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Abstract: We consider the problem of constructing an unconditionally secure cipher with a short
key for the case where the probability distribution of encrypted messages is unknown. Note that
unconditional security means that an adversary with no computational constraints can only obtain a
negligible amount of information (“leakage”) about an encrypted message (without knowing the
key). Here, we consider the case of a priori (partially) unknown message source statistics. More
specifically, the message source probability distribution belongs to a given family of distributions. We
propose an unconditionally secure cipher for this case. As an example, one can consider constructing
a single cipher for texts written in any of the languages of the European Union. That is, the message
to be encrypted could be written in any of these languages.
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1. Introduction

The concept of unconditional security is very attractive to cryptography and has found
many applications since C. Shannon described it in his famous article [1]. The concept
refers to secret-key cryptography involving three participants, Alice, Bob and Eve, where
Alice wants to send a message to Bob in secret from Eve, who has the ability to read all
correspondence between Alice and Bob. To accomplish this, Alice and Bob use a cipher
with a secret key K (i.e., a word from some alphabet), which is known to them in advance
(but not to Eve). When Alice wants to send some message m, she first encrypts m using key
K and sends it to Bob, who in turn decrypts the received encrypted message using the key
K. Eve also receives the encrypted message and tries to decrypt it without knowing the key.
The system is called unconditionally secure, or perfect, if Eve, with computers and other
equipment of unlimited power and unlimited time, cannot obtain any information about
the encrypted message. Not only did C. Shannon provide a formal definition of perfect
(or unconditional) secrecy, but he also showed that the so-called one-time pad (or Vernam
cipher) is such a system. One of the specific properties of this system is the equivalence
of the length of the secret key and the message (or its entropy). Moreover, C. Shannon
proved that this property must be true for any perfect system. Quite often this property
has limited practical application as many modern telecommunication systems forward and
store megabytes of information and the requirement to have secret keys of the same length
seems to be quite stringent. There are, therefore, many different approaches to overcoming
this obstacle. These include the ideal systems proposed by C. Shannon [1], the so-called
honeycomb cipher proposed by Jewels and Ristenpart [2], the so-called entropy security
proposed by Russell and Wang [3] and some others developed in recent decades [4–9].

It is worth noting that quantum key distribution (QKD) is currently under active
research, which can create an unconditional secure key for Alice and Bob, cf. [10–12].

The present work is concerned with entropically secure ciphers. It is important to note
that an entropically secure cipher is not perfect, and Eve may obtain some information
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about the message—the property referred to as “leakage” (see the definition below), but this
leakage can be made negligible. On the other hand, an entropically secure cipher makes it
possible to significantly reduce the key length (compared to the perfect cipher).

The concept of entropically secure cipher was proposed in 2006 by Russell and Wang
in the paper [3] where they also created the first entropically secure cipher. In their cipher,
the length of the secret key is proportional to the length of the encrypted message if the
min-entropy of that message is less than one bit per letter. Recently, the results of Russell
and Wang have been developed such that the length of the secret key is independent of
the length of the message in the case where the messages to be encrypted have a known
probability distribution [9] (see the definition of the min-entropy (2) and Theorems 1 and 2
below for details).

In this paper, we consider the situation where encrypted messages obey an unknown
(or partially unknown) probability distribution. We propose an entropically secure cipher
for which the key length depends on the universal code (or data compressor) used for
encoding the source and on the admissible leakage of the cipher. The construction of the
cipher is based on entropically secure ciphers [3,5,8,9] and universal coding [13]. It is worth
noting that the proposed cipher uses data compression and randomization, both of which
are quite popular in unconditional security, cf. [14–16] and [16,17], respectively.

2. Definitions and Preliminaries
2.1. Basic Concepts

We consider the problem of symmetric encryption, where Alice wants to securely
transmit a message to Bob. The messages are n-letter binary words, they obey a certain
probability distribution p defined on the set {0, 1}n, n ≥ 1. This distribution is only partially
known, i.e., it is known that p belongs to some given set P, P ⊂ Rn. Alice and Bob have a
shared secret key K = K1...Kk, and Alice encrypts the message M ∈ {0, 1}n using K and
possibly some random bits. Then, she sends the word cipher(M, K) to Bob, who decrypts
the received cipher(M, K) and obtains M. The third participant is a computationally
unconstrained adversary Eve, who knows cipher(M, K) and the distribution p, and wants
to find some information about M without knowing K.

