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Abstract: In non-equilibrium plasmas, the temperature cannot be uniquely determined unless the
energy-distribution function is approximated as a Maxwell–Boltzmann distribution. To overcome this
problem, we applied Tsallis statistics to determine the temperature with respect to the excited-state
populations in non-equilibrium state hydrogen plasma, which enables the description of its entropy
that obeys q-exponential population distribution in the non-equilibrium state. However, it is quite
difficult to apply the q-exponential distribution because it is a self-consistent function that cannot
be solved analytically. In this study, a self-consistent iterative scheme was adopted to calculate
q-exponential distribution using the similar algorithm of the Hartree–Fock method. Results show that
the excited-state population distribution based on Tsallis statistics well captures the non-equilibrium
characteristics in the high-energy region, which is far from the equilibrium-Boltzmann distribution.
The temperature was calculated using the partial derivative of entropy with respect to the mean
energy based on Tsallis statistics and using the coefficient of q-exponential distribution. An analytical
expression was derived and compared with Boltzmann statistics, and the distribution was discussed
from the viewpoint of statistical physics.

Keywords: non-equilibrium plasma; excitation distribution; excitation temperature; electron
temperature; Tsallis entropy; statistical physics

1. Introduction

In discharge plasmas, excited-state distribution influences various elementary pro-
cesses. It determines the characteristics of the physical and chemical processes in the
plasma. Among the diagnostic techniques, optical emission spectroscopy (OES) has been
widely applied to determine temperatures, for example, electron, excitation, vibration, and
rotation temperatures from the spectrum [1].

Generally, any kind of dynamics in a physical system is governed by the entropy
maximization principle if the physical system is in the state of equilibrium [2]. However, if
such a dynamic system involves a multibody interaction, particularly radiation processes
such as plasmas with low-electron temperature, it does not always obey the principle of
maximum entropy according to the Gibbs entropy as the ideal state in common statistical
mechanics [3]. Furthermore, there are many publications up to the present time where it is
described that the strong non-equilibrium throughout the whole system is found in several
systems such as low-temperature reduced-pressure plasma [4], high-temperature fusion
plasma [5], and quark–gluon plasma [6]. When the system has such non-equilibrium char-
acteristics, energy distribution functions do not necessarily follow the Maxwell–Boltzmann
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distribution. Thus, to uniquely determine the temperature of the system, its distribution
function must be approximated to the Boltzmann distribution

pi ∝ exp
(
− Ei

kT

)
, (1)

where pi is the probability for the system to be in the i-th state, Ei is the energy of the
i-th level, k is the Boltzmann constant, and T is the approximate temperature. When
the distribution function pi is plotted semi-logarithmically against the energy Ei, which
is referred to as a Boltzmann plot, a straight line is obtained for the equilibrium state.
However, for the non-equilibrium state, the Boltzmann plot does not follow a straight line,
and some approximation is inevitably required.

Based on the Lagrange multiplier method, this probability function pi described with
Equation (1) can be derived by maximizing the Gibbs entropy SGibbs in statistical mechanics,
which is defined as follows:

SGibbs = −k
N

∑
i=1

pi ln pi, (2)

where N is the maximum energy level. On the other hand, the probabilistic distribution
of the quantum state also derives the Boltzmann factor based on thermal physics. Conse-
quently, the temperature of the equilibrium system TGibbs can be derived from the entropy
S based on statistical mechanics as follows:

TGibbs =

(
∂S
∂U

)−1
, (3)

where U is the internal energy of the system, which can be calculated as the mean energy
for discretized energy states such as quantum levels as follows:

U =
N

∑
i=1

piEi, (4)

where pi is subject to constraint under the Boltzmann distribution such as Equation (1).
The temperature TGibbs calculated using Equation (3) coincides with the temperature deter-
mined from the slope of the Boltzmann plot in the equilibrium state.

However, since in the non-equilibrium state pi cannot be described using the Boltz-
mann distribution Equation (1), its temperature cannot be obtained from the Boltzmann
plot. As schematically shown in the Boltzmann plot in Figure 1, the distribution function
in the non-equilibrium state cannot be expressed as a straight line. Consequently, to de-
termine the temperature of the non-equilibrium system, the distribution function must be
approximated to a straight line, which is generally considered to correspond to the local
derivative at each energy value in the Boltzmann plot.

