1 and Agent 2 in the training
of horizontal control and height control policies. In each iteration of the learning, firstly,
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes;
secondly, the next state s1

t+1 and the intermediate state s2
t update after action a1

t ; and thirdly,
Agent 2 moves the tracker on the x-z surface. The next state s2

t+1 updates after a2
t .

Initial conditions: These initial conditions are divided into tracking targets that start
moving from different positions and take different forms of motion in the height and
horizontal planes. Concerning stochastic multistep payoffs, for time–distance learning,
multistep payoffs tend to lead to faster learning when appropriately tuned for the number
of steps to be used in the future. Instead of tuning a fixed value, we define the maximum
number of steps in the future and uniformly sample the maximum value. A common
expression for future value is

Q
(
S′, A

)
← Q(S, A) + ∂

(
R + τmax

a′
Q(S′, a′)−Q(S, A)

)
(19)



Entropy 2023, 25, 1409 9 of 21

The tactical objective of the horizontal plane tracking subtask is to enable the tracker to
continuously track the target aircraft in the x-y plane. Formally, motion in the x-y plane is
achieved by outputting horizontal motion, successive horizontal left turns, and successive
horizontal right turns at each simulation step with a constant steering speed of 18◦/s. The
initial and termination conditions for the x-y subtasks are designed as shown in Figure 2.
The tactical objective of the altitude tracking subtask is to enable the tracker to follow
the target aircraft consistently at altitude. The mission can start in any state. Formally,
motion in the x-z plane is achieved by outputting horizontal motion, continuous climb,
and continuous descent in each simulation step, with a constant climb and descent rate of
20 m/s.

This in turn contains one output, namely, the value of Q(s, xi). The activation function
is the logsoftmax function:

Q(s, xi) = (xi − xm)− log(∑n
j=0 exj−xm) (20)

and Equation (20) directly outputs the value of each action using the logsoftmax nonlinear
function, where xm is the largest element of X = (x1, x2, . . . xn).

3.6. Hierarchical Runtime Algorithm

In the hierarchical runtime algorithm, we explore the cooperation of Agent 1 and
Agent 2 in a 3D simulated air combat situation. The algorithm is defined in detail in
Appendix D. In each iteration of learning, firstly, Agent 1 moves in the x-y plane of the 3D
air combat scenario; secondly, the next state st1+1 and intermediate state st2

are updated
after action; and thirdly, Agent 2 moves up or down in the x-z plane. The next state st2+1 is
updated after at2

.
For each action mi, a minimum period t = 1500 milliseconds and a maximum period

ui = 4 milliseconds are set. When the reinforcement learning intelligence outputs the action
mi (including the stop action) at moment T, it starts to execute mi if no action is executed
at the previous moment T − 1. If moment T – 1 performs action mj and the execution
time is greater than or equal to t, then at moment T, the agent will be allowed to execute
mi to replace the action mj, otherwise not. If moment T – 1 performs action mj and the
execution time is less than tj, then the output behavior mi at moment T is ignored. When
the reinforcement learning intelligence outputs no behavior (which is not the same as the
stopping behavior) at moment T, if the previous moment T – 1 performed the behavior mk
and the execution time is greater than or equal to ui, then the execution of the no-behavior
starts; otherwise, the execution of the behavior mk continues. The setting of the min-max
period can to some extent prevent incorrect behavior of the flight unit.

4. Results
4.1. Experimental Environment Setup

The experiments in this paper use a hierarchical reinforcement learning framework
to solve the problem in an air combat simulation environment. The hardware envi-
ronment used in the experiments is an Intel Core i7-8700K CPU, 16 GB RAM, and an
NVIDIA GeForce GTX 4090 Ti graphics card. The size of the 3D space in the experiment is
100 km × 100 km × 10 km; there are 20,000 × 480 s training episodes for each model;
and the actual data sampling frequency is 10 HZ. The experimental results show that the
performance of the algorithm improves significantly after the training of 20,000 episodes.

4.2. Performance Metrics during Training and Validation

To select the best-performing agent, we create an evaluation metric to compare the
training results of various methods. The qualitative and quantitative results demonstrate
the usefulness of our proposed model. The tracking performance of the tracker is evaluated
when the target is moving at 0–180◦ relative north in an air combat environment. For com-



Entropy 2023, 25, 1409 10 of 21

parison, we trained 2400 episodes for each angle type, for a total of 11.5 × 106 simulation
steps, and tested 500 samples for the corresponding angle types.

The meanings of each indicator are as follows: miss distance represents the average
distance between the tracker and the target during the entire tracking process; miss angle
represents the average track angle ϕu between the tracker and the target during the entire
tracking process; approach time represents the time taken to approach the target for the
first time to a certain distance; hold distance time is the length of time that the tracker stays
within a certain distance of the target; hold angle time is the time that the tracker stays
within a certain angle of the target; and cost time refers to the time spent by each strategy
model when outputting the current action command.

P(Miss Distance) =
acc(total dis)

tepoch time
(21)

P(Miss Angle) =
acc(track angle ϕu)

tepoch time
(22)

P(Approach time) = τTOA − τ0 (23)

P(Hold distance time) =
τ(dis ≤ σ)

τ(epoch time)
(24)

P(Hold angle time) =
τ(angle ≤ ∂)

τ(epoch time)
(25)

P(Cost Time) = τ(θ) (26)

4.3. Validation and Evolution of the Hierarchical Agents

In this experiment, we reproduce the models and algorithms in three papers [9,15,49],
and apply the hierarchical reinforcement learning framework established in this paper
to learn and train them, respectively, while mapping the reward functions shaped in the
three papers in the corresponding sub-state spaces; then, in the air combat environment
established in this paper, different models are compared in the same test scenarios, and the
performance of the three original models is compared with that of the models after applying
HRL. We use the benchmark performance comparison method proposed in Section 4.2 to
compare the models proposed in the paper, as shown in Table 1. Models 1, 2, and 3 denote
the performance of the three models. The experimental results show that the HRL-GCA
proposed in this paper can achieve higher scores in all three dimensions under the six test
metrics compared with the other three models: the miss distance, miss angle, and approach
time decreased by an average of 5492 m, 6.93 degrees, and 34.637 s, respectively, and the
average improvement of angle maintenance and distance maintenance time is 8.13% and
16.52%, respectively. Of the other models, Model 2 has the highest hold distance and hold
angle time with percentages of 41.12 and 15.44, respectively. In addition, the HRL-GCA
model can converge faster and achieve higher accuracy in the training process. Therefore,
we conclude that HRL-GCA demonstrates better performance in this experiment.

As shown in Table 1, the implementation of HRL models results in a 40–50% increase
in runtime compared to the baseline models. This can be attributed to the fact that HRL
models involve more complex computations and require more processing time. This is
mostly because HRL incorporates several learning layers. Consequently, the HRL will
execute over two extra neural networks in addition to the base models.

Notwithstanding, we consider the time cost to be acceptable based on the comparative
results presented in Table 1. For instance, Model 2 benefited from HRL improvement, requir-
ing only a minimum of 87.56 s for Approach Time and making approximately 65 decisions
for the approach to the target. In contrast, the corresponding model without HRL improve-



Entropy 2023, 25, 1409 11 of 21

ments required 137.06 s for Approach Time, making about 145 decisions for the approach
to the goal. The HRL-improved model achieves its goal with only 65 decisions compared
to the original model’s 145, resulting in a 55% improvement in decision-making efficiency.
This increase in efficiency of the HRL-improved model (55%) offsets the additional time
overhead required to execute the model (43.40%).

Furthermore, as an example, Model 2 shows improved Hold Distance Time and Hold-
ing Angle Time by 16.33% and 8.24%, respectively, after implementing HRL. Furthermore,
compared to the model without HRL improvement, the distance and angle tracking stability
are enhanced by 65% and 114%, respectively. In summary, although the computation time
spent increased by 43.40%, the HRL improvement resulted in a 55% increase in decision ef-
ficiency within the same timeframe. The distance and angle tracking stability also increased
by 65% and 114%, respectively. Therefore, this improvement is deemed reasonable.

Table 1. Comparison of experimental results with and without the HRL framework.

Reward
Type

Miss Distance (m) Miss Angle (◦) Approach Time (s)

without
hrl with hrl Ratio of

Decrease
without

hrl with hrl Ratio of
Decrease

without
hrl with hrl Ratio of

Decrease

Model 1 44,378.83
(±4020.2)

38,900.41
(±3778.3) 12.34% 32.56

(±5.73)
25.71

(±1.46) 21.04% 141.99
(±19.89)

101.459
(±20.09) 28.54%

Model 2 41,696.70
(±3692.7)

35,797.28
(±3494.9) 14.14% 31.68

(±2.66)
28.726

(±8.39) 9.32% 137.06
(±21.32)

87.56
(±17.83) 36.11%

Model 3 43,526.82
(±2332.4)

38,427.20
(±2371.3) 11.71% 36.69

(±6.93)
25.69

(±6.41) 29.98% 102.89
(±25.18)

89.01
(±18.66) 13.49%

Reward
Type

Hold Distance Time (%) Hold Angle Time (%) Cost Time (ms)

without
hrl with hrl Ratio of

Increase
without

hrl with hrl Ratio of
Increase

without
hrl with hrl Ratio of

Increase

Model 1 17.15%
(±6.39%)

33.14%
(±3.87%) 15.99% 5.23%

(±0.22)
11.38%

(±0.99%) 6.15% 0.97 1.427 47.11%

Model 2 24.79%
(±4.99%)

41.12%
(±4.67%) 16.33% 7.2%

(±0.63%)
15.44%

(±1.67%) 8.24% 0.94 1.348 43.40%

Model 3 19.30%
(±4.61%)

36.56%
(4.51%) 17.26% 4.06%

(±1.07%)
14.07%

(±1.72%) 10.01% 0.91 1.410 54.95%

5. Discussion
5.1. Trajectory of Air Combat Process

As shown in Figures 5–8, we deploy the algorithm of this paper in a typical air combat
scenario and compare its tracking of the target aircraft with a model that does not use this
algorithm. During air combat, continuous tracking of the target aircraft in a given scenario
is necessary to shoot it down. In the test cases, the target aircraft maneuvers continuously at
altitude and moves away from the tracker by turning away from it, as seen in the 3D and 2D
tracking trajectories, but the tracker ensures continuous alignment with the target in both
altitude and direction. In contrast, the use of the other model fails to achieve continuous
tracking of the target in either direction or altitude. Furthermore, the red dashed line in
Figures 6 and 8 shows the desired tracking trajectory for the target.

