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Abstract: This paper introduces a novel three-dimensional chaotic system that exhibits diverse
dynamic behaviors as parameters vary, including phase trajectory offset behaviors and expansion–
contraction phenomena. This model encompasses a broad chaotic range and proves suitable for
integration within image encryption. Building upon this chaotic system, the study devised a fast
image encryption algorithm with an adaptive mechanism, capable of autonomously determining
optimal encryption strategies to enhance algorithm security. In pursuit of heightened encryption
speed, an FPGA-based chaotic sequence generator was developed for the image encryption algorithm,
leveraging the proposed chaotic system. Furthermore, a more efficient scrambling algorithm was
devised. Experimental results underscore the superior performance of this algorithm in terms of both
encryption duration and security.
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1. Introduction

The rapid evolution of mobile information technology has positioned images as
pivotal carriers of information in societal communication. However, transmitting images
over networks comes with risks. Consequently, addressing security concerns during
image transmission has become a significant topic. Given the voluminous nature, high
redundancy, and real-time demands of image data, traditional encryption techniques are
inadequate for image encryption [1]. Chaotic systems, characterized by complex dynamic
behaviors, sensitivity to initial conditions, and long-term unpredictability of their dynamics,
offer better pseudorandom properties for signal generation [2]. In [3], high-dimensional
conservative chaotic systems were designed using coupled memristors. The chaotic systems
exhibited two types of bifurcation enhancement behaviors, In [4], in the reported fractional-
order hyperchaotic systems, hidden homomorphism extreme multiple stability and initial
offset boosting behavior were found. Ref. [5] designed a multistability and offset-boosting
conservative chaotic system exhibiting rich dynamical behaviors. Ref. [6] proposed a four-
dimensional chaotic system and validated it with a circuit implementation, proving the
physical realizability of the chaotic system. Ref. [7] introduced a conservative dynamical
system exhibiting chaos properties and implemented it on an FPGA. Ref. [8] constructed
two Hamiltonian conservative chaotic systems and designed a pseudorandom signal
generator based on these systems using an FPGA, passing the NIST tests. Moreover,
various chaotic systems have exhibited distinct dynamic behaviors such as hyper-chaos [9],
multi-stability [10], offset-boosted behavior [11], multi-wing attractors [12], and multi-
scroll attractors [13]. These traits underline the inherent advantages of chaotic systems
in the domain of encryption [14,15]. Since Matthews first demonstrated the suitability
of chaos theory in encryption algorithms in 1989 [16], an increasing number of chaotic
image encryption algorithms have been proposed. Ref. [17] combined one-dimensional
chaos with DNA coding techniques to design a robust image encryption algorithm that
is highly resistant to noise and shear attacks. Ref. [18] presented a bidirectional diffusing
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DNA encoding encryption algorithm based on a 5-dimensional chaotic system. Combining
convolution operations, a highly sensitive encryption algorithm was designed in [19].
Ref. [20] designed a conservative chaotic system with coexisting chaotic-like attractors and
developed an image encryption algorithm based on this system, achieving good encryption
results. Ref. [21] designed a novel image encryption algorithm with closed-loop diffusion
between blocks based on a conservative hyperchaotic system. This scheme can ensure the
sensitivity of the encryption system. Experimental results showed this scheme has good
encryption effects. Ref. [22] proposed a conservative system based on a triangular wave
memristor and applied it in image encryption. This scheme has extremely high sensitivity
to initial values and can counter the risk of data reconstruction attacks.