Figure 1. Schematic diagram of Boltzmann plot of Maxwellian and non-Maxwellian distribution
functions. On the vertical axis is the logarithm of the number density n divided by the statistical
weight g.
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The definition of temperature in the non-equilibrium state, which does not obey the
Maxwell–Boltzmann distribution, has received a great deal of attention in recent years [7,8].
For example, Álvarez et al. attempted to describe the out-of-equilibrium free-electrons in
cold plasmas and applied the developed theory assuming the electron entropy defined
based on the Boltzmann H-theorem [7]. Their theory concluded that the partial derivative of
the entropy with respect to the electron mean energy as shown in Equation (3) corresponds
to the so-called effective temperature Teff simply given as

Teff =
2U
3k

=
2
3k

∫ ∞

0
ε f (ε)dε, (5)

provided that the electron energy distribution function (EEDF) f is differentiable and

lim
n→∞

v3 f ln f = 0, (6)

lim
n→∞

v3 f
(

∂S
∂n

)
ε,ne

= 0 (7)

where v is the electron velocity and ε is the electron energy.
However, in the realistic conditions of plasma, the relation Teff = TGibbs does not

always hold [8], and they solved the Boltzmann equation to obtain the EEDF of oxygen and
nitrogen plasmas with inelastic collision cross-sections and calculated the Gibbs entropy.
Eventually, these approaches made it possible to define some kinds of temperatures even
in non-equilibrium states. However, Equation (3) derived from Gibbs statistics should
not be mathematically appropriate to apply to dynamic systems, because the entropy
maximization principle cannot be satisfied for systems in non-equilibrium states.

Therefore, it is worth introducing Tsallis statistics, which has been studied as an
improved alternative to the Gibbs statistics [9]. The most fundamental formalism in Tsallis
statistics is based on maximizing the Tsallis entropy Sq defined as follows:

Sq ≡ −k
∑i pq

i − 1
q− 1

, (8)

The Tsallis entropy agrees with the Gibbs entropy and the one divided by the Boltzmann
constant also agrees with the Shannon entropy

S = −∑
i

pi ln pi = SGibbs/k (9)

in the case of the limit as q → 1. Tsallis statistics extend the exponential distribution to
q-exponential distribution, which has a power-law distribution. The intuitional physical
meaning of the parameter q in Tsallis statistics has been investigated by adapting the
sedimentation model that is restricted by the previously sedimented particles, which is a
relatively simple stochastic process [10]. Additionally, the interpretation of the nonextensiv-
ity parameter q is characterized by a fluctuation of the inverse temperature as long-range
interactions and long-range microscopic memories [11,12].

Many researchers have investigated non-equilibrium phenomena using Tsallis entropy,
for example, in fluxes of cosmic rays [13], Earth’s magnetosphere [14], turbulence [15,16],
electron-positron annihilation [17], black hole [18,19], Bose–Einstein condensation [20],
dielectric breakdown [21], and plasma physics [22]. In this study, Tsallis statistics is
applied to excited-state populations of hydrogen plasma, which is in non-equilibrium
state, by a fitting procedure with the q-exponential distribution. Based on Tsallis statistics,
the temperature can be uniquely determined from the distribution in a strongly non-
equilibrium state that follows q-exponential-type probability function. However, it is quite
difficult to fit the excited-state population distribution with q-exponential distribution
because such fitting requires a solution to the self-referential equation. Therefore, a self-
consistent iterative scheme was adopted, which is similar to the Hartree–Fock method, to
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calculate q-exponential distribution to find the eigen value energy of a quantum many-body
system in a stationary state. Finally, the temperature was determined and discussed from
the non-equilibrium distribution using Tsallis statistics.

No study has applied Tsallis statistics to determine the temperature relevant to excited-
state populations in non-equilibrium plasmas because it is quite difficult to obtain the
temperature as a self-consistent solution. In this study, the excitation temperature of non-
equilibrium plasma is determined using Tsallis statistics, and the results are compared with
those obtained using Boltzmann statistics. As Álvarez et al. studied from the viewpoint of
statistical physics, the temperature is given as a reciprocal value of the partial derivative
of the entropy with respect to the internal energy [7]. On the other hand, Akatsuka et al.
examined another concept of the electron temperature of the non-equilibrium plasma on
the relation between the entropy and the energy through the distribution function [8]. If
the distribution function is known, the entropy of the system can be calculated, without
concepts on equilibrium physics such as “free energy”. Based on the backgrounds described
so far, the objective of the present study is to reconsider the “excitation temperature” of the
non-equilibrium plasma with non-Boltzmann distribution from the viewpoint of statistical
physics by applying the concept of Tsallis entropy.