In our experiments, we use a hierarchical reinforcement learning framework to opti-
mize and enhance the vehicle tracking trajectories. The trajectories in Figure 9 show the
tracking states of the modified model 2 based on HRL and the model set out in this paper
in the XY plane, XZ plane, and XYZ 3D space, respectively. Of these, in Figure 10, the red
line is the tracking flight, the blue line is the tracked flight, and the number represents the
flight trajectory sequence of both flights. The experimental results show that the use of
the hierarchical reinforcement learning framework can effectively improve the accuracy
and stability of aircraft tracking trajectories and can effectively reduce their deviation. It
is found that Model 3 is more sensitive to the weighting parameters α,β in Equation (11)
and has the best test results when the two reward ratios in the original paper are set to 0.5,
0.5. Irrespective of the rewards in Models 1, 2, and 3 or the rewards used in this paper, in
Figures 11 and 12, the tracking performance of a single network simultaneously controlling



Entropy 2023, 25, 1409 12 of 21

the motion of the horizontal plane and the motion of the height layer is inferior to that of
multiple networks controlling them separately. In addition, the experimental results show
that the use of the reinforcement learning method can effectively improve the accuracy of
aircraft tracking trajectories, thus improving the timeliness of target tracking.

Entropy 2023, 25, x FOR PEER REVIEW 12 of 22 
 

 

scenario is necessary to shoot it down. In the test cases, the target aircraft maneuvers con-

tinuously at altitude and moves away from the tracker by turning away from it, as seen 

in the 3D and 2D tracking trajectories, but the tracker ensures continuous alignment with 

the target in both altitude and direction. In contrast, the use of the other model fails to 

achieve continuous tracking of the target in either direction or altitude. Furthermore, the 

red dashed line in Figures 6 and 8 shows the desired tracking trajectory for the target. 

 

Figure 5. Angle tracking performance: comparison of models ((a–f) represents the horizontal track-

ing trajectory of model 1 with HRL framework, the horizontal tracking trajectory of model 2 with 

HRL framework, the horizontal tracking trajectory of model 3 with HRL framework, the horizontal 

tracking trajectory of model 1 without HRL framework, the horizontal tracking trajectory of model 

2 without HRL framework, and the horizontal tracking trajectory of model 3 without HRL frame-

work, respectively). 

Figure 5. Angle tracking performance: comparison of models ((a–f) represents the horizontal tracking
trajectory of model 1 with HRL framework, the horizontal tracking trajectory of model 2 with HRL
framework, the horizontal tracking trajectory of model 3 with HRL framework, the horizontal
tracking trajectory of model 1 without HRL framework, the horizontal tracking trajectory of model 2
without HRL framework, and the horizontal tracking trajectory of model 3 without HRL framework,
respectively).

Entropy 2023, 25, x FOR PEER REVIEW 13 of 22 
 

 

 

Figure 6. Comparison of angle tracking states of different models in the same scene. 

 

Figure 7. Comparison of the height tracking performance of the models ((a–f) represents the vertical 

tracking trajectory of model 1 with HRL frame, the vertical tracking trajectory of model 2 with HRL 

frame, the vertical tracking trajectory of model 3 with HRL frame, the vertical tracking trajectory of 

model 1 without HRL frame, the vertical tracking trajectory of model 2 without HRL frame, and the 

vertical tracking trajectory of model 3 without HRL frame, respectively). 

Figure 6. Comparison of angle tracking states of different models in the same scene.



Entropy 2023, 25, 1409 13 of 21

Entropy 2023, 25, x FOR PEER REVIEW 13 of 22 
 

 

 

Figure 6. Comparison of angle tracking states of different models in the same scene. 

 

Figure 7. Comparison of the height tracking performance of the models ((a–f) represents the vertical 

tracking trajectory of model 1 with HRL frame, the vertical tracking trajectory of model 2 with HRL 

frame, the vertical tracking trajectory of model 3 with HRL frame, the vertical tracking trajectory of 

model 1 without HRL frame, the vertical tracking trajectory of model 2 without HRL frame, and the 

vertical tracking trajectory of model 3 without HRL frame, respectively). 

Figure 7. Comparison of the height tracking performance of the models ((a–f) represents the vertical
tracking trajectory of model 1 with HRL frame, the vertical tracking trajectory of model 2 with HRL
frame, the vertical tracking trajectory of model 3 with HRL frame, the vertical tracking trajectory of
model 1 without HRL frame, the vertical tracking trajectory of model 2 without HRL frame, and the
vertical tracking trajectory of model 3 without HRL frame, respectively).

Entropy 2023, 25, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 8. Comparison of different models in the same scene with height-tracked states. 

In our experiments, we use a hierarchical reinforcement learning framework to opti-

mize and enhance the vehicle tracking trajectories. The trajectories in Figure 9 show the 

tracking states of the modified model 2 based on HRL and the model set out in this paper 

in the XY plane, XZ plane, and XYZ 3D space, respectively. Of these, in Figure 10, the red 

line is the tracking flight, the blue line is the tracked flight, and the number represents the 

flight trajectory sequence of both flights. The experimental results show that the use of the 

hierarchical reinforcement learning framework can effectively improve the accuracy and 

stability of aircraft tracking trajectories and can effectively reduce their deviation. It is 

found that Model 3 is more sensitive to the weighting parameters α, β in Equation (11) and 

has the best test results when the two reward ratios in the original paper are set to 0.5, 0.5. 

Irrespective of the rewards in Models 1, 2, and 3 or the rewards used in this paper, in 

Figures 11 and 12, the tracking performance of a single network simultaneously control-

ling the motion of the horizontal plane and the motion of the height layer is inferior to 

that of multiple networks controlling them separately. In addition, the experimental re-

sults show that the use of the reinforcement learning method can effectively improve the 

accuracy of aircraft tracking trajectories, thus improving the timeliness of target tracking. 

 

Figure 9. Tracking the trajectory of the HRL modified model 2 agent. 

Figure 8. Comparison of different models in the same scene with height-tracked states.



Entropy 2023, 25, 1409 14 of 21

Entropy 2023, 25, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 8. Comparison of different models in the same scene with height-tracked states. 

In our experiments, we use a hierarchical reinforcement learning framework to opti-

mize and enhance the vehicle tracking trajectories. The trajectories in Figure 9 show the 

tracking states of the modified model 2 based on HRL and the model set out in this paper 

in the XY plane, XZ plane, and XYZ 3D space, respectively. Of these, in Figure 10, the red 

line is the tracking flight, the blue line is the tracked flight, and the number represents the 

flight trajectory sequence of both flights. The experimental results show that the use of the 

hierarchical reinforcement learning framework can effectively improve the accuracy and 

stability of aircraft tracking trajectories and can effectively reduce their deviation. It is 

found that Model 3 is more sensitive to the weighting parameters α, β in Equation (11) and 

has the best test results when the two reward ratios in the original paper are set to 0.5, 0.5. 

Irrespective of the rewards in Models 1, 2, and 3 or the rewards used in this paper, in 

Figures 11 and 12, the tracking performance of a single network simultaneously control-

ling the motion of the horizontal plane and the motion of the height layer is inferior to 

that of multiple networks controlling them separately. In addition, the experimental re-

sults show that the use of the reinforcement learning method can effectively improve the 

accuracy of aircraft tracking trajectories, thus improving the timeliness of target tracking. 

 

Figure 9. Tracking the trajectory of the HRL modified model 2 agent. Figure 9. Tracking the trajectory of the HRL modified model 2 agent.

Entropy 2023, 25, x FOR PEER REVIEW 15 of 22 
 

 

   

Figure 10. Three-dimensional and 2D trajectories when the target and tracker are using the HRL 

agent. 

 

Figure 11. Tracking the trajectory of the HRL-free model 2 agent. 

   

Figure 12. Three-dimensional and 2D trajectories when the target and tracker are not using the 

HRL agent. 

5.2. Training Process 

The analysis of the experimental results in this paper shows that we can compare the 

changes in reward and loss of Models 1, 2, and 3 with the HRL-GCA model during the 

training process. From the experimental results, the reward and loss of HRL-GCA con-

verge as the episodes increase and reach their optimal state after stabilization. In Figure 

13, from the change in reward, our research model reward reaches its maximum at epi-

sode 21, whereas the rewards of the three standard models still show large fluctuations at 

episode 21, indicating that the reward of our research model has better convergence per-

formance. Figure 14 illustrates the loss parameters during training after normalization. 

From the change in loss, the loss of our research model reaches its minimum at episode 

592, whereas the losses of the three standard models still show a large fluctuation at epi-

sode 592, indicating that our research model has a better convergence performance of loss.  

In summary, Figures 13 and 14 show that our research model has the best conver-

gence performance during the training process, as well as an optimal state after stabiliza-

tion. Therefore, when introducing a new sub-policy, the framework in this paper can 

Figure 10. Three-dimensional and 2D trajectories when the target and tracker are using the HRL agent.

Entropy 2023, 25, x FOR PEER REVIEW 15 of 22 
 

 

   

Figure 10. Three-dimensional and 2D trajectories when the target and tracker are using the HRL 

agent. 

 

Figure 11. Tracking the trajectory of the HRL-free model 2 agent. 

   

Figure 12. Three-dimensional and 2D trajectories when the target and tracker are not using the 

HRL agent. 

5.2. Training Process 

The analysis of the experimental results in this paper shows that we can compare the 

changes in reward and loss of Models 1, 2, and 3 with the HRL-GCA model during the 

training process. From the experimental results, the reward and loss of HRL-GCA con-

verge as the episodes increase and reach their optimal state after stabilization. In Figure 

13, from the change in reward, our research model reward reaches its maximum at epi-

sode 21, whereas the rewards of the three standard models still show large fluctuations at 

episode 21, indicating that the reward of our research model has better convergence per-

formance. Figure 14 illustrates the loss parameters during training after normalization. 

From the change in loss, the loss of our research model reaches its minimum at episode 

592, whereas the losses of the three standard models still show a large fluctuation at epi-

sode 592, indicating that our research model has a better convergence performance of loss.  

In summary, Figures 13 and 14 show that our research model has the best conver-

gence performance during the training process, as well as an optimal state after stabiliza-

tion. Therefore, when introducing a new sub-policy, the framework in this paper can 

Figure 11. Tracking the trajectory of the HRL-free model 2 agent.

Entropy 2023, 25, x FOR PEER REVIEW 15 of 22 
 

 

   

Figure 10. Three-dimensional and 2D trajectories when the target and tracker are using the HRL 

agent. 

 

Figure 11. Tracking the trajectory of the HRL-free model 2 agent. 