In recent times, an increasing number of encryption algorithms have been proposed,
and these algorithms are becoming increasingly complex. Currently, very few encryption
methods adapt to the different types of images they are encrypting. The lack of an adaptive
mechanism was addressed in [23]. Image encryption algorithms with adaptive mecha-
nisms such as the novel visually meaningful image encryption algorithm based on parallel
compressive sensing and adaptive embedding [24] and the meaningful image encryption
algorithm based on newly designed coupled map lattice and adaptive embedding [25]
have long encryption and decryption processing times, causing them difficulty in meeting
real-time encryption needs. Field programmable gate arrays (FPGAs) are reconfigurable
integrated circuits that can be programmed to perform specific tasks, making them highly
suitable for various complex applications [26]. Moreover, the parallel execution capability
of the Verilog language endows FPGAs with advantages such as high speed and parallel
processing. Chaotic systems implemented with FPGAs can thus achieve faster speeds. With
the continuous advancement of FPGA technologies, an increasing number of chaotic sys-
tems have been implemented with FPGAs. Ref. [27] presented a pseudo-random number
generator based on a discrete hyper-chaotic system with a bit throughput up to 2.10 Gbps
using an FPGA. Ref. [28] proposed a new FPGA-based multi-wing chaotic system. Ref. [29]
realized a fractional memristive chaotic system using an FPGA. Ref. [30] developed a 5D
memristive exponential hyperchaotic system with an FPGA. Ref. [31] designed a new 3D
chaotic system using an FPGA. Additionally, since the entire chaotic system generation
process is encapsulated within the encryption unit, it is difficult for attackers to acquire
the structure of the chaotic system externally, thus physically ensuring the security of the
encryption algorithm [32]. Based on the above analysis, this study combined the fast com-
puting advantages of FPGAs and designed an adaptive fast image encryption algorithm
whose main contributions include: (1) proposing a novel three-dimensional chaotic system,
which was found to demonstrate diverse phase trajectories, offset behaviors, and expansion–
contraction phenomena in response to parameter variations, encompassing a broad chaotic
range suitable for integration within image encryption; (2) implementing this chaotic
system with an FPGA and designing a chaos sequence generator for image encryption;
(3) designing an adaptive fast image encryption algorithm incorporating the chaos se-
quence generator.

The remainder of this paper is organized as follows: Section 2 introduces the proposed
novel three-dimensional chaotic system and presents dynamical analyses, as well as the
FPGA implementation of the chaotic system and chaos sequence generator. Section 3
describes the adaptive fast image encryption algorithm designed in this study. Section 4
provides security analyses to evaluate its security and reliability. Section 5 concludes
the paper.
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2. Chaotic System

2.1. Proposed 3D Chaotic System

According to the method in [33], we propose a new three-dimensional chaotic system.
The mathematical expression of this system is shown in Equation (1)

.
x = ay + cxz− z
.
y = −ex + bz
.
z = x− by− cx2 + d

(1)

This study elucidates the dynamical behaviors of the conservative chaotic system (1)
under periodic and chaotic regimes. The periodic parameter set is specified as
a = 2, b = 4, c = 2, d = 1, e = 2, with the initial condition (1, 1, 1). The chaotic parame-
ter set is given by a = 2, b = 4, c = 2, d = 10, e = 2, under the identical initial condition. The
resulting phase portraits (x–y, y–z, x–z planes) in Figure 1a–c exhibit smooth topologies,
indicative of periodic motions, whereas Figure 1d–f manifest irregular traits, signifying
chaotic dynamics. The 0–1 test further distinguishes the periodic (Figure 1g) and chaotic
(Figure 1h) trajectories. Additionally, the Lyapunov exponents take values (0, 0, 0) and
(−0.23, 0, 0.23) for the periodic and chaotic scenarios, respectively, with vanishing sums
obeying conservation laws. This substantiates the unique dynamical behaviors of system (1)
under the periodic and chaotic regimes.
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Figure 1. Basic phase diagram of the system: (a) x–y Plane (period); (b) y–z Plane (period);
(c) x–z Plane (period); (d) x–y Plane (Chaos); (e) y–z Plane (Chaos); (f) x–z Plane (Chaos);
(g) 0–1 test (periodic); (h) 0–1 test (chaotic).
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2.2. Different Phase Trajectories Varying with b, c

This study elucidates the dynamical behaviors of system (1) by modulating the control
parameters b and c. The Lyapunov exponent spectrum as a function of b within the
interval [1,10] is delineated in Figure 2a, For a three-dimensional continuous chaotic system,
its Lyapunov exponent is shown in Equation (2) [34]:

LE1 = σ1 = lim
t→∞

1
t ln |δx(t)|

|δx(0)|

LE2 = σ2 = lim
t→∞

1
t ln |δy(t)|

|δy(0)|

LE3 = σ3 = lim
t→∞

1
t ln |δz(t)|

|δz(0)|

(2)

where LE1 ≥ LE2 ≥ LE3 signify the three Lyapunov exponents. Figure 2b illustrates the
bifurcation diagram of the local maxima of the variable x versus b, congruent with the
dynamical characteristics embodied in the Lyapunov exponent spectrum.
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Figure 2. Lyapunov exponential spectrum and bifurcation diagram with b: (a) Lyapunov exponential
spectra; (b) bifurcation diagram.