2. Background
2.1. Tsallis Statistics

First, it is demonstrated that the temperature derived from Tsallis statistics should fol-
low the q-exponential distribution function. Dynamic systems are governed by the entropy
maximization principle in equilibrium state. Hence, the state of equilibrium is computed by
maximizing the entropy subject to constraints, using a variational function [23]. Boltzmann
stated that the occupation probabilities {pi} of the most probable state at equilibrium are
those that maximize entropy. Tsallis statistics extended the theory by maximizing the Tsallis
entropy, which also satisfies two constraints on the total number of states W and on the
q-average energy Uq as follows [24].

W

∑
i=1

pi = 1, (10)

and

Uq =
∑W

i=1 pq
i εi

∑W
j=1 pq

j

. (11)

The q-average energy is often applied as the extension of mean energy instead of a general
average energy, because mean value or dispersion of typical power-law distribution such
as Pareto distribution, Lévy distribution, Cauchy distribution, and t-distribution, is not
finite under the particular conditions. By applying the Lagrange multiplier method, this
probability function can be derived as

pi =
1

Zq(β)
expq

[
− β

∑W
j=1 pq

j

(εi −Uq)

]
(12)

where Zq(β) is the generalized partition function,

Zq(β) =
W

∑
i=1

expq

[
− β

∑W
j=1 pq

j

(εi −Uq)

]
. (13)

In the above equation, β is the Lagrange multiplier, and expq is the q-exponential function
defined by

expq ≡
{

[1 + (1− q)x]
1

1−q if 1 + (1− q)x > 0
0 otherwise.

(14)
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By combining Equation (12) and other constraints, the following self-referential function

pi =
1

Zq(β)
expq

[
−βq(εi −Uq)

]
, (15)

can be derived, which includes the term probability function {pi} at both sides. The q-
Gaussian type function can be derived maximizing the Tsallis entropy not only under a first
moment constraint but also under a second moment constraint [25]. Now, the q-partition
function Zq(β) is rewritten as

Zq(β) =
W

∑
i=1

expq
[
−βq(εi −Uq)

]
, (16)

where βq is defined as

βq ≡
q

q + (1 + α)(1− q)
β, (17)

and α is the Lagrange multiplier associated with the normalization constraint. Because βq
is a coefficient of energy, Tq is defined as

Tq−β =
1

kβq
. (18)

The obtained Tq−β coincides with the physical temperature derived in accordance with the
zero-th law of thermodynamics [26], which is calculated as Tq−Tsallis as follows [24]:

Tq−Tsallis =

(
1 +

1− q
k

Sq

)(
∂Sq

∂Uq

)−1

. (19)

Equations (18) and (19) hold in cases where the probability function is a function of expq.
The dependence of the q-exponential distribution function pi defined in Equation (15) is
shown in Figure 2. The Boltzmann plot becomes curved as the value of the parameter q
deviates from 1, which indicates some kind of non-equilibrium distribution.

Figure 2. Schematic diagram of the dependence of the q-exponential distribution function pi defined
in Equation (15) on the parameter q, with constant parameters α = −4, β = 1.5 in Equation (17).

On the other hand, the suprathermal distribution is like κ-distribution as follows:

B(E) =
(

1 +
β0E

κ + 1

)−κ−1
, (20)

which is a power-law distribution derived from a system with the fluctuations of an
intensive quantity as the most fundamental phenomena by maximizing the Gibbs entropy
SGibbs in superstatistics [12],where β0 is the average value of the fluctuation of the inverse
temperature in superstatistics. Moreover, the parameter κ shapes the suprathermal tail
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of the distribution and measures its deviation from the Maxwell–Boltzmann equilibrium
which is recovered in the limit κ → ∞. The κ-distribution is considered to be related to the
q-distribution in Tsallis statistics assuming (κ + 1) = 1/(q− 1).

2.2. Collisional Radiative Model (CR-Model)

The collisional radiative model (CR-model) is a suitable analysis model to describe
the excited-state population balance to analyze line-spectroscopic characteristics based on
various elementary processes in plasma. It is mainly used to calculate the source terms
of balance equations between excited states of discharged atomic species [27]. Studies
elucidate that elementary processes of plasmas are mainly governed by electron collision
and radiation process, and consequently, the excitation kinetic model is referred to as the
“collisional-radiative” model [28–32].