   

Figure 12. Three-dimensional and 2D trajectories when the target and tracker are not using the 

HRL agent. 

5.2. Training Process 

The analysis of the experimental results in this paper shows that we can compare the 

changes in reward and loss of Models 1, 2, and 3 with the HRL-GCA model during the 

training process. From the experimental results, the reward and loss of HRL-GCA con-

verge as the episodes increase and reach their optimal state after stabilization. In Figure 

13, from the change in reward, our research model reward reaches its maximum at epi-

sode 21, whereas the rewards of the three standard models still show large fluctuations at 

episode 21, indicating that the reward of our research model has better convergence per-

formance. Figure 14 illustrates the loss parameters during training after normalization. 

From the change in loss, the loss of our research model reaches its minimum at episode 

592, whereas the losses of the three standard models still show a large fluctuation at epi-

sode 592, indicating that our research model has a better convergence performance of loss.  

In summary, Figures 13 and 14 show that our research model has the best conver-

gence performance during the training process, as well as an optimal state after stabiliza-

tion. Therefore, when introducing a new sub-policy, the framework in this paper can 

Figure 12. Three-dimensional and 2D trajectories when the target and tracker are not using the HRL
agent.



Entropy 2023, 25, 1409 15 of 21

5.2. Training Process

The analysis of the experimental results in this paper shows that we can compare
the changes in reward and loss of Models 1, 2, and 3 with the HRL-GCA model during
the training process. From the experimental results, the reward and loss of HRL-GCA
converge as the episodes increase and reach their optimal state after stabilization. In
Figure 13, from the change in reward, our research model reward reaches its maximum at
episode 21, whereas the rewards of the three standard models still show large fluctuations
at episode 21, indicating that the reward of our research model has better convergence
performance. Figure 14 illustrates the loss parameters during training after normalization.
From the change in loss, the loss of our research model reaches its minimum at episode 592,
whereas the losses of the three standard models still show a large fluctuation at episode
592, indicating that our research model has a better convergence performance of loss.

Entropy 2023, 25, x FOR PEER REVIEW 16 of 22 
 

 

achieve fast adaptation in training and learning for the corresponding task. Furthermore, 

in Figure 13, Model 3 and the proposed model decrease significantly after the first peak 

around episode 21; such behavior makes these models inferior to Model 2. This is mainly 

due to overfitting. From Equations (9) and (10) in Section 1, it can be deduced that each 

sub-policy 𝜋𝑖 can quickly learn its corresponding subvector 𝜔𝑛 after the initial learning 

phase, but 𝜔𝑛 learns only a tiny portion of the state space, and it needs to further learn the 

θ corresponding to the selector to maximize the global value function V.  

In addition, the 𝜃 corresponding to the selector can be learned from the 𝜔𝑛 subvector, 

but due to the large amount of training data required to train 𝜃, as 𝜋𝜃,𝜔(𝑠|𝑎) performs 

stochastic exploration, the variance is large, resulting in a decrease in 𝑣𝜋(s𝑘 , g𝑘) until 𝑆~𝑃𝑆 

accumulates sufficiently to train a valid 𝜃 parameter. Furthermore, model 2 can maintain 

a more stable exploration-utilization capability throughout the training process, but the 

model proposed in this paper has a higher final reward value compared to the other mod-

els due to a better memory of what has been learned. Finally, we use black dashed lines 

in Figures 13 and 14 to show the variation of reward and loss with the training process in 

the ideal case. 

 

Figure 13. The relationship between the reward and episodes of the models. 

 

Figure 14. The relationship between the loss and episodes of the models. 

Figure 13. The relationship between the reward and episodes of the models.

Entropy 2023, 25, x FOR PEER REVIEW 16 of 22 
 

 

achieve fast adaptation in training and learning for the corresponding task. Furthermore, 

in Figure 13, Model 3 and the proposed model decrease significantly after the first peak 

around episode 21; such behavior makes these models inferior to Model 2. This is mainly 

due to overfitting. From Equations (9) and (10) in Section 1, it can be deduced that each 

sub-policy 𝜋𝑖 can quickly learn its corresponding subvector 𝜔𝑛 after the initial learning 

phase, but 𝜔𝑛 learns only a tiny portion of the state space, and it needs to further learn the 

θ corresponding to the selector to maximize the global value function V.  

In addition, the 𝜃 corresponding to the selector can be learned from the 𝜔𝑛 subvector, 

but due to the large amount of training data required to train 𝜃, as 𝜋𝜃,𝜔(𝑠|𝑎) performs 

stochastic exploration, the variance is large, resulting in a decrease in 𝑣𝜋(s𝑘 , g𝑘) until 𝑆~𝑃𝑆 

accumulates sufficiently to train a valid 𝜃 parameter. Furthermore, model 2 can maintain 

a more stable exploration-utilization capability throughout the training process, but the 

model proposed in this paper has a higher final reward value compared to the other mod-

els due to a better memory of what has been learned. Finally, we use black dashed lines 

in Figures 13 and 14 to show the variation of reward and loss with the training process in 

the ideal case. 

 

Figure 13. The relationship between the reward and episodes of the models. 

 

Figure 14. The relationship between the loss and episodes of the models. Figure 14. The relationship between the loss and episodes of the models.



Entropy 2023, 25, 1409 16 of 21

In summary, Figures 13 and 14 show that our research model has the best convergence
performance during the training process, as well as an optimal state after stabilization.
Therefore, when introducing a new sub-policy, the framework in this paper can achieve fast
adaptation in training and learning for the corresponding task. Furthermore, in Figure 13,
Model 3 and the proposed model decrease significantly after the first peak around episode
21; such behavior makes these models inferior to Model 2. This is mainly due to overfitting.
From Equations (9) and (10) in Section 1, it can be deduced that each sub-policy πi can
quickly learn its corresponding subvector ωn after the initial learning phase, but ωn learns
only a tiny portion of the state space, and it needs to further learn the θ corresponding to
the selector to maximize the global value function V.

In addition, the θ corresponding to the selector can be learned from the ωn subvector,
but due to the large amount of training data required to train θ, as πθ,ω(s|a) performs
stochastic exploration, the variance is large, resulting in a decrease in vπ(sk, gk) until
S ∼ PS accumulates sufficiently to train a valid θ parameter. Furthermore, model 2 can
maintain a more stable exploration-utilization capability throughout the training process,
but the model proposed in this paper has a higher final reward value compared to the other
models due to a better memory of what has been learned. Finally, we use black dashed
lines in Figures 13 and 14 to show the variation of reward and loss with the training process
in the ideal case.

6. Conclusions

The hierarchical reinforcement learning framework in geographic coordination for air
combat proposed in this paper trains two types of neural networks using distance reward,
angle reward, and a combination of both to control the vehicle in multiple dimensions. The
model has achieved good results in tracking targets in multiple dimensions. In thousands of
tests, it achieved an average improvement of 8.13% in angle tracking and 16.52% in distance
tracking over the baseline model, demonstrating its effectiveness. However, the model has
limitations, especially in complex environments or when the goal is to perform complex
maneuvers, and it is not yet able to achieve optimal control. Future research should focus
on improving the tracking performance in such scenarios, along with exploring additional
reward functions to improve stability and accuracy. Furthermore, numerous challenges
remain, such as addressing two-agent game combat and extending to 2v2 and multi-agent
combat scenarios in air combat pair control, which warrant further exploration. In addition,
the application potential of this model in other real-world scenarios should be investigated.

Author Contributions: Conceptualization, R.C. and Q.Z.; methodology, R.C. and H.L.; software, R.C.;
validation, R.C. and H.P.; formal analysis, R.C.; investigation, G.Y.; resources, H.L.; data curation,
H.P.; writing—original draft preparation, R.C.; writing—review and editing, Q.Z.; visualization, R.C.;
supervision, G.Y.; project administration, H.L.; funding acquisition, Q.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is supported in part by a Project funded by China Postdoctoral Science Founda-
tion (Grant No. 61932012), and in part by the Natural Science Basic Research Program of Shaanxi
(Program No. 2022JQ-061).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Design of Reward Functions

We adjusted the reward functions in the three models appropriately according to the
characteristics and goals of the tasks. Reward functions play a crucial role in reinforcement
learning in that they guide model learning and decision-making. However, in complex



Entropy 2023, 25, 1409 17 of 21

real-world tasks, it is very challenging to design ideal reward functions that apply to all
situations. To realize the model in this paper to adapt the reward functions of the three
models [9,15,49], we mainly adjust the f(ϕu), f(ϕt), and f(D) in Equations (12) and (13).

In model 1:

f(ϕu) =

{
1− |ϕu|

150 0 ≤ |ϕu| ≤ 30

030 ≤ |ϕu| ≤ 180

f(ϕt) = −
(180− |ϕt|)π

180
,−180 ≤ ϕt ≤ 180

f(D) =


1D < 10

−D−10
30 10 ≤ D ≤ 40

0D > 40

In model 2:
f(ϕu) = 0

f(ϕt) =
360− |ϕu| − |ϕt|

360
, 0 ≤ |ϕu| ≤ 180, 0 ≤ |ϕt| ≤ 180

f(D) =


0D ≥ 80

−D−60
40 60 < D ≤ 80

−D−40
20 40 < D ≤ 60
120 < D ≤ 40

0D ≤ 20

In model 3:
f(ϕu) = −(ϕu − 30)2, 0 ≤ |ϕu| ≤ 180

f(ϕt) = −(ϕt − 60)2, 0 ≤ |ϕt| ≤ 180

f(D) = −(R/80)2

Appendix B. The Spatial Projection

The main role of the spatial mapping operator δ is to map the base auto-morphisms of
the reward function to the x-y and x-z planes, such that the x-y and x-z planes share the
same reward function form but have different auto-morphisms.

Where

Entropy 2023, 25, x FOR PEER REVIEW 18 of 22 
 

 

learning in that they guide model learning and decision-making. However, in complex 
real-world tasks, it is very challenging to design ideal reward functions that apply to all 
situations. To realize the model in this paper to adapt the reward functions of the three 
models [9,15,49], we mainly adjust the f(φ ), f(φ ), and f(D) in Equations (12) and (13). 