Russell and Wang [3] suggested a definition of entropic security which was generalized
by Dodis and Smith [5] as follows: A probabilistic map Y is said to hide all functions on
{0, 1}n with leakage ε if, for every adversary A, there exists some adversary Â (who does
not know Y(M)) such that for all functions f ,

| Pr{A(Y(M)) = f (M)} − Pr{Â( ) = f (M)} | ≤ ε. (1)

(note that Â does not know Y(M) and, in fact, she guesses the meaning of the function
f (M).) In what follows, the probabilistic map Y will be cipher(M, K) and f is a map
f : {0, 1}n → {0, 1}∗.

Definition 1. The map Y() is called ε-entropically secure for family probability distributions P if
Y() hides all functions on {0, 1}n with leakage of ε, whenever p ∈ P.

Note that, in a sense, Definition 1 is a generalization of Shannon’s notion of perfect
security. Namely, if we take ε = 0 and Y = cipher(M, K) and f (x) = x, we obtain that for
any M

|Pr{A(cipher(M, K)) = M} − Pr{Â( ) = M} | = 0

So, A and Â obtained the same result, but A estimates the probability based on cipher(M, K),
whereas Â does it without knowledge of cipher(M, K). Thus, the entropic security (1) can
be considered as a generalization of the Shannon’s perfect secrecy.

We will use another important concept, the notion of indistinguishability.
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Definition 2. A randomized map Y : {0, 1}n → {0, 1}n, n ≥ 1, is ε-indistinguishable for some
family of distributions P and ε > 0 if there is a probability distribution G on {0, 1}n such that for
every probability distribution p ∈ P we have

SD(Y(M), G) ≤ ε,

where for two distributions A, B

SD(A, B) =
1
2 ∑

U∈M
|Pr{A = U} − Pr{B = U}| .

Importantly, G is independent of Y(M).

Dodis and Smith [5] showed that the concepts of ε-entropic security and ε-indistinguishability
are equivalent up to small parameter changes.

2.2. ε-Entropically Secure Ciphers for Distributions with Bounded Min-Entropy

In 2006 [3], the first entropically secure cipher was developed for probability distribu-
tions with a limited value of the so-called minimum entropy, which is defined as follows:

hmin(p) = − log max
a∈A

p(a) . (2)

where p is a probability distribution, log = log2. The Russell and Wang [3] cipher was
generalized and developed by Dodis and Smith [5] and their result can be formulated
as follows:

Theorem 1 ([5]). Let p be a probability distribution on {0, 1}n, n > 0, whose min-entropy is not
less than h, h ∈ [0, n]. Then there exists an ε-entropically secure cipher with the k-bit key where

k = n− h + 2log(1/ε) + 2. (3)

Let us denote this cipher as cipherrw−ds.

In a sense, this cipher generalizes the perfect Shannon cipher as follows: In a perfect
cipher, the key is a word from {0, 1}n, while in an entropically secure cipher, the key belongs
to the 2k-element subset K ⊂ {0, 1}n, which is a so-called small-biased set. Informally, this
means that for any m ≤ n and a uniformly chosen binary word u ∈ {0, 1}m, for any m posi-
tions i1i2, ..., im, the probability that Ki1 , Ki2 , ...., Kim = u is close to 2−m. (This construction
is based on some deep results in combinatorics [5,18,19].) Thus, the key length decreases
from n to k. Note that the leakage ε and hence the summand 2 log(1/ε) + 2 depends on
the size of the “small-biased set” 2k (In general, a larger k implies a smaller ε.)

2.3. ε-Entropically Secure Ciphers with Reduced Secret Key

In equality (3), the linearly increasing summand n− h depends on the min-entropy
h. So, it seems natural to transform the set {0, 1}n so as to reduce the min-entropy of
the original distribution p and hence the summand n− h. In [9], this approach was real-
ized as follows: let there be a set of probability distributions P defined on {0, 1}n, n ≥ 1.
The key part of the cipher is such a randomized map φ : {0, 1}n → {0, 1}n∗ , n∗ ≥ n,
that there exists a map φ−1 (i.e ∀ u φ−1(φ(u)) = u) and a min-entropy of the trans-
form probability distribution πp is close to n∗ (here the distribution πp is such that
p(u) = ∑v:φ−1(v)=u πp(v)). And then the cipherrw−ds can be applied to φ(m) with a shorter
key, because the difference n∗ − hmin(πp) will be less than n − hmin(p), see (3). Thus,
the smaller supp∈P(n

∗ − hmin(πp)), the shorter the secret key. The described cipher is
based on data compression and randomization and denoted in [9] by cipherc&r. The follow-
ing theorem describes its properties.
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Theorem 2 ([9]). Suppose there is a family P of probability distributions defined on {0, 1}n and
there is a randomized mapping φ : {0, 1}n → {0, 1}n∗ , n∗ ≥ n for which there exists a mapping
φ−1 and let

sup
p∈P

(n∗ − hmin(πp)) ≤ ∆ . (4)

for some ∆. Then,

(i) cipherc&r is ε-entropically secure with secret key length ∆ + 2 log(1/ε) + 2, and
(ii) cipherc&r is ε-indistinguishable with secret key length ∆ + 2 log(1/ε) + 6.