The rate equations of number densities on each excited level i follow the population-
balance equations, which can be described as

dn(i)
dt

= −
[

ne

(
∑
j>i

Ci,j + ∑
j<i

Fi,j + Si

)
+ ∑

j<i
Λi,j Ai,j

]
n(i)

+ ne ∑
j<i

[
Cj,in(j)

]
+ ∑

j>i

[(
neFj,i + Λj,i Aj,i

)
n(j)

]
+ (αine + βi)nine, (21)

which are coupled linear differential equations for any excited levels (i ≥ 2), where Cj,i
and Fi,j are the excitation rate coefficient of electron collision excitation from state j to i
and its inverse de-excitation rate coefficient, respectively, Ai,j is the radiative transition
probability from state i to j, Λi,j is its optical escape factor, Si and αi are the electron
collision ionization rate coefficient from level i and its inverse three-body recombination
rate coefficient, respectively, and βi is the radiative recombination rate coefficient to level
i. In Equation (21), the first line represents the depopulating process from level i and
the second line represents the populating process to level i. The solution of the rate
Equation (21) depends on the electron temperature Te, gas temperature Tg, electron density
ne, discharge tube radius R, and ground-state density n(0). Figure 3 shows a scheme of
the elementary processes involved in the CR model of the plasma. When calculating the
optical escape factor, the plasma geometry is assumed to be cylindrical with the Doppler
line profile [33].

Figure 3. Schematic of the transition of the elementary processes of the level j of hydrogen atom in
the hydrogen plasma treated in the CR model.

Meanwhile, the relaxation time of the rate equations on the excited states is signif-
icantly shorter than that of the mass-average flow, diffusion, or other chemical reaction.
This assumption indicates that the plasma is generally in a quasi-steady state in the CR
model (21). The time evolution of number densities on i-th level n(i) can be calculated
except for the ground state. The number density of the molecular discharge species is
determined from its dissociation degree or can be measured by spectroscopic methods
such as optical absorption spectroscopy or actinometry method. Therefore, Equation (21)
is approximated to = 0 in most practical applications, and consequently, Equation (21)
becomes simultaneous for linear coupled equations for the unknowns n(i) (i = 2, 3, · · · ).
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Then, the solution to Equation (21) is rather easily obtained using a numerical proce-
dure. It is already established that the number density of the excited states in plasmas can
be written as a summation of the ionizing term and recombination term. These two terms
characterize the excitation kinetics of elementary excited hydrogen atoms in the hydrogen
plasma. Hence, the number densities n(i) are deformed as follows:

n(i) = n0(i) + n1(i), (22)

The plasma in which the term n1(i) is dominant is referred to as an ionizing plasma, while
the plasma in which n0(i) is dominant is referred to as a recombining plasma. When
the value of n1(i) is almost comparable to that of n0(i), the plasma is referred to as an
equilibrium plasma.

3. Results and Discussion
3.1. The Excited State Population Densities

The number densities n(i) of hydrogen atoms with its principal quantum number
i(≥ 2) in hydrogen discharge plasma are calculated using the CR model Equation (21),
where the population density n(i) can be treated as a function of electron temperature
Te, density ne, and the density of the ground-state hydrogen atoms n(1) in the range of
1 ≤ Te [eV] ≤ 10. To calculate the entropy in the present analysis, the population density
of the level i, n(i) is normalized to deduce the population probability pi with its statistical
weight g(i) as follows:

pi =
n(i)/g(i)

∑i[n(i)/g(i)]
. (23)

The Boltzmann plot as the CR-model solution to the rate Equation (21) is shown in Figure 4.
The input parameters, except for the electron temperature, are chosen in accordance with
the experimental observation in the previous experimental results of OES measurement of
microwave discharge hydrogen plasma [34]. Within the parameter range adopted in the
present case study illustrated in Figure 4, the simulated plasma was found to be optically
thin where the optical escape factor Λ ' 1, that is, the effect of optical-absorption is
ignorable. It was also confirmed that the relaxation time to reach the thermodynamic
equilibrium over the excitation kinetics is much shorter than that of electron–electron
Coulomb collisions to establish electron equilibration. Therefore, we conclude that the
population distribution of excited-state number densities n(i) is far from the Boltzmann
distribution [3,27,35]. The temperature cannot be uniquely determined from the slope of
the Boltzmann plot, since the slope in the high-energy region gives a much lower excitation
temperature than that in the lower-energy region. These differences in the slope on the
Boltzmann plot mean that the excitation temperature depends on the energy region.