In model 1: 

f(φ ) = 1 − |φ |150  0 ≤ |φ | ≤ 30 0 30 ≤ |φ | ≤ 180  

f(φ ) = − (180 − |φ |)𝜋180 ,−180 ≤ φ ≤ 180 

f(D) = 1 D < 10 −𝐷 − 1030  10 ≤ D ≤ 400 D > 40  

In model 2: f(φ ) = 0 

f(φ ) = 360 − |φ | − |φ |360 , 0 ≤ |φ | ≤ 180, 0 ≤ |φ | ≤ 180 

f(D) =
⎩⎪⎪⎨
⎪⎪⎧ 0 D ≥ 80 −𝐷 − 6040  60 < D ≤ 80−𝐷 − 4020  40 < D ≤ 601 20 < D ≤ 400 D ≤ 20 

 

In model 3: f(φ ) = −(φ − 30) , 0 ≤ |φ | ≤ 180 f(φ ) = −(φ − 60) , 0 ≤ |φ | ≤ 180 f(D) = −(𝑅/80)  

Appendix B. The Spatial Projection Operator 𝛅 
The main role of the spatial mapping operator δ is to map the base auto-morphisms 

of the reward function to the x-y and x-z planes, such that the x-y and x-z planes share the 
same reward function form but have different auto-morphisms. 

Where 𝑉  and 𝑉  represent the velocity vectors of the tracker and target in the 
geographic coordinate system, respectively, with scalar forms (𝑣 , , 𝑣 , ,𝑣 , )  and (𝑣 , , 𝑣 , , 𝑣 , ). �⃑� represents the vector expression of the line that connects the center of 
gravity of the tracker and the center of gravity of the target in the geographic coordinate 
system, and its scalar form is (𝑑 ,𝑑 ,𝑑 ). As shown in Figure 2, 𝜑  is the angle between 
vector 𝑉  and �⃑�, while 𝜑  is the angle between vector 𝑉  and �⃑�. 

In x-y plane: 𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ 𝐷 = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ �⃑� = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

and

Entropy 2023, 25, x FOR PEER REVIEW 19 of 22 
 

 

𝐷 = δ �⃑� , , → ,  = 𝑑 ∗ 𝑑 + 𝑑 ∗ 𝑑  

In x-z plane: 𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ 𝐷 = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ �⃑� = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 𝐷 = δ �⃑� , , → ,  = 𝑑 ∗ 𝑑 + 𝑑 ∗ 𝑑  

Appendix C. Algorithm A1  
The training algorithm for hierarchical reinforcement learning proposed in this paper 

involves the steps of hierarchical policy optimization, subtask policy optimization, 
hierarchical reward design, and network parameter training. Among them, the reward 
function of each layer can be adjusted and optimized according to the objectives and 
characteristics of the task. By reasonably designing the reward function, the hierarchical 
reinforcement learning network can be guided to learn decision-making and behavioral 
strategies suitable for the task. Through iteration and optimization of these steps, we can 
obtain a hierarchical reinforcement learning model adapted to the complex task. 

Algorithm A1 The hierarchical training algorithm 
Initialize a one-on-one air combat simulation environment 
Initialize replay buffer R1,R2 to capacity N 
Initialize the action-value function Q with random weights 
Initialize Agent DQN1with (Q,R1), DQN2 with (Q,R2) 
for episode = 1, MAX do 

Initialize state 𝑠  = env.reset() 
for t = 1, T do 

Agent 1 samples action 𝑎  =  𝑎 , (𝑠 ) + 𝜀  using DQN1  
Execute  𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  
Agent 2 samples action 𝑎  = 𝑎 , (𝑠 ) + 𝜀  using DQN2  
Execute 𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  

end for 
Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R1, Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R2 
if the Update condition is reached, then 

Sample random mini-batch of m from the replay buffer  
Calculate the target Q value for each both DQN in each transition 𝑄 = 𝑟 +𝜆𝑚𝑎𝑥 𝑄 (𝑠 ,𝑎 (𝑠 );𝜃) 
Compute gradient estimation ∆𝜃  and ∆𝜃  
Update the parameters of DQN1 and DQN2 based on the optimizer using ∆𝜃  and ∆𝜃  
end for 

end for 

Appendix D. Algorithm A2 
In practice, the hierarchical reinforcement learning algorithm proposed in this paper 

gradually improves the performance and decision-making ability of the whole system 
through the steps of hierarchical structure, policy execution, reward signaling, and 
parameter updating. Through decision-making and learning at different levels, the 
hierarchical reinforcement learning algorithm can be more flexible in solving complex, 
high-dimensional tasks and achieve improved adaptability and generalization ability. 

represent the velocity vectors of the tracker and target in the geo-
graphic coordinate system, respectively, with scalar forms (vu,x, vu,y, vu,z) and (vt,x, vt,y, vt,z).

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

represents the vector expression of the line that connects the center of gravity of the
tracker and the center of gravity of the target in the geographic coordinate system, and its
scalar form is (dx, dy, dz). As shown in Figure 2, ϕu is the angle between vector

Entropy 2023, 25, x FOR PEER REVIEW 18 of 22 
 

 

learning in that they guide model learning and decision-making. However, in complex 
real-world tasks, it is very challenging to design ideal reward functions that apply to all 
situations. To realize the model in this paper to adapt the reward functions of the three 
models [9,15,49], we mainly adjust the f(φ ), f(φ ), and f(D) in Equations (12) and (13). 

In model 1: 

f(φ ) = 1 − |φ |150  0 ≤ |φ | ≤ 30 0 30 ≤ |φ | ≤ 180  

f(φ ) = − (180 − |φ |)𝜋180 ,−180 ≤ φ ≤ 180 

f(D) = 1 D < 10 −𝐷 − 1030  10 ≤ D ≤ 400 D > 40  

In model 2: f(φ ) = 0 

f(φ ) = 360 − |φ | − |φ |360 , 0 ≤ |φ | ≤ 180, 0 ≤ |φ | ≤ 180 

f(D) =
⎩⎪⎪⎨
⎪⎪⎧ 0 D ≥ 80 −𝐷 − 6040  60 < D ≤ 80−𝐷 − 4020  40 < D ≤ 601 20 < D ≤ 400 D ≤ 20 

 

In model 3: f(φ ) = −(φ − 30) , 0 ≤ |φ | ≤ 180 f(φ ) = −(φ − 60) , 0 ≤ |φ | ≤ 180 f(D) = −(𝑅/80)  

Appendix B. The Spatial Projection Operator 𝛅 
The main role of the spatial mapping operator δ is to map the base auto-morphisms 

of the reward function to the x-y and x-z planes, such that the x-y and x-z planes share the 
same reward function form but have different auto-morphisms. 

Where 𝑉  and 𝑉  represent the velocity vectors of the tracker and target in the 
geographic coordinate system, respectively, with scalar forms (𝑣 , , 𝑣 , ,𝑣 , )  and (𝑣 , , 𝑣 , , 𝑣 , ). �⃑� represents the vector expression of the line that connects the center of 
gravity of the tracker and the center of gravity of the target in the geographic coordinate 
system, and its scalar form is (𝑑 ,𝑑 ,𝑑 ). As shown in Figure 2, 𝜑  is the angle between 
vector 𝑉  and �⃑�, while 𝜑  is the angle between vector 𝑉  and �⃑�. 

In x-y plane: 𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ 𝐷 = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ �⃑� = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

and

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

,
while ϕt is the angle between vector

Entropy 2023, 25, x FOR PEER REVIEW 19 of 22 
 

 

𝐷 = δ �⃑� , , → ,  = 𝑑 ∗ 𝑑 + 𝑑 ∗ 𝑑  

In x-z plane: 𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ 𝐷 = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ �⃑� = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 𝐷 = δ �⃑� , , → ,  = 𝑑 ∗ 𝑑 + 𝑑 ∗ 𝑑  

Appendix C. Algorithm A1  
The training algorithm for hierarchical reinforcement learning proposed in this paper 

involves the steps of hierarchical policy optimization, subtask policy optimization, 
hierarchical reward design, and network parameter training. Among them, the reward 
function of each layer can be adjusted and optimized according to the objectives and 
characteristics of the task. By reasonably designing the reward function, the hierarchical 
reinforcement learning network can be guided to learn decision-making and behavioral 
strategies suitable for the task. Through iteration and optimization of these steps, we can 
obtain a hierarchical reinforcement learning model adapted to the complex task. 

Algorithm A1 The hierarchical training algorithm 
Initialize a one-on-one air combat simulation environment 
Initialize replay buffer R1,R2 to capacity N 
Initialize the action-value function Q with random weights 
Initialize Agent DQN1with (Q,R1), DQN2 with (Q,R2) 
for episode = 1, MAX do 

Initialize state 𝑠  = env.reset() 
for t = 1, T do 

Agent 1 samples action 𝑎  =  𝑎 , (𝑠 ) + 𝜀  using DQN1  
Execute  𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  
Agent 2 samples action 𝑎  = 𝑎 , (𝑠 ) + 𝜀  using DQN2  
Execute 𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  

end for 
Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R1, Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R2 
if the Update condition is reached, then 

Sample random mini-batch of m from the replay buffer  
Calculate the target Q value for each both DQN in each transition 𝑄 = 𝑟 +𝜆𝑚𝑎𝑥 𝑄 (𝑠 ,𝑎 (𝑠 );𝜃) 
Compute gradient estimation ∆𝜃  and ∆𝜃  
Update the parameters of DQN1 and DQN2 based on the optimizer using ∆𝜃  and ∆𝜃  
end for 

end for 

Appendix D. Algorithm A2 
In practice, the hierarchical reinforcement learning algorithm proposed in this paper 

gradually improves the performance and decision-making ability of the whole system 
through the steps of hierarchical structure, policy execution, reward signaling, and 
parameter updating. Through decision-making and learning at different levels, the 
hierarchical reinforcement learning algorithm can be more flexible in solving complex, 
high-dimensional tasks and achieve improved adaptability and generalization ability. 

and

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

.
In x-y plane:

ϕh
u = δ(ϕu)

h
x,y,z→x,y = δ

(
arccos

Entropy 2023, 25, x FOR PEER REVIEW 18 of 22 
 

 

learning in that they guide model learning and decision-making. However, in complex 
real-world tasks, it is very challenging to design ideal reward functions that apply to all 
situations. To realize the model in this paper to adapt the reward functions of the three 
models [9,15,49], we mainly adjust the f(φ ), f(φ ), and f(D) in Equations (12) and (13). 