Now we consider a simple example to illustrate the basic idea. Let n = 2, p(00) = 1/2,
p(01) = 1/4, p(10) = p(11) = 1/8. Obviously, hmin(p) = 1 and ∆ = (2− 1). The map
φ is constructed in two steps: first, “compress” the letters till − log p(a), that is, in our
example, 00 → 0, 01 → 10 and 10 → 110, 11 → 111. Secondly, randomize as follows: 00
uniformly→ {000, 001, 010, 011}, 01→ {100, 101} and two last letters as {110} and {111}
correspondingly. As a result, we obtain a set {0, 1}3 subject to a uniform distribution whose
min-entropy is equal to three, and hence ∆ = 3− 3 = 0. Thus, the key length becomes
1 bit shorter, but the message length is longer. It is proved that such a “bloated” cipher is
ε-entropically secure [9].

Obviously, the key length depends on the efficiency of the compression method, or code.
Thus, in the case of known statistics (i.e., known p), the key length is ∆ + 2log(1/ε) + 2,
where ∆ is 1 or 2 and depends on the compression code chosen. If p is unknown, but the
messages are known to be generated by a Markov chain with known memory, then
∆ = O(log n) (and the key length is O(log n) + 2log(1/ε) [9]).

2.4. Universal Coding

The problem of constructing a single code for multiple probability distributions (in-
formation sources) is well known in information theory, and there are currently dozens
of effective universal codes based on different ideas and approaches. It is worth noting
that, at present, there are dozens universal codes, which are the basis for so-called archivers
(e.g., ZIP). The first universal code for Bernoulli and Markov processes was proposed
by Fitinghof [20], and then Krichevsky found an asymptotically optimal code for these
processes [13,21]. Other universal codes include the PPM universal code [22], which is
used together with the arithmetic code [23], the Lempel-Ziv (LZ) codes [24], the Burrows–
Wheeler transformation [25], which is used together with the book-stack code (or MTF) [26]
(see also [27,28]), grammar codes [29,30] and some others [31–34].

The universal code c has to“compress” sequences x = x1...xn that obey the distri-
bution p ∈ P down to Shannon entropy p, that is hSh(p), and the difference between
Ep(|c(x)|)− hSh(p) is called redundancy r(p) [13] (here Ep is the expectation and |u| is the
legth of u). In [35], an algorithm was proposed to construct a code copt whose redundancy
is minimal on P, that is, rpopt = infp∈P r(p). In [35], it was shown that rpopt is equal to the
capacity of a channel whose input alphabet is P, whose output alphabet is the alphabet
on which distributions from P are defined (in our case it is the alphabet {0, 1}n), and the
lines of the channel matrix are probability distributions from P (see also [36] for the history
of this discovery). This fact is important, because it allows us to use known methods to
compute the channel capacity to find the optimal code.

In this paper, we will use the so-called Shtarkov maximum likelihood code cSht [37],
whose construction is much simpler, and its redundancy is often close to that of the optimal
code. This code is described as follows: first define

pmax(u) = sup
p∈P

p(u), u ∈ {0, 1}n, SP = ∑
u∈{0,1}n

pmax(u), q(u) = pmax(u)/SP. (5)

Clearly,
∀u : p(u)/q(u) ≤ SP. (6)
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Shtakov proposed to build code cSht for which |cSht(u)| = d− log q(u)e. (Such a code
exists, see [38]).

Claim. If the set P is finite, then SP ≤ |P|.

Proof. From the definition (5) we can see that

SP = ∑
u∈{0,1}n

pmax(u) ≤ ∑
u∈{0,1}n

(∑
p∈P

p(u) ).

Clearly, ∑p∈P p(u) = 1 and from this and the previous inequality we obtain

SP = ∑
u∈{0,1}n

pmax(u) ≤ ∑
u∈{0,1}n

(∑
p∈P

p(u) ) = ∑
p∈P

( ∑
u∈{0,1}n

p(u) ) = ∑
p∈P

1 = |P|.

Claim is proven.

Note that this claim is true when P contains probability distributions corresponding
to several languages.