Figure 4. Boltzmann plot of the excited-state population probability pi calculated using the CR model
under the condition: gas temperature Tg = 0.05 eV, electron density ne = 5× 1013 cm−3, discharge
pressure P = 1 Torr, and the hydrogen dissociation degree 0.05%, for electron temperature range
1 ≤ Te [eV] ≤ 10.
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On the other hand, in Figure 5, the log-log plot of the excitation population probability
pi is shown against the principal quantum number i, which is found to be almost a straight
line. The discussion on this kind of population kinetics in excited states of hydrogen atoms
plasma using the CR model is well conducted in detail [27,34]. The number densities n(i)
on the log-log plots on the highly excited region can be described as power-law distribution
as n(i)/g(i) ∝ i−6. This is attributed to the fact that the elementary excitation kinetics is
dominated by a ladder-like collisional-excitation process. The dominant populating process
on the relatively high level that has a power-law distribution is the electron collisional
excitation process and the ionizing depopulation process over the electron temperature
range from 1 to 10 eV. Especially on excitation level i = 39, more than 99% of the population
comes from the electron collisional excitation process, while the increase in Te changes
the ratio of the dominant depopulation process a little. That is, the ionizing depopulation
increases from 88% to 92% and the electron collisional excitation decreases from 12% to
8%. On the other hand, the dominant populating process on the relatively low-level is
the electron collisional excitation process or ionization process for the parameter range
Te = 1− 10 eV. Especially on excitation level i = 2, the increase in Te changes the ratio of
the dominant populating process significantly as follows. That is, the electron collisional
excitation increases from 60% to 81% for the population. Meanwhile, concerning the
dominant depopulating processes, the electron collisional excitation decreases from 72%
to 48% while the ionizing process increases from 10% to 51%. Therefore, the change in
the dominant populating processes on the relatively low level has a great effect on the
q-value in the non-equilibrium plasma. The relevance of such power-law distributions to
the Tsallis entropy are worth discussing because of the similarity of their q-exponential
distributions [24,36].

Figure 5. Log-log plot of the excited-state population probability pi calculated using the CR
model under the same condition as in Figure 4: gas temperature Tg = 0.05 eV, electron density
ne = 5× 1013 cm−3, discharge pressure P = 1 Torr, and the hydrogen dissociation degree 0.05%, for
electron temperature range 1 ≤ Te [eV] ≤ 10.

To calculate the temperature of a hydrogen plasma with non-equilibrium proper-
ties using the Tsallis entropy, it is necessary to fit the excitation distribution with a q-
exponential distribution. However, since the q-exponential distribution, Equation (15), is a
self-referencing function, it is quite difficult to fit the calculated population distribution to
the q-exponential distribution; as a result, it cannot be solved analytically. Therefore, as
for the algorithm for solving this kind of problem, we applied the self-consistent iterative
method in Table 1 similar to the Hartree–Fock method for the determination of the energy
and wave function of quantum many-body bodies in the steady state, and eventually, the q-
exponential distribution was successfully calculated. As a result of the iteration, the Uq(k+1)
and Uq(k) was matched by more than seven significant figures. The population probability
pi fitted by the q-exponential distribution is shown in Figure 6 and specified in Table 2,
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together with the value of parameter κ in Equation (20) in the theory of superstatistics [12].
It is far from the equilibrium Boltzmann distribution and exhibits a curved distribution,
especially in the high-energy region. The increase in Te promotes the energy flow like the
ionization, which leads to it changing the population processes in plasma, particularly, the
electron collisional processes and the ionizing processes enormously. Therefore, the degree
of ionization and the population of the elementary processes are reflected to the q-value
and the κ-value. Figure 6 clearly shows that the fitting using the q-exponential distribution
captures the non-equilibrium properties calculated using the CR model better than that us-
ing the Boltzmann distribution. It is considered that the q-exponential distribution function
is particularly suitable to describe strongly non-equilibrium distributions. The cumulative
value of χ2 is determined almost only by the population density of the level p = 2, which is
the largest in all the levels, as shown in Figure 6 on a semi-log scale. Meanwhile, the values
of χ2 for any excited levels in the case of Te = 2 eV are less than 10−3 for the distributions
fitted with q-exponential function.