To further scrutinize the sensitivity of system (1) to b, the x–y phase portraits for various
b values are expounded in Figure 3. The topological structures of these conservative flows
are distinct from each other. Figure 3 only showcases six types of conservative flow patterns
generated by system (1). In fact, myriad other morphologies of conservative flows exist,
substantiating that system (1) exhibits abundant dynamical behaviors.
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In a similar vein, with regard to the parameter c, Figure 4 portrays the Lyapunov
exponent spectra and bifurcation diagram encompassing the interval c ∈ [1, 10]. The phase
portraits in the x–y plane, delineating the dynamics of system (1) across a range of c values,
are delineated in Figure 5. Over the course of this progression, system (1) experiences a
rhythmic interplay between quasiperiodic and chaotic regimes. Upon a detailed inspection
of Figure 5, it becomes discernible that these topological configurations governing the con-
servative flows exhibit pronounced variations. It is imperative to underscore that Figure 5
exclusively showcases six discrete manifestations of conservative attractors generated by
the dynamic interplay of system (1). It is worth noting that the actual array of conserva-
tive attractor forms is even more extensive and heterogeneous, thereby accentuating the
intricate and multifaceted nature of the system’s dynamical behavior.
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2.3. Large-Scale Chaos That Varies with d

Through simulations, it has been observed that System (1) possesses an extensive
region of chaotic behavior. Let d be the control variable; the Lyapunov exponent spectrum
and bifurcation diagram depicting variations with respect to d are presented in the Figure 6.
Notably, the entire range of Lyapunov exponents (LEs) within this interval is positive,
indicating chaotic motion. This correspondence with positive LEs is also reflected in the
irregular points of the bifurcation diagram. It is important to highlight that the figure
displays only a partial interval (d ranging from 4 to 20). In practice, when d exceeds 20,
System (1) consistently exhibits chaotic behavior.
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2.4. Offset Behavior That Varies with e

With the manipulation of the control parameter e, the dynamical trajectories of System
(1) demonstrate distinct displacement patterns along the x and z axes. By adopting an
incremental interval of 1, a selection of five parameter sets is curated, initiating from a
value of 3. Figure 7 portrays the x–z phase trajectory plots corresponding to e values of 3, 4,
5, 6, and 7. Evidently, as the control parameter e escalates, the phase trajectories depicted
in Figure 7 undergo varying magnitudes of deviation in both the x and z dimensions,
cohesively materializing as motion along the diagonal axis.
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Figure 7. Phase trajectories varying with e.

2.5. Contour Shrinks as x Expands and Contracts

For system (1) under periodic regimes with initial conditions (x0, 1, 1), seven x0 values
of 0, ±1, ±2, ±3 are prescribed. The consequent phase trajectory evolutions are elucidated
in Figure 8a,b. Astute examination with 0 as the critical point (purple phase portrait)
unveils the pattern upon varying x0. When x0 is negative, the global contour of the phase
trajectories contracts with increasing x0. Likewise, when x0 is positive, the overall contour
shrinks as x0 increases. That is, the phase portraits expand with escalating absolute value
of x0.
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2.6. Complexity

Complexity serves as a robust indicator for assessing the degree of randomness within
sequences. Currently, a plethora of algorithms are employed to gauge the complexity
of testing systems, including spectral entropy (SE), wavelet entropy (WE), Kolmogorov
entropy, and the C0 complexity algorithm, among others [35–39]. In order to assess the
complexity of the present system, this study employs both SE and the C0 complexity
algorithm to determine their suitability for information security applications. The SE
algorithm [40] utilizes the energy distribution in the Fourier transform domain. Based on
the Shannon entropy algorithm, the spectral entropy value is obtained. The algorithm is
shown in Equation (3)