In model 1: 

f(φ ) = 1 − |φ |150  0 ≤ |φ | ≤ 30 0 30 ≤ |φ | ≤ 180  

f(φ ) = − (180 − |φ |)𝜋180 ,−180 ≤ φ ≤ 180 

f(D) = 1 D < 10 −𝐷 − 1030  10 ≤ D ≤ 400 D > 40  

In model 2: f(φ ) = 0 

f(φ ) = 360 − |φ | − |φ |360 , 0 ≤ |φ | ≤ 180, 0 ≤ |φ | ≤ 180 

f(D) =
⎩⎪⎪⎨
⎪⎪⎧ 0 D ≥ 80 −𝐷 − 6040  60 < D ≤ 80−𝐷 − 4020  40 < D ≤ 601 20 < D ≤ 400 D ≤ 20 

 

In model 3: f(φ ) = −(φ − 30) , 0 ≤ |φ | ≤ 180 f(φ ) = −(φ − 60) , 0 ≤ |φ | ≤ 180 f(D) = −(𝑅/80)  

Appendix B. The Spatial Projection Operator 𝛅 
The main role of the spatial mapping operator δ is to map the base auto-morphisms 

of the reward function to the x-y and x-z planes, such that the x-y and x-z planes share the 
same reward function form but have different auto-morphisms. 

Where 𝑉  and 𝑉  represent the velocity vectors of the tracker and target in the 
geographic coordinate system, respectively, with scalar forms (𝑣 , , 𝑣 , ,𝑣 , )  and (𝑣 , , 𝑣 , , 𝑣 , ). �⃑� represents the vector expression of the line that connects the center of 
gravity of the tracker and the center of gravity of the target in the geographic coordinate 
system, and its scalar form is (𝑑 ,𝑑 ,𝑑 ). As shown in Figure 2, 𝜑  is the angle between 
vector 𝑉  and �⃑�, while 𝜑  is the angle between vector 𝑉  and �⃑�. 

In x-y plane: 𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ 𝐷 = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ �⃑� = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

∗

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

∣∣∣

Entropy 2023, 25, x FOR PEER REVIEW 18 of 22 
 

 

learning in that they guide model learning and decision-making. However, in complex 
real-world tasks, it is very challenging to design ideal reward functions that apply to all 
situations. To realize the model in this paper to adapt the reward functions of the three 
models [9,15,49], we mainly adjust the f(φ ), f(φ ), and f(D) in Equations (12) and (13). 

In model 1: 

f(φ ) = 1 − |φ |150  0 ≤ |φ | ≤ 30 0 30 ≤ |φ | ≤ 180  

f(φ ) = − (180 − |φ |)𝜋180 ,−180 ≤ φ ≤ 180 

f(D) = 1 D < 10 −𝐷 − 1030  10 ≤ D ≤ 400 D > 40  

In model 2: f(φ ) = 0 

f(φ ) = 360 − |φ | − |φ |360 , 0 ≤ |φ | ≤ 180, 0 ≤ |φ | ≤ 180 

f(D) =
⎩⎪⎪⎨
⎪⎪⎧ 0 D ≥ 80 −𝐷 − 6040  60 < D ≤ 80−𝐷 − 4020  40 < D ≤ 601 20 < D ≤ 400 D ≤ 20 

 

In model 3: f(φ ) = −(φ − 30) , 0 ≤ |φ | ≤ 180 f(φ ) = −(φ − 60) , 0 ≤ |φ | ≤ 180 f(D) = −(𝑅/80)  

Appendix B. The Spatial Projection Operator 𝛅 
The main role of the spatial mapping operator δ is to map the base auto-morphisms 

of the reward function to the x-y and x-z planes, such that the x-y and x-z planes share the 
same reward function form but have different auto-morphisms. 

Where 𝑉  and 𝑉  represent the velocity vectors of the tracker and target in the 
geographic coordinate system, respectively, with scalar forms (𝑣 , , 𝑣 , ,𝑣 , )  and (𝑣 , , 𝑣 , , 𝑣 , ). �⃑� represents the vector expression of the line that connects the center of 
gravity of the tracker and the center of gravity of the target in the geographic coordinate 
system, and its scalar form is (𝑑 ,𝑑 ,𝑑 ). As shown in Figure 2, 𝜑  is the angle between 
vector 𝑉  and �⃑�, while 𝜑  is the angle between vector 𝑉  and �⃑�. 

In x-y plane: 𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ 𝐷 = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ �⃑� = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

∣∣∣∗|

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

|

)
= arccos(vu,xdy + vu,ydx)

ϕh
t = δ(ϕt)

h
x,y,z→x,y = δ

(
arccos

Entropy 2023, 25, x FOR PEER REVIEW 19 of 22 
 

 

𝐷 = δ �⃑� , , → ,  = 𝑑 ∗ 𝑑 + 𝑑 ∗ 𝑑  

In x-z plane: 𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ 𝐷 = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ �⃑� = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 𝐷 = δ �⃑� , , → ,  = 𝑑 ∗ 𝑑 + 𝑑 ∗ 𝑑  

Appendix C. Algorithm A1  
The training algorithm for hierarchical reinforcement learning proposed in this paper 

involves the steps of hierarchical policy optimization, subtask policy optimization, 
hierarchical reward design, and network parameter training. Among them, the reward 
function of each layer can be adjusted and optimized according to the objectives and 
characteristics of the task. By reasonably designing the reward function, the hierarchical 
reinforcement learning network can be guided to learn decision-making and behavioral 
strategies suitable for the task. Through iteration and optimization of these steps, we can 
obtain a hierarchical reinforcement learning model adapted to the complex task. 

Algorithm A1 The hierarchical training algorithm 
Initialize a one-on-one air combat simulation environment 
Initialize replay buffer R1,R2 to capacity N 
Initialize the action-value function Q with random weights 
Initialize Agent DQN1with (Q,R1), DQN2 with (Q,R2) 
for episode = 1, MAX do 

Initialize state 𝑠  = env.reset() 
for t = 1, T do 

Agent 1 samples action 𝑎  =  𝑎 , (𝑠 ) + 𝜀  using DQN1  
Execute  𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  
Agent 2 samples action 𝑎  = 𝑎 , (𝑠 ) + 𝜀  using DQN2  
Execute 𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  

end for 
Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R1, Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R2 
if the Update condition is reached, then 

Sample random mini-batch of m from the replay buffer  
Calculate the target Q value for each both DQN in each transition 𝑄 = 𝑟 +𝜆𝑚𝑎𝑥 𝑄 (𝑠 ,𝑎 (𝑠 );𝜃) 
Compute gradient estimation ∆𝜃  and ∆𝜃  
Update the parameters of DQN1 and DQN2 based on the optimizer using ∆𝜃  and ∆𝜃  
end for 

end for 

Appendix D. Algorithm A2 
In practice, the hierarchical reinforcement learning algorithm proposed in this paper 

gradually improves the performance and decision-making ability of the whole system 
through the steps of hierarchical structure, policy execution, reward signaling, and 
parameter updating. Through decision-making and learning at different levels, the 
hierarchical reinforcement learning algorithm can be more flexible in solving complex, 
high-dimensional tasks and achieve improved adaptability and generalization ability. 

∗

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

∣∣∣

Entropy 2023, 25, x FOR PEER REVIEW 19 of 22 
 

 

𝐷 = δ �⃑� , , → ,  = 𝑑 ∗ 𝑑 + 𝑑 ∗ 𝑑  

In x-z plane: 𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ 𝐷 = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ �⃑� = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 𝐷 = δ �⃑� , , → ,  = 𝑑 ∗ 𝑑 + 𝑑 ∗ 𝑑  

Appendix C. Algorithm A1  
The training algorithm for hierarchical reinforcement learning proposed in this paper 

involves the steps of hierarchical policy optimization, subtask policy optimization, 
hierarchical reward design, and network parameter training. Among them, the reward 
function of each layer can be adjusted and optimized according to the objectives and 
characteristics of the task. By reasonably designing the reward function, the hierarchical 
reinforcement learning network can be guided to learn decision-making and behavioral 
strategies suitable for the task. Through iteration and optimization of these steps, we can 
obtain a hierarchical reinforcement learning model adapted to the complex task. 

Algorithm A1 The hierarchical training algorithm 
Initialize a one-on-one air combat simulation environment 
Initialize replay buffer R1,R2 to capacity N 
Initialize the action-value function Q with random weights 
Initialize Agent DQN1with (Q,R1), DQN2 with (Q,R2) 
for episode = 1, MAX do 

Initialize state 𝑠  = env.reset() 
for t = 1, T do 

Agent 1 samples action 𝑎  =  𝑎 , (𝑠 ) + 𝜀  using DQN1  
Execute  𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  
Agent 2 samples action 𝑎  = 𝑎 , (𝑠 ) + 𝜀  using DQN2  
Execute 𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  

end for 
Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R1, Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R2 
if the Update condition is reached, then 

Sample random mini-batch of m from the replay buffer  
Calculate the target Q value for each both DQN in each transition 𝑄 = 𝑟 +𝜆𝑚𝑎𝑥 𝑄 (𝑠 ,𝑎 (𝑠 );𝜃) 
Compute gradient estimation ∆𝜃  and ∆𝜃  
Update the parameters of DQN1 and DQN2 based on the optimizer using ∆𝜃  and ∆𝜃  
end for 

end for 

Appendix D. Algorithm A2 
In practice, the hierarchical reinforcement learning algorithm proposed in this paper 

gradually improves the performance and decision-making ability of the whole system 
through the steps of hierarchical structure, policy execution, reward signaling, and 
parameter updating. Through decision-making and learning at different levels, the 
hierarchical reinforcement learning algorithm can be more flexible in solving complex, 
high-dimensional tasks and achieve improved adaptability and generalization ability. 

∣∣∣∗∣∣∣

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

∣∣∣
)

= arccos(vt,xdy + vt,ydx)

Dh = δ
(

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

)h

x,y,z→x,y
=
√

dx ∗ dx + dy ∗ dy



Entropy 2023, 25, 1409 18 of 21

In x-z plane:

ϕv
u = δ(ϕu)

v
x,y,z→x,y = δ

arccos

Entropy 2023, 25, x FOR PEER REVIEW 18 of 22 
 

 

learning in that they guide model learning and decision-making. However, in complex 
real-world tasks, it is very challenging to design ideal reward functions that apply to all 
situations. To realize the model in this paper to adapt the reward functions of the three 
models [9,15,49], we mainly adjust the f(φ ), f(φ ), and f(D) in Equations (12) and (13). 