Table 1. Iterative scheme to solve self-referential function.

1: Initialize

Zq(0)(β) =
W

∑
i=1

expq
(
−βqεi

)
pi(0) =

1
Zq(0)(β)

expq
(
−βqεi

)
Uq(0) =

∑W
i=1 pq

i(0)εi

∑W
j=1 pq

j(0)

2: Iterate k = 0, 1, 2, . . . until convergence

Zq(k+1)(β) =
W

∑
i=1

expq

[
−βq

{
εi −Uq(k)

}]
pi(k+1) =

1
Zq(k+1)(β)

expq

[
−βq

{
εi −Uq(k)

}]

Uq(k+1) =
∑W

i=1 pq
i(k+1)εi

∑W
j=1 pq

j(k+1)

Figure 6. Fitting curve of the Boltzmann plot of population probability function pi of hydrogen atom
with q-exponential distribution of q = 0.89 for the hydrogen plasma with Te = 2 eV. Other plasma
parameters are chosen to be the same as in Figures 4 and 5.
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Table 2. Parameters q, β and appropriateness of fitting of the Boltzmann plot of population probability
function pi, with the constant parameter α = −1 and index of κ-distribution calculated from q. NDF
denotes number of degree of freedom.

Te [eV] q β κ χ2 (NDF = 39)

1 0.902 0.344 −11.2 3.76× 10−4

2 0.891 0.386 −10.1 5.55× 10−4

3 0.883 0.413 −9.56 4.60× 10−4

4 0.879 0.428 −9.26 3.00× 10−4

5 0.876 0.438 −9.06 1.94× 10−4

6 0.875 0.442 −8.99 1.47× 10−4

7 0.872 0.450 −8.83 1.68× 10−4

8 0.871 0.455 −8.75 3.85× 10−4

9 0.870 0.459 −8.69 4.28× 10−4

10 0.869 0.462 −8.64 4.87× 10−4

3.2. Entropy

Generally, the temperature can be determined by the reciprocal of the partial derivative
of entropy with respect to mean energy based on Gibbs or Tsallis statistics, as was described
in Equation (3) or Equation (19), respectively, even though the temperature calculated
using Tsallis statistics must be adjusted by q-value. Therefore, the slope in the Boltzmann
plot, that is, the relation between entropy and mean energy, is discussed. In Figure 7, the
relationship between the Gibbs entropy Equation (2) and the mean energy Equation (4) is
shown in red, while that between the Tsallis entropy Equation (8) and the q-average energy
Equation (11) is shown in blue. As can be seen from this figure, both entropies increase with
increasing average energy, and both plots have nearly constant slopes. From this result, we
conclude that the Gibbs temperature TGibbs as defined in Equation (3)—the reciprocal of
the partial derivative of entropy with respect to the mean energy—does not change much
within the range of the plasma parameters set here. However, although the slope in Figure 7
is almost constant for the Tsallis entropy, the Tsallis temperature Tq−Tsallis, Equation (19),
should not be considered as simply a constant since the multiplication with the factor
[1+(1− q)(Sq/k)] must be also conducted in the case of the Tsallis temperature. In addition,
from the statistical physics principles, the Tsallis temperature should be determined by the
partial derivative adjusted by q-value in dynamical systems, which are governed by the
principle of Tsallis entropy maximization in non-equilibrium state.

Figure 7. Dependence of entropy plotted against mean energy or q-average energy. Red: Gibbs
entropy vs. mean energy. Blue: Tsallis entropy vs. q-average energy. The plasma parameters are
chosen to be the same as in Figure 4. The electron temperature Te in the CR model is scanned within
the range from 1 to 10 eV.

3.3. Temperature Determined on Statistical Physics

Various temperatures were calculated and the temperatures calculated using Tsallis
statistics were compared with those calculated using Gibbs statistics. Figure 8 shows the
comparison between various temperatures defined for the hydrogen plasma, where TGibbs
and Tq−Tsallis are the temperatures determined from Equations (3) and (19), respectively,
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using the partial derivatives of entropy. Meanwhile, T〈U〉 and T〈Uq〉 is the temperature
determined using mean-energy and q-mean-energy, respectively. T〈U〉 was defined as

T〈U〉 ≡
2
3k

U, (24)

where U was defined in Equation (4), whereas T〈Uq〉 was defined similarly to T〈U〉 as follows:

T〈Uq〉 ≡
2
3k

Uq. (25)

On the other hand, Tq−β was defined as Equation (18), which is, in some sense, a slope of
the Boltzmann plot, and in this respect, a kind of extension of the temperature in the Gibbs
statistics. Finally, Tlow−E is the temperature determined from the differential coefficient of
the distribution function at E = 10.2 eV, which is expected to be the highest temperature
among the temperatures.