SE(N) =
−∑

N
2−1
k=0 Pkln Pk

ln
(

N
2

) (3)
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where Pk =
|X(k)|2

∑
N
2 −1

k=0 |X(k)|2
, X(k) is Perform discrete Fourier transform on Equation (4):

x(n) = x(n)− 1
N

N−1

∑
n=0

x(n) (4)

The specific calculation steps of the C0 complexity algorithm are shown in Equation (5) [41]:

C0(r, N) =
N−1

∑
n=0

∣∣∣x(n)− ∼x(n)∣∣∣2/
N−1

∑
n=0
|x(n)|2 (5)

with higher values indicating greater system complexity. Figure 9 is constructed with
x0 and y0 as control variables and parameters a = 2, b = 4, c = 2, d = 10, and e = 2. The
initial condition is set as (x0, y0, 0.2), where x0 ∈ [−3, 3] and y0 ∈ [−3, 3]. The extensive
regions with elevated numerical values depicted in the figure signify the system’s profound
complexity, rendering it suitable for employment in image encryption endeavors.
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2.7. NIST Test

To test the randomness of the chaotic sequences generated by the chaotic system (1) in
the encryption algorithm, the key is injected into system (1) for iteration M × N (M × N is
related to the size of the encrypted image). Afterwards, randomness tests are performed
on the generated sequences. In this section, the SP800-22 Rev1a standard is adopted for
testing. The resulting p-values from these tests are presented in Table 1. As per the standard,
sequences are deemed to possess randomness when their p-values exceed 0.01. If the tested
sequence successfully passes all tests, its robust randomness is substantiated [42,43].

Table 1. NIST test of proposed 3D chaotic system.

Test p-Value (X) p-Value (Y) p-Value (Z) State

Frequency 0.2653 0.2460 0.9793 PASS
BlockFrequency 0.7785 0.4092 0.4190 PASS

CumulativeSums 0.8331 0.9437 0.6171 PASS
Runs 0.1059 0.9967 0.5615 PASS

LongestRun 0.0240 0.2106 0.6260 PASS
NonOverlappingTemplate 0.9768 0.3383 0.9537 PASS

Serial 0.8222 0.3072 0.1387 PASS
LinearComplexity 0.9772 0.9043 0.9307 PASS

RandomExcursions 0.4870 0.6111 0.8557 PASS
RandomExcursionsVariant 0.5523 0.7880 0.4997 PASS

ApproximateEntropy 0.0785 0.1275 0.6155 PASS
Universal 0.1756 0.5527 0.6179 PASS

FFT 1.0000 0.4009 0.4420 PASS
Rank 0.2272 0.1482 0.4449 PASS

OverlappingTemplate 0.4878 0.2704 0.5078 PASS
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2.8. Key Sensitivity

Figure 10 presents the key sensitivity test results for system (1). By introducing minute
perturbations of 10−15 to the initial value x0 and comparing the resultant sequences after
50 iterations, it is evident that system (1) exhibits high sensitivity to initial conditions,
rendering it suitable for image encryption applications.
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2.9. FPGA Chaotic Sequence Generator Design

In this study, the proposed three-dimensional chaotic system is implemented on an
FPGA as a chaotic sequence generator. To validate the correctness of the FPGA imple-
mentation, the generated chaotic sequences are output to an oscilloscope for analysis. The
Cyclone IV E EP4CE10F17C8 is utilized as the main control chip to drive the dual-channel
digital-to-analog converter DAC8552 for analog signal output. After verification, the chaotic
sequences are transmitted to the encryption system via a serial communication circuit, with
the computation controlled by push buttons. The hardware design scheme is depicted in
Figure 11.
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2.9.1. FPGA Chaotic System Validation

The Euler algorithm, as a means of solving differential equations [44], can be utilized
to discretize chaotic systems [45]. Ref. [46] deployed a chaotic system on an FPGA using the
Euler algorithm. However, due to the high sensitivity of this system to initial values, higher
computational precision is required. The use of the Euler algorithm may lead to degrada-
tion of chaos. An improved Euler algorithm can effectively improve the computational
accuracy [47,48]. In this paper, the improved Euler algorithm is adopted to discretize the
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system (1). The circuit is designed based on the discretized chaotic system. The discretized
expressions are shown in (6) to (10): 

H1 = x0
H2 = y0
H3 = z0

(6)