In model 1: 

f(φ ) = 1 − |φ |150  0 ≤ |φ | ≤ 30 0 30 ≤ |φ | ≤ 180  

f(φ ) = − (180 − |φ |)𝜋180 ,−180 ≤ φ ≤ 180 

f(D) = 1 D < 10 −𝐷 − 1030  10 ≤ D ≤ 400 D > 40  

In model 2: f(φ ) = 0 

f(φ ) = 360 − |φ | − |φ |360 , 0 ≤ |φ | ≤ 180, 0 ≤ |φ | ≤ 180 

f(D) =
⎩⎪⎪⎨
⎪⎪⎧ 0 D ≥ 80 −𝐷 − 6040  60 < D ≤ 80−𝐷 − 4020  40 < D ≤ 601 20 < D ≤ 400 D ≤ 20 

 

In model 3: f(φ ) = −(φ − 30) , 0 ≤ |φ | ≤ 180 f(φ ) = −(φ − 60) , 0 ≤ |φ | ≤ 180 f(D) = −(𝑅/80)  

Appendix B. The Spatial Projection Operator 𝛅 
The main role of the spatial mapping operator δ is to map the base auto-morphisms 

of the reward function to the x-y and x-z planes, such that the x-y and x-z planes share the 
same reward function form but have different auto-morphisms. 

Where 𝑉  and 𝑉  represent the velocity vectors of the tracker and target in the 
geographic coordinate system, respectively, with scalar forms (𝑣 , , 𝑣 , ,𝑣 , )  and (𝑣 , , 𝑣 , , 𝑣 , ). �⃑� represents the vector expression of the line that connects the center of 
gravity of the tracker and the center of gravity of the target in the geographic coordinate 
system, and its scalar form is (𝑑 ,𝑑 ,𝑑 ). As shown in Figure 2, 𝜑  is the angle between 
vector 𝑉  and �⃑�, while 𝜑  is the angle between vector 𝑉  and �⃑�. 

In x-y plane: 𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ 𝐷 = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ �⃑� = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

∗

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

∣∣∣∣

Entropy 2023, 25, x FOR PEER REVIEW 18 of 22 
 

 

learning in that they guide model learning and decision-making. However, in complex 
real-world tasks, it is very challenging to design ideal reward functions that apply to all 
situations. To realize the model in this paper to adapt the reward functions of the three 
models [9,15,49], we mainly adjust the f(φ ), f(φ ), and f(D) in Equations (12) and (13). 

In model 1: 

f(φ ) = 1 − |φ |150  0 ≤ |φ | ≤ 30 0 30 ≤ |φ | ≤ 180  

f(φ ) = − (180 − |φ |)𝜋180 ,−180 ≤ φ ≤ 180 

f(D) = 1 D < 10 −𝐷 − 1030  10 ≤ D ≤ 400 D > 40  

In model 2: f(φ ) = 0 

f(φ ) = 360 − |φ | − |φ |360 , 0 ≤ |φ | ≤ 180, 0 ≤ |φ | ≤ 180 

f(D) =
⎩⎪⎪⎨
⎪⎪⎧ 0 D ≥ 80 −𝐷 − 6040  60 < D ≤ 80−𝐷 − 4020  40 < D ≤ 601 20 < D ≤ 400 D ≤ 20 

 

In model 3: f(φ ) = −(φ − 30) , 0 ≤ |φ | ≤ 180 f(φ ) = −(φ − 60) , 0 ≤ |φ | ≤ 180 f(D) = −(𝑅/80)  

Appendix B. The Spatial Projection Operator 𝛅 
The main role of the spatial mapping operator δ is to map the base auto-morphisms 

of the reward function to the x-y and x-z planes, such that the x-y and x-z planes share the 
same reward function form but have different auto-morphisms. 

Where 𝑉  and 𝑉  represent the velocity vectors of the tracker and target in the 
geographic coordinate system, respectively, with scalar forms (𝑣 , , 𝑣 , ,𝑣 , )  and (𝑣 , , 𝑣 , , 𝑣 , ). �⃑� represents the vector expression of the line that connects the center of 
gravity of the tracker and the center of gravity of the target in the geographic coordinate 
system, and its scalar form is (𝑑 ,𝑑 ,𝑑 ). As shown in Figure 2, 𝜑  is the angle between 
vector 𝑉  and �⃑�, while 𝜑  is the angle between vector 𝑉  and �⃑�. 

In x-y plane: 𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ 𝐷 = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ �⃑� = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

∣∣∣∣∗∣∣∣

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

∣∣∣
 = arccos(vu,xdz + vu,zdx)

ϕv
t = δ(ϕt)

v
x,y,z→x,y = δ

arccos

Entropy 2023, 25, x FOR PEER REVIEW 19 of 22 
 

 

𝐷 = δ �⃑� , , → ,  = 𝑑 ∗ 𝑑 + 𝑑 ∗ 𝑑  

In x-z plane: 𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ 𝐷 = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ �⃑� = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 𝐷 = δ �⃑� , , → ,  = 𝑑 ∗ 𝑑 + 𝑑 ∗ 𝑑  

Appendix C. Algorithm A1  
The training algorithm for hierarchical reinforcement learning proposed in this paper 

involves the steps of hierarchical policy optimization, subtask policy optimization, 
hierarchical reward design, and network parameter training. Among them, the reward 
function of each layer can be adjusted and optimized according to the objectives and 
characteristics of the task. By reasonably designing the reward function, the hierarchical 
reinforcement learning network can be guided to learn decision-making and behavioral 
strategies suitable for the task. Through iteration and optimization of these steps, we can 
obtain a hierarchical reinforcement learning model adapted to the complex task. 

Algorithm A1 The hierarchical training algorithm 
Initialize a one-on-one air combat simulation environment 
Initialize replay buffer R1,R2 to capacity N 
Initialize the action-value function Q with random weights 
Initialize Agent DQN1with (Q,R1), DQN2 with (Q,R2) 
for episode = 1, MAX do 

Initialize state 𝑠  = env.reset() 
for t = 1, T do 

Agent 1 samples action 𝑎  =  𝑎 , (𝑠 ) + 𝜀  using DQN1  
Execute  𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  
Agent 2 samples action 𝑎  = 𝑎 , (𝑠 ) + 𝜀  using DQN2  
Execute 𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  

end for 
Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R1, Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R2 
if the Update condition is reached, then 

Sample random mini-batch of m from the replay buffer  
Calculate the target Q value for each both DQN in each transition 𝑄 = 𝑟 +𝜆𝑚𝑎𝑥 𝑄 (𝑠 ,𝑎 (𝑠 );𝜃) 
Compute gradient estimation ∆𝜃  and ∆𝜃  
Update the parameters of DQN1 and DQN2 based on the optimizer using ∆𝜃  and ∆𝜃  
end for 

end for 

Appendix D. Algorithm A2 
In practice, the hierarchical reinforcement learning algorithm proposed in this paper 

gradually improves the performance and decision-making ability of the whole system 
through the steps of hierarchical structure, policy execution, reward signaling, and 
parameter updating. Through decision-making and learning at different levels, the 
hierarchical reinforcement learning algorithm can be more flexible in solving complex, 
high-dimensional tasks and achieve improved adaptability and generalization ability. 

∗

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

∣∣∣∣

Entropy 2023, 25, x FOR PEER REVIEW 19 of 22 
 

 

𝐷 = δ �⃑� , , → ,  = 𝑑 ∗ 𝑑 + 𝑑 ∗ 𝑑  

In x-z plane: 𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ 𝐷 = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 

𝜑 = δ 𝜑 , , → ,  = δ arccos  𝑉 ∗ �⃑�𝑉 ∗ �⃑� = arccos (𝑣 , 𝑑 + 𝑣 , 𝑑 ) 𝐷 = δ �⃑� , , → ,  = 𝑑 ∗ 𝑑 + 𝑑 ∗ 𝑑  

Appendix C. Algorithm A1  
The training algorithm for hierarchical reinforcement learning proposed in this paper 

involves the steps of hierarchical policy optimization, subtask policy optimization, 
hierarchical reward design, and network parameter training. Among them, the reward 
function of each layer can be adjusted and optimized according to the objectives and 
characteristics of the task. By reasonably designing the reward function, the hierarchical 
reinforcement learning network can be guided to learn decision-making and behavioral 
strategies suitable for the task. Through iteration and optimization of these steps, we can 
obtain a hierarchical reinforcement learning model adapted to the complex task. 

Algorithm A1 The hierarchical training algorithm 
Initialize a one-on-one air combat simulation environment 
Initialize replay buffer R1,R2 to capacity N 
Initialize the action-value function Q with random weights 
Initialize Agent DQN1with (Q,R1), DQN2 with (Q,R2) 
for episode = 1, MAX do 

Initialize state 𝑠  = env.reset() 
for t = 1, T do 

Agent 1 samples action 𝑎  =  𝑎 , (𝑠 ) + 𝜀  using DQN1  
Execute  𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  
Agent 2 samples action 𝑎  = 𝑎 , (𝑠 ) + 𝜀  using DQN2  
Execute 𝑎  in an air combat simulation environment 
The aircraft observes 𝑠 , reward 𝑟  

end for 
Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R1, Store (𝑠 , 𝑎 , 𝑟 , 𝑠 ) into R2 
if the Update condition is reached, then 

Sample random mini-batch of m from the replay buffer  
Calculate the target Q value for each both DQN in each transition 𝑄 = 𝑟 +𝜆𝑚𝑎𝑥 𝑄 (𝑠 ,𝑎 (𝑠 );𝜃) 
Compute gradient estimation ∆𝜃  and ∆𝜃  
Update the parameters of DQN1 and DQN2 based on the optimizer using ∆𝜃  and ∆𝜃  
end for 

end for 

Appendix D. Algorithm A2 
In practice, the hierarchical reinforcement learning algorithm proposed in this paper 

gradually improves the performance and decision-making ability of the whole system 
through the steps of hierarchical structure, policy execution, reward signaling, and 
parameter updating. Through decision-making and learning at different levels, the 
hierarchical reinforcement learning algorithm can be more flexible in solving complex, 
high-dimensional tasks and achieve improved adaptability and generalization ability. 

∣∣∣∣∗∣∣∣

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

∣∣∣
 = arccos(vt,xdz + vt,zdx)

Dv = δ
(

Entropy 2023, 25, x FOR PEER REVIEW 8 of 22 
 

 

Secondly, the distance redirection r  is designed based on the distance between the 
aircraft and the target, which can help the model learn how to control the position of the 
aircraft to achieve a reasonable position about the target. Specifically, the smaller the dis-
tance D between the aircraft and the target, the higher the r  value: r = 𝑒( ( ( ))/ ) (13)

We used the above rewards for the initial training, and then in subsequent experi-
ments, for comparison with other models, we adjusted the design of the reward to achieve 
the same state as the baseline. A description of how the three model rewards are adjusted 
in this paper can be found in Appendix A. 