Figure 8. Comparison between various excitation temperatures plotted against electron temperature
with the gas temperature Tg = 0.55 eV, electron density ne = 5× 1013 cm−3, discharge pressure 1
Torr and dissociation degree of hydrogen molecule 0.05%.

Figure 8 shows that each temperature increases monotonically with increasing electron
temperature with a similar trend. It should be remarked that Tq−Tsallis was found to be iden-
tical to Tq−β, both of which were correctly derived from the Tsallis statistics. Furthermore,
it should be noted that T〈Uq〉 also agrees with Tq−Tsallis and Tq−β, indicating the possibility
that the equation

Uq =
3
2

kT〈Uq〉 (26)

could be derived from Tsallis statistics as an analogy to Gibbs statistics,

E =
3
2

kT. (27)

It must be also remarked that Equation (26) has not yet been mathematically proved.
The relationship that TGibbs coincides with T〈U〉 also demonstrates the validity of us-
ing Gibbs statistics to determine temperature. The q-exponential distribution reflects
the most probable-state dynamics, where the Tsallis entropy is maximized in the non-
equilibrium state.

This study confirmed the relation Tlow−E > Tq−Tsallis > TGibbs. It is reasonable that
Tlow−E is highest in the temperatures determined from the distribution function, as shown
in Figure 8, since any excitation distribution has a larger slope than that of the distribution
function at E = 10.2 eV. Therefore, the temperature based on Tsallis statistics takes into
account the curvilinear distribution of the high-energy bulk region, as opposed to the
temperature determined from the local differential coefficient of the distribution function.
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These excitation temperatures are much lower than the electron temperature Te and close
to the gas temperature Tg.

4. Conclusions

Current conventional methods for determining the temperature of non-equilibrium
plasmas are incomplete because they ignore the influence of non-equilibrium effects. To
overcome this problem by applying the Tsallis statistic, temperatures of the non-equilibrium
hydrogen plasma were derived from the distribution function of excited states of hydrogen
atoms, which was calculated using the CR model. First, the excited-state density distribu-
tion was calculated using the CR model of the hydrogen plasma. The excitation distribution
is far from the equilibrium Boltzmann distribution within the present plasma-parameter
range which is typically that of the ionizing plasma, because excitation kinetics in the
plasma is mainly dominated by a ladder-like collisional process. Therefore, Tsallis statistics
was applied to determine the temperature of the excited-state population distribution. To
calculate the excitation temperature of hydrogen plasma with non-equilibrium excited-state
population distribution, its distribution function must be fitted using q-exponential distribu-
tion if Tsallis statistics is introduced. However, it was quite difficult to fit the q-exponential
distribution because it was found to be a self-referenced function that could not be solved
analytically. Therefore, a self-consistent iterative scheme was applied to solve the equations
using a kind of algorithm similar to that of the Hartree–Fock method.

It was verified that the fitting using the q-exponential distribution captures the non-
equilibrium properties better than using the Boltzmann distribution. It was found that
each temperature defined in the course of this study increased with increasing electron
temperature with the same trend. It should be emphasized that T<Uq>, which is defined as a
kind of effective temperature using the q-average energy Uq as T<Uq> = 2〈Uq〉/(3k), agrees
not only with Tq−Tsallis = [1+(1− q)(Sq/k)][(∂Sq)/(∂Uq)]−1 but also with Tq−β = 1/(kβq),
both of which were defined from Tsallis statistics with the Tsallis entropy Sq, as an important
finding in this study. It was also confirmed using the same procedure that the relation that
TGibbs = [(∂S)/(∂U)]−1 agrees with the effective temperature T〈U〉 = (2U)/(3k). At the
temperatures calculated this time, it was found that there was a relationship of Tlow−E >
Tq−Tsallis > TGibbs. Among the temperatures obtained from the distribution function, the
highest one was found to be Tlow−E, which is considered to be a reasonable result.
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