J1 = a× H2 + c×H1 × H3 − H3

J2 = −e× H1 + b× H3
J3 = −b×H2 − c×H1 × H1 + d + H1

(7)


K1 = H1 + 0.005× J1
K2 = H2 + 0.005× J2
K3 = H3 + 0.005× J3

(8)


L1 = a× K2 + c× K1 × K3 − K3

L2 = −e× K1 + b× K3
L3 = −b× K2 − c× K1 × K1 + d + K1

(9)


Y1 = H1 + 0.01× L1
Y2 = H2 + 0.01× L2
Y3 = H3 + 0.01× L3

(10)

In Equation (2), x0, y0, z0 denote the required initial values for the system.
The chaotic system is implemented in Verilog HDL; the actual connections are shown

in Figure 12, with the generated logic structure wiring diagram shown in Figure 13. U1 is a
floating-point adder module, U2 is a floating-point multiplier module, U0 is an iterative
distribution module to realize Equations (6)–(10), U3 is a floating-point to fixed-point
conversion module, U6 performs timing synchronization, and U7 drives the DAC8552.
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The phase trajectories obtained from MATLAB simulation are shown in Figure 1a–f,
Figures 3a–c and 5b,d,e. With the same parameters, the phase portraits realized on the
FPGA are depicted in Figure 14. By comparing with the simulated phase trajectories, it is
validated that the FPGA can successfully implement system (1), demonstrating the accuracy
of the FPGA chaotic system implementation.
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2.9.2. Pseudo-Random Sequence Generator Design

This subsection extends the design presented in Section 2.9.1 by incorporating a chaos
sequence processing module (called “prng”) and a serial transmission module (called
“uart_send”) to construct a chaos sequence generator. The chaos sequence processing
module disassembles the three-dimensional chaotic sequence into 8-bit data segments, in
accordance with the protocols delineated in Table 2 and Figure 15. This segmentation is
undertaken to facilitate handling of integer values ranging from 0 to 255. Subsequently, the
disintegrated data are cyclically emitted through a state machine-based mechanism.

Table 2. Data decomposition rules.

Input Data Output Data

[15-0bit]x [7-0bit]x [15-8bit]x
[15-0bit]y [7-0bit]y [15-8bit]y
[15-0bit]z [7-0bit]z [15-8bit]z
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The serial transmission module implements serial communication to transmit the
processed random numbers. As shown in Figure 16, you can see the data received on the
PC side through the serial debugging tool.
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To verify the randomness of the data generated by the chaotic sequence generator,
the SP800-22 Rev1a test suite was utilized to test the sequences produced by the chaotic
sequence generator. SP800-22 Rev1a recommends using test sequence lengths between 103

and 107. In this section, a test sequence length of 106 was chosen. The test results are shown
in Figure 17, demonstrating that the sequences generated by the chaotic sequence generator
are random and suitable for use in image encryption. The generated logic structure wiring
diagram is shown in Figure 18
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3. Encryption Algorithm

This section elucidates the encryption algorithm adopted in this study. In the pre-
encryption stage, the raw image is pre-processed into a 64 × 64 grayscale image to meet
pre-encryption requirements. And in the pre-encryption stage, exhaustive exploration of
all possible block schemes is conducted. The optimal encryption strategy for the current
state is determined via pertinent evaluation functions, with the optimal solution being fed
back into the encryption system. Simultaneously, the optimal solution is embedded into the
least significant bit of the encrypted image. Lastly, a fast scrambling algorithm is designed
to further encrypt the image. The overall encryption scheme is illustrated in Figure 19.
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3.1. Chunk Encryption Algorithm

This paper proposes a chunk encryption algorithm designed to further reduce the
computational time of the encryption algorithm. The specific procedure of the chunk
algorithm is outlined as follows:

Step 1: The original image A is read and its dimensions are obtained, where M is the
image length and N is the image width.

Step 2: Extract the RGB components of the color image.
Step 3: A pseudo-random sequence generator is utilized to produce the random matrix

B with the same dimensions as the image.
Step 4: Inject the initial parameters of the chaotic system as the key simultaneously

into the pseudorandom sequence generator and system (1) to generate the pseudorandom
matrix B and pseudorandom sequences x, y, z required for encryption.