3.4. Sub-Policy Reward 
However, the objective of this paper requires the mapping of rewards to the two sub-

task spaces, and we redistribute rewards for Agent 1 and Agent 2 via transformation in 
the geometric space. Because Agent 1 and Agent 2 are mainly implemented in two planes 
of control, as shown in Figure 3, 𝑟  is achieved by mapping φ  and D to the x-y and x-
z planes using the function δ to reconstruct the 𝐺 .  𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�𝑟 δ 𝜑 , δ 𝜑 , δ �⃑� = α 𝑟 δ 𝜑 , δ 𝜑 + β 𝑟 δ 𝜑 , δ �⃑�  (14)

Here, 𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (15)

𝑟 δ 𝜑 ,δ �⃑� = 𝑒( ( ∗ ( )/ ), (16)𝑟 δ 𝜑 , δ 𝜑 = 𝑒( ( ( ) ( ))/ ), (17)𝑟 δ 𝜑 , δ �⃑� = 𝑒( ( ∗ ( ))/ ). (18)

The redistribution of rewards is achieved by the function 𝛿. The 𝛿 function is a spatial 
projection operator that maps reward elements 𝜑 , 𝜑 , and �⃑� to the x-y and x-z planes, 
respectively. This ensures that the reward functions 𝑟  and 𝑟 , which are used for 
training in the x-y and x-z planes, have the same expression. However, their auto-covari-
ates are the result of the projection through the 𝛿 posterior: 𝜑 , 𝜑 , D , and 𝜑 , 𝜑 , D , re-
spectively, as detailed in Appendix B. Of these, reward 𝑟  allows the tracker to follow 
the target better on the x-y surface, and reward 𝑟  is used to suppress the altitude dif-
ference and, as much as possible, encourage the aircraft to be at the same altitude level as 
the target at high altitude. In addition, in this paper, the treatment in Equation (7) is also 
applied to its rewards in the comparisons with other baselines. 

3.5. Hierarchical Training Algorithm 
In this paper, a course learning approach is used for hierarchical training; the defini-

tion of the algorithm is detailed in Appendix C, and the policy network is trained to inter-
act with the environment at a frequency of 10 Hz. The same observation space is used for 
both policies. 

We then explore cooperative learning between Agent 1 and Agent 2 in the training 
of horizontal control and height control policies. In each iteration of the learning, firstly, 
Agent 1 moves the tracker on the x-y surface of the 3D geographic coordination scenes; 
secondly, the next state 𝑠  and the intermediate state 𝑠  update after action 𝑎 ; and 
thirdly, Agent 2 moves the tracker on the x-z surface. The next state 𝑠  updates after 𝑎 . 

)v
x,y,z→x,y =

√
dx ∗ dx + dz ∗ dz

Appendix C. Algorithm A1

The training algorithm for hierarchical reinforcement learning proposed in this paper
involves the steps of hierarchical policy optimization, subtask policy optimization, hierar-
chical reward design, and network parameter training. Among them, the reward function
of each layer can be adjusted and optimized according to the objectives and characteristics
of the task. By reasonably designing the reward function, the hierarchical reinforcement
learning network can be guided to learn decision-making and behavioral strategies suitable
for the task. Through iteration and optimization of these steps, we can obtain a hierarchical
reinforcement learning model adapted to the complex task.

Algorithm A1 The hierarchical training algorithm

Initialize a one-on-one air combat simulation environment
Initialize replay buffer R1,R2 to capacity N
Initialize the action-value function Q with random weights
Initialize Agent DQN1with (Q,R1), DQN2 with (Q,R2)
for episode = 1, MAX do

Initialize state s1
t = env.reset()

for t = 1, T do
Agent 1 samples action a1

t = at,θ1
(
s1

t
)
+ εtusing DQN1

Execute a1
t in an air combat simulation environment

The aircraft observes s1
t+1, reward r1

t
Agent 2 samples action a2

t = at,θ2
(
s2

t
)
+ εtusing DQN2

Execute a2
t in an air combat simulation environment

The aircraft observes s2
t+1, reward r2

t
end for

Store (s1
t , a1

t , r1
t , s1

t+1) into R1, Store (s2
t , a2

t , r2
t , s2

t+1) into R2

if the Update condition is reached, then

Sample random mini-batch of m from the replay buffer

Calculate the target Q value for each both DQN in each transition Q̂m = rm + λmaxaθ′Qm
(st+1

m , aθ′
(
st+1

m
)
; θ)

Compute gradient estimation ∆θ1 and ∆θ2
Update the parameters of DQN1 and DQN2 based on the optimizer using ∆θ1 and ∆θ2
end for

end for

Appendix D. Algorithm A2

In practice, the hierarchical reinforcement learning algorithm proposed in this paper
gradually improves the performance and decision-making ability of the whole system
through the steps of hierarchical structure, policy execution, reward signaling, and parame-
ter updating. Through decision-making and learning at different levels, the hierarchical
reinforcement learning algorithm can be more flexible in solving complex, high-dimensional
tasks and achieve improved adaptability and generalization ability.



Entropy 2023, 25, 1409 19 of 21

Algorithm A2 The hierarchical running algorithm

Load trained neural networks Q1(s, a, θ1), Q2(s, a, θ2)
Initialize the state of the tracker and target (su

T=0, st
T=0)

Initialize target maneuver strategy π(a|s) t
for step = 1 to max step do

for i in (θ1, θ2) do
Calculate (ϕh

u, ϕh
t , D)

Execute at ∼ πθ1 (at
∣∣su

T)∣∣∣∆Xh
T , ∆Yh

T , ∆Zh
T

∣∣∣is obtained according to (2)
Get the next state su

T+1
Calculate (ϕv

u, ϕv
t , D)

Execute at ∼ πθ2 (at
∣∣su

T+1)
|∆Xv

T , ∆Yv
T , ∆Zv

T |is obtained according to (2)
Get the next state su

T+2
su

T = su
T+2

end for
The target moves to the next state st

T+1 according to the strategy π(a|s) t
st

T = st
T+1

end for

References
1. Sutton, R.S.; Barto, A. Reinforcement Learning: An Introduction, Nachdruck; Adaptive Computation and Machine Learning; The MIT

Press: Cambridge, MA, USA, 2014; ISBN 978-0-262-19398-6.
2. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.

Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [CrossRef] [PubMed]
3. Hu, D.; Yang, R.; Zuo, J.; Zhang, Z.; Wu, J.; Wang, Y. Application of Deep Reinforcement Learning in Maneuver Planning of

Beyond-Visual-Range Air Combat. IEEE Access 2021, 9, 32282–32297. [CrossRef]
4. Jiang, Y.; Yu, J.; Li, Q. A novel decision-making algorithm for beyond visual range air combat based on deep reinforcement

learning. In Proceedings of the 2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC),
Beijing, China, 19–20 November 2022; IEEE: New York, NY, USA, 2022; pp. 516–521. [CrossRef]

5. Shi, W.; Song, S.; Wu, C.; Chen, C.L.P. Multi Pseudo Q-learning Based Deterministic Policy Gradient for Tracking Con-
trol of Autonomous Underwater Vehicles. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3534–3546. Available online:
http://arxiv.org/abs/1909.03204 (accessed on 3 April 2023). [CrossRef] [PubMed]

6. Byrnes, C.M.W. Nightfall: Machine Autonomy in Air-to-Air Combat. Air Space Power J. 2014, 28, 48–75.
7. Kim, C.-S.; Ji, C.-H.; Kim, B.S. Development of a control law to improve the handling qualities for short-range air-to-air combat

maneuvers. Adv. Mech. Eng. 2020, 12, 168781402093679. [CrossRef]
8. Xu, J.; Zhang, J.; Yang, L.; Liu, C. Autonomous decision-making for dogfights based on a tactical pursuit point approach. Aerosp.

Sci. Technol. 2022, 129, 107857. [CrossRef]
9. Li, W.; Shi, J.; Wu, Y.; Wang, Y.; Lyu, Y. A Multi-UCAV cooperative occupation method based on weapon engagement zones for

beyond-visual-range air combat. Def. Technol. 2022, 18, 1006–1022. [CrossRef]
10. Kong, W.; Zhou, D.; Du, Y.; Zhou, Y.; Zhao, Y. Hierarchical multi-agent reinforcement learning for multi-aircraft close-range air

combat. IET Control Theory Appl 2022, 17, cth2.12413. [CrossRef]
11. Ernest, N.; Carroll, D. Genetic Fuzzy based Artificial Intelligence for Unmanned Combat Aerial Vehicle Control in Simulated Air

Combat Missions. J. Def. Manag. 2016, 06, 2167-0374. [CrossRef]
12. Li, Q.; Jiang, W.; Liu, C.; He, J. The Constructing Method of Hierarchical Decision-Making Model in Air Combat. In Proceedings

of the 2020 12th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China,
22–23 August 2020; IEEE: New York, NY, USA, 2020; pp. 122–125. [CrossRef]

13. Mulgund, S.; Harper, K.; Krishnakumar, K.; Zacharias, G. Air combat tactics optimization using stochastic genetic algorithms.
In SMC’98 Conference Proceedings, Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.
98CH36218), San Diego, CA, USA, 14 October 1998; IEEE: New York, NY, USA, 1998; Volume 4, pp. 3136–3141. [CrossRef]

14. Lee, G.T.; Kim, C.O. Autonomous Control of Combat Unmanned Aerial Vehicles to Evade Surface-to-Air Missiles Using Deep
Reinforcement Learning. IEEE Access 2020, 8, 226724–226736. [CrossRef]

15. Li, Y.; Lyu, Y.; Shi, J.; Li, W. Autonomous Maneuver Decision of Air Combat Based on Simulated Operation Command and
FRV-DDPG Algorithm. Aerospace 2022, 9, 658. [CrossRef]

16. Cao, Y.; Kou, Y.-X.; Li, Z.-W.; Xu, A. Autonomous Maneuver Decision of UCAV Air Combat Based on Double Deep Q Network
Algorithm and Stochastic Game Theory. Int. J. Aerosp. Eng. 2023, 2023, 3657814. [CrossRef]

17. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
18. Wang, Y.; Ren, T.; Fan, Z. Autonomous Maneuver Decision of UAV Based on Deep Reinforcement Learning: Comparison of DQN

and DDPG. In Proceedings of the 2022 34th Chinese Control and Decision Conference (CCDC), Hefei, China, 21–23 May 2022;
IEEE: New York, NY, USA, 2022; pp. 4857–4860. [CrossRef]

https://doi.org/10.1038/nature24270
https://www.ncbi.nlm.nih.gov/pubmed/29052630
https://doi.org/10.1109/ACCESS.2021.3060426
https://doi.org/10.1109/YAC57282.2022.10023870
http://arxiv.org/abs/1909.03204
https://doi.org/10.1109/TNNLS.2018.2884797
https://www.ncbi.nlm.nih.gov/pubmed/30602426
https://doi.org/10.1177/1687814020936790
https://doi.org/10.1016/j.ast.2022.107857
https://doi.org/10.1016/j.dt.2021.04.009
https://doi.org/10.1049/cth2.12413
https://doi.org/10.4172/2167-0374.1000144
https://doi.org/10.1109/IHMSC49165.2020.10106
https://doi.org/10.1109/ICSMC.1998.726484
https://doi.org/10.1109/ACCESS.2020.3046284
https://doi.org/10.3390/aerospace9110658
https://doi.org/10.1155/2023/3657814
https://doi.org/10.1613/jair.301
https://doi.org/10.1109/CCDC55256.2022.10033863