3. The Cipher

Now we are going to construct an ε-entropically secure cipher cc&r for the case of
unknown statistics, i.e., there exists some set of probability distributions P generating words
from {0, 1}n, n ≥ 1, and the constructed cipher should be applicable to messages obeying
any p ∈ P with a leakage no larger than ε. In short, we apply the general method from [9]
to the probability distribution q (5). In detail, Alice wants to send messages m ∈ {0, 1}n to
Bob, and they both know in advance that m can obey any probability distribution p of the
set of distributions P. The cipher algorithm is as follows.

Constructing the cipher. We describe all calculations in the following steps:

(i) Compute the distribution q according to (5) and order the set q(u), u ∈ {0, 1}n. (Denote
the ordered probabilities as q1, q2, ..., qN , N = 2n and let ν(u) = i for which q(u) = qi.)

(ii) Encode the “letters” 1, 2, ..., N with the distribution q by the trimmed Shannon code
from [9] . Denote this code λ and note that

∀i : |λ(i)| < − log qi + 2 (7)

and λ is prefix-free, that is, for any i and j, i 6= j, neither λ(i) is a prefix λ(j), and λ(j)
is a prefix λ(i) [9].

(iii) Build the following randomized map φ First, find n∗ = maxi λ(i) and then define for
u ∈ {0, 1}n,

φ(u) = λ(ν(u))r|λ(ν(u)|+1 ... rn∗ , (8)

where rj are equiprobable independent binary digits.
(iv) For the desired leakage ε build cipherrw−ds with secret key length

dlog SPe+ 2 log(1/ε) + δ , (9)

where δ = 2 for ε-entropically secure cipher and δ = 6 for ε- indistinguishable one.

It is worth noting that Alice and Bob (and Eve) can perform all the calculations
described independently of each other.

Use of the cipher. Suppose Alice and Bob have a randomly chosen secret key K,
|K| = k, and Alice wants to send Bob a message m. To accomplish this, she computes
cipherc&r(m, K), as described above, and sends it to Bob.

Bob receives the word cipherc&r(m, K) and decrypts it with the key K. As a result,
he obtains the word φ(m) = λ(ν(m)r|λ(ν(m)|+1 ... rn∗ whose prefix λ(ν(m)) defines the
message m (this is possible because λ is prefix-free).

The properties of this cipher are described in the following theorem.
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Theorem 3. Suppose there is a family P of probability distributions defined on {0, 1}n and some
ε > 0. If the described cipherc&r is applied then,

(i) The cipherc&r is ε-entropically secure with secret key length dlog SPe+ 2 log(1/ε) + 4, and
(ii) The cipherc&r is ε–indistinguishable with secret key length dlog SPe+ 2 log(1/ε) + 8.

Proof. For any p ∈ P, the random map φ defines a probability distribution πp(v), v ∈
{0, 1}∗ as follows: for any u ∈ {0, 1}n and v ∈ φ(u)

πp(v) = p(u)2−(n
∗−|λ(ν(u))|) ,

see (8). From definitions φ and (8), (7) we obtain

πp(v) = p(m)2−(n
∗−|λ(ν(m))|) ≤ p(m)2−(n

∗−(log qν(m)+2))

for any m ∈ {0, 1}n and v ∈ φ(m) ⊂ {0, 1}n∗ . Then,

− log πp(v) ≥ − log p(m) + (n∗ − (log qν(m) + 2 ≥

log SP + log qν(m) − n∗ − log qν(m) + 2 = log SP + 2− n∗

for any m and v ∈ φ(m) ⊂ {0, 1}n∗ . So, hmin(πp) = minv∈{0,1}n∗ − log πp(v) ≥ log SP +

2− n∗ and, hence, supp∈P(n
∗ − hmin(πp)) ≤ log SP + 2 . From (4) (Theorem 2) and the

description of the cipher (9), we can see that the cipherc&r is

(i) ε-entropically secure with a secret key of length dlog SPe+ 2 log(1/ε) + 4, and
(ii) ε-indistinguishable with a secret key of length dlog SPe+ 2 log(1/ε) + 8.

4. Conclusions

We described the cipher for a family of probability distributions P defined on the set
{0, 1}n, n ≥ 1, for which the length of the secret key does not depend directly on n, but de-
pends on P. For example, if P is finite, the key length is less than log |P|+ 2 log(1/ε) + O(1)
and hence independent of n. This example includes the case where one needs to have the
same cipher for texts written in different languages. Here, the size of the set P is equal to
the number of languages. Thus, in some practically interesting cases, the extra length of the
secret key is quite small.
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