Step 5: Perform chunking on image A and pseudorandom matrix B, where the chunk-
ing process is shown in Figure 20. The parameter F controls the chunk size.

Step 6: Substitute the chunked image A and chunked pseudorandom sequence B into
Equation (11) to encrypt the pixel values of image A.

Di =

{
(Ai + Bi + AM)mod256, i = 1

(Ai + Bi + Di−1)mod256, i ∈ [2, M]
(11)

In the equation, Ai represents the image data matrix of size F ×M after partitioning,
Bi represents the pseudorandom matrix of size F ×M after partitioning, and Di represents
the encrypted data.
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When encrypting the first chunk of data, the first chunk of A, the last chunk of A,
and the first chunk of B need to be added together modulo and then encrypted to the first
chunk of D. When encrypting other chunks of data, the current chunk of A, the current
chunk of B, and the previous chunk of D are used for encryption. Figure 21 helps better
understand the algorithm equation above. Figure 22 demonstrates the comparison of
encryption time for point-by-point encryption and different chunking strategies, It can be
found. During encryption, matrix operations have faster encryption speeds compared to
point-by-point operations.
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Step 7: Repeat Steps 4 through 6 for the encryption of the RGB components.
Impact of Different Chunking Strategies on Encryption Performance
During the design phase, we observed that different block strategies result in varying

encryption outcomes for different images. This study conducts distinct evaluations for
blocks of sizes 1, 2, 4, 8, 16, 32, and 64 rows, respectively. The evaluation encompasses
encrypted information entropy, correlation, resistance against differential attacks, encryp-
tion time, and a comparison of structural similarity before and after encryption. In order
to vividly portray the encryption performance under distinct block strategies, this paper
performs data normalization across all datasets. The encryption performance of various
images under different block strategies is depicted in Figure 23.
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3.2. Adaptive Chunking Design

To determine the optimal encryption strategy, an adaptive block-based encryption
process is designed to select different block schemes based on the image for improved
encryption performance. The specific steps are:

Step 1: The image is resized to a 64 × 64 grayscale image.
Step 2: Pre-encryption is performed using the block diffusion algorithm in Section 3.1.
Step 3: All block schemes are iterated, and the entropy, correlation, encryption time,

and structural similarity before and after encryption are computed for each scheme.
Step 4: An evaluation function assesses the overall performance of each scheme and

derives the optimal solution.
Step 5: The optimal solution is embedded in the encrypted image matrix for decryption.

3.2.1. Data Concealment Design

In the phase of data concealment design, the optimal solution is embedded within a
set of data by utilizing the least significant bits. Given the maximum block strategy of 64 in
the design, 7 bits of data are required to conceal the optimal solution. A matrix W of size
7 ×M is acquired using a chaotic sequence generator, where M represents the length of
the image. Both matrix W and the optimal solution are converted into binary form. Each
column within matrix W corresponds to a group, and the optimal solution is written into
the least significant bit of each group, thereby achieving data concealment. The schematic
is shown in Figure 24.

Entropy 2023, 25, x FOR PEER REVIEW 20 of 36 
 

 

 
Figure 24. Schematic diagram of data steganography. 

Specifically, the 1st to 7th values of the chaotic sequence z are selected and processed 
using Equation (12) to yield FZ.  FZ = ⌈(Z × 2ଵ଺)modM⌉ (12)

Each row of the steganographic matrix W is inserted into the FZ rows of the image 
encryption matrix. Through the utilization of a scrambling algorithm, this matrix can be 
concealed within the image data encryption matrix. 

3.2.2. Evaluation Function Design 
The evaluation function incorporates four key assessment metrics: information en-

tropy (E1), correlation (C1), time (T1), and structural similarity (S1). In terms of encryption 
effectiveness, we strive for information entropy (E1) to approach 8 for superior perfor-
mance, correlation (C1) to approximate zero for better results, minimal time consumption 
indicated by (T1), and reduced structural similarity (S1) for enhanced performance. 
Guided by these evaluation criteria, a decision matrix, as illustrated in Table 3, has been 
formulated. 

Table 3. Evaluation function decision table. 