Entropy 2023, 25, 1409 20 of 21

19. Chen, Y.; Zhang, J.; Yang, Q.; Zhou, Y.; Shi, G.; Wu, Y. Design and Verification of UAV Maneuver Decision Simulation System
Based on Deep Q-learning Network. In Proceedings of the 2020 16th International Conference on Control, Automation, Robotics
and Vision (ICARCV), Shenzhen, China, 13 December 2020; IEEE: New York, NY, USA, 2020; pp. 817–823. [CrossRef]

20. Li, L.; Zhou, Z.; Chai, J.; Liu, Z.; Zhu, Y.; Yi, J. Learning Continuous 3-DoF Air-to-Air Close-in Combat Strategy using Proximal
Policy Optimization. In Proceedings of the 2022 IEEE Conference on Games (CoG), Beijing, China, 21–24 August 2022; IEEE:
New York, NY, USA, 2022; pp. 616–619. [CrossRef]

21. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.063472017. Available online: http://arxiv.org/abs/1707.06347 (accessed on 7 April 2023).

22. Lu, J.; Zhao, Y.-B.; Kang, Y.; Wang, Y.; Deng, Y. Strategy Generation Based on DDPG with Prioritized Experience Replay for UCAV.
In Proceedings of the 2022 International Conference on Advanced Robotics and Mechatronics (ICARM), Guilin, China, 9–11 July
2022; IEEE: New York, NY, USA, 2022; pp. 157–162. [CrossRef]

23. Wei, Y.-J.; Zhang, H.-P.; Huang, C.-Q. Maneuver Decision-Making For Autonomous Air Combat Through Curriculum Learning
And Reinforcement Learning With Sparse Rewards. arXiv 2023, arXiv:2302.05838. Available online: http://arxiv.org/abs/2302.0
5838 (accessed on 7 March 2023).

24. Hu, Y.; Wang, W.; Jia, H.; Wang, Y.; Chen, Y.; Hao, J.; Wu, F.; Fan, C. Learning to Utilize Shaping Rewards: A New Approach of
Reward Shaping. Adv. Neural Inf. Process. Syst. 2020, 33, 15931–15941.

25. Piao, H.; Sun, Z.; Meng, G.; Chen, H.; Qu, B.; Lang, K.; Sun, Y.; Yang, S.; Peng, X. Beyond-Visual-Range Air Combat Tactics
Auto-Generation by Reinforcement Learning. In Proceedings of the 2020 International Joint Conference on Neural Networks
(IJCNN), Glasgow, UK, 19–24 July 2020; IEEE: New York, NY, USA, 2020; pp. 1–8. [CrossRef]

26. Wang, A.; Zhao, S.; Shi, Z.; Wang, J. Over-the-Horizon Air Combat Environment Modeling and Deep Reinforcement Learning
Application. In Proceedings of the 2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS),
Chengdu, China, 28–30 October 2022; IEEE: New York, NY, USA, 2022; pp. 1–6. [CrossRef]

27. Hu, J.; Wang, L.; Hu, T.; Guo, C.; Wang, Y. Autonomous Maneuver Decision Making of Dual-UAV Cooperative Air Combat Based
on Deep Reinforcement Learning. Electronics 2022, 11, 467. [CrossRef]

28. Zhan, G.; Zhang, X.; Li, Z.; Xu, L.; Zhou, D.; Yang, Z. Multiple-UAV Reinforcement Learning Algorithm Based on Improved PPO
in Ray Framework. Drones 2022, 6, 166. [CrossRef]

29. Narvekar, S.; Sinapov, J.; Stone, P. Autonomous Task Sequencing for Customized Curriculum Design in Reinforcement Learning.
In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August
2017; pp. 2536–2542. [CrossRef]

30. Schmidhuber, J. Learning to generate subgoals for action sequences. In Proceedings of the IJCNN-91-Seattle International Joint
Conference on Neural Networks, Seattle, WA, USA, 8–12 July 1991; IEEE: New York, NY, USA, 1991; Volume II, p. 453. [CrossRef]

31. Rane, S. Learning with Curricula for Sparse-Reward Tasks in Deep Reinforcement Learning; Massachusetts Institute of Technology:
Cambridge, MA, USA, 2020.

32. Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain randomization for transferring deep neural networks
from simulation to the real world. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, BC, USA, 24 September 2017; IEEE: New York, NY, USA, 2017; pp. 23–30. [CrossRef]

33. Comanici, G.; Precup, D. Optimal Policy Switching Algorithms for Reinforcement Learning. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems, Montreal, QC, Canada, 10–14 May 2010; Volume 1, pp. 709–714.

34. Frans, K.; Ho, J.; Chen, X.; Abbeel, P.; Schulman, J. Meta Learning Shared Hierarchies. arXiv 2017, arXiv:1710.09767. Available
online: http://arxiv.org/abs/1710.09767 (accessed on 20 February 2023).

35. Zhao, H.; Stretcu, O.; Smola, A.J.; Gordon, G.J. Efficient Multitask Feature and Relationship Learning. PMLR 2020, 115, 777–787.
36. Barto, A.G.; Mahadevan, S. Recent Advances in Hierarchical Reinforcement Learning. Discret. Event Dyn. Syst. 2003, 13, 41–77.

[CrossRef]
37. Kaelbling, L.P.; Littman, M.L.; Cassandra, A.R. Planning and acting in partially observable stochastic domains. Artif. Intell. 1998,

101, 99–134. [CrossRef]
38. Sutton, R.S.; Precup, D.; Singh, S. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement

learning. Artif. Intell. 1999, 112, 181–211. [CrossRef]
39. Eppe, M.; Gumbsch, C.; Kerzel, M.; Nguyen, P.D.H.; Butz, M.V.; Wermter, S. Intelligent problem-solving as integrated hierarchical

reinforcement learning. Nat Mach Intell 2022, 4, 11–20. [CrossRef]
40. Wen, Z.; Precup, D.; Ibrahimi, M.; Barreto, A. On Efficiency in Hierarchical Reinforcement Learning. Adv. Neural Inf. Process. Syst.

2020, 33, 6708–6718.
41. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602. Available online: http://arxiv.org/abs/1312.5602 (accessed on 7 April
2023).

42. Littman, M.L. A tutorial on partially observable Markov decision processes. J. Math. Psychol. 2009, 53, 119–125. [CrossRef]
43. White, D.J. A Survey of Applications of Markov Decision Processes. J. Oper. Res. Soc. 1993, 44, 1073–1096. [CrossRef]
44. Wang, L.; Wei, H. Research on Autonomous Decision-Making of UCAV Based on Deep Reinforcement Learning. In Proceedings

of the 2022 3rd Information Communication Technologies Conference (ICTC), Nanjing, China, 6–8 May 2022; IEEE: New York,
NY, USA, 2022; pp. 122–126. [CrossRef]

https://doi.org/10.1109/ICARCV50220.2020.9305467
https://doi.org/10.1109/CoG51982.2022.9893690
http://arxiv.org/abs/1707.06347
https://doi.org/10.1109/ICARM54641.2022.9959220
http://arxiv.org/abs/2302.05838
http://arxiv.org/abs/2302.05838
https://doi.org/10.1109/IJCNN48605.2020.9207088
https://doi.org/10.1109/DOCS55193.2022.9967482
https://doi.org/10.3390/electronics11030467
https://doi.org/10.3390/drones6070166
https://doi.org/10.24963/ijcai.2017/353
https://doi.org/10.1109/IJCNN.1991.155375
https://doi.org/10.1109/IROS.2017.8202133
http://arxiv.org/abs/1710.09767
https://doi.org/10.1023/A:1022140919877
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1038/s42256-021-00433-9
http://arxiv.org/abs/1312.5602
https://doi.org/10.1016/j.jmp.2009.01.005
https://doi.org/10.1057/jors.1993.181
https://doi.org/10.1109/ICTC55111.2022.9778652


Entropy 2023, 25, 1409 21 of 21

45. Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; Abbeel, P. Benchmarking Deep Reinforcement Learning for Continuous Control.
PMLR 2016, 48, 1329–1338.

46. Vogeltanz, T. A Survey of Free Software for the Design, Analysis, Modelling, and Simulation of an Unmanned Aerial Vehicle.
Arch. Comput. Methods Eng. 2016, 23, 449–514. [CrossRef]

47. Chandak, Y.; Theocharous, G.; Kostas, J.E.; Jordan, S.M.; Thomas, P.S. Learning Action Representations for Reinforcement
Learning. PMLR 2019, 97, 941–950.

48. Pope, A.P.; Ide, J.S.; Micovic, D.; Diaz, H.; Twedt, J.C.; Alcedo, K.; Walker, T.T.; Rosenbluth, D.; Ritholtz, L.; Javorsek, D.
Hierarchical Reinforcement Learning for Air Combat At DARPA’s AlphaDogfight Trials. IEEE Trans. Artif. Intell. 2022, Early
Access. [CrossRef]

49. Chen, W.; Gao, C.; Jing, W. Proximal policy optimization guidance algorithm for intercepting near-space maneuvering targets.
Aerosp. Sci. Technol. 2023, 132, 108031. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11831-015-9147-y
https://doi.org/10.1109/TAI.2022.3222143
https://doi.org/10.1016/j.ast.2022.108031

	Introduction 
	Reinforcement Learning for Air Combat 
	Markov Decision Process 
	Air Combat Environmental Model 

	Hierarchical Reinforcement Learning Design 
	Geometric Hierarchy in the Aircombat Framework 
	Reward Shaping 
	Senior Policy Reward 
	Sub-Policy Reward 
	Hierarchical Training Algorithm 
	Hierarchical Runtime Algorithm 

	Results 
	Experimental Environment Setup 
	Performance Metrics during Training and Validation 
	Validation and Evolution of the Hierarchical Agents 

	Discussion 
	Trajectory of Air Combat Process 
	Training Process 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