 E1 C1 T1 S1 
ideal solution 8 0 0 0 

negative ideal solution 6.5 1 10 1 

To mitigate the influence of dimensions, it is essential to subject the four variables 
mentioned above to standardized processing. Utilizing normalization, each of the indica-
tors is mapped onto the interval [0, 1], Furthermore, Equation (13) is employed to compute 
the Euclidean distance between the evaluation metrics produced by each block strategy 
and the ideal as well as negative ideal values. ቊ𝐷ା = ඥ(𝐸௠௔௫ − 𝐸1)ଶ + (𝐶௠௔௫ − 𝐶1)ଶ + (𝑇௠௔௫ − 𝑇1)ଶ + (𝑆௠௔௫ − 𝑆1)ଶ𝐷ି = ඥ(𝐸௠௜௡ − 𝐸1)ଶ + (𝐶௠௜௡ − 𝐶1)ଶ + (𝑇௠௜௡ − 𝑇1)ଶ + (𝑆௠௢௡ − 𝑆1)ଶ  (13)

The relative proximity gradient (R) for each block strategy is subsequently computed 
using Equation (14). 𝑅 = 𝐷ି𝐷ି + 𝐷ା (14)

In conclusion, the R values derived from all block strategies are arranged in ascend-
ing order, with the block strategy yielding the highest R value being selected as the opti-
mal solution. 

Figure 24. Schematic diagram of data steganography.

Specifically, the 1st to 7th values of the chaotic sequence z are selected and processed
using Equation (12) to yield FZ.

FZ =
⌈(

Z× 216
)

modM
⌉

(12)

Each row of the steganographic matrix W is inserted into the FZ rows of the image
encryption matrix. Through the utilization of a scrambling algorithm, this matrix can be
concealed within the image data encryption matrix.

3.2.2. Evaluation Function Design

The evaluation function incorporates four key assessment metrics: information entropy
(E1), correlation (C1), time (T1), and structural similarity (S1). In terms of encryption
effectiveness, we strive for information entropy (E1) to approach 8 for superior performance,
correlation (C1) to approximate zero for better results, minimal time consumption indicated
by (T1), and reduced structural similarity (S1) for enhanced performance. Guided by these
evaluation criteria, a decision matrix, as illustrated in Table 3, has been formulated.
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Table 3. Evaluation function decision table.

E1 C1 T1 S1

ideal solution 8 0 0 0
negative ideal

solution 6.5 1 10 1

To mitigate the influence of dimensions, it is essential to subject the four variables
mentioned above to standardized processing. Utilizing normalization, each of the indicators
is mapped onto the interval [0, 1], Furthermore, Equation (13) is employed to compute the
Euclidean distance between the evaluation metrics produced by each block strategy and
the ideal as well as negative ideal values.D+ =

√
(Emax − E1)2 + (Cmax − C1)2 + (Tmax − T1)2 + (Smax − S1)2

D− =
√
(Emin − E1)2 + (Cmin − C1)2 + (Tmin − T1)2 + (Smon − S1)2

(13)

The relative proximity gradient (R) for each block strategy is subsequently computed
using Equation (14).

R =
D−

D− + D+
(14)

In conclusion, the R values derived from all block strategies are arranged in ascending
order, with the block strategy yielding the highest R value being selected as the optimal
solution.

3.3. Scrambled Encryption Algorithm

In the context of the scrambling encryption process, we have devised a rapid algo-
rithm inspired by Rubik’s Cube shifting. The image matrix achieves rapid scrambling
through a combination of row and column shifts, where the shift stride is controlled by
a chaotic system and the shifting direction is determined by the pixel points within the
image. Hereinafter, we will expound on the devised scrambling encryption algorithm,
incorporating Figure 25.

Step 1: Read the block encryption matrix D and ascertain the dimensions of the image
to be encrypted. Let M represent the image length, and N the image width.

Step 2: Extract the RGB components of the encryption matrix D.
Step 3: Employ the initial parameters of the chaotic system as the key input into

Equation (1). Discard the first 500 points to eliminate transient effects of the chaotic system,
yielding the chaotic sequences x1 and x2.

Step 4: Obtain the key parameter n and extract n to M + n position from the x sequence
to control row shifts. Apply Equation (15) to process the chaotic sequence x, engendering
a pseudo-random sequence Z1 of length M, varying within the range of 0 to M. Here, M
denotes the image width. {

X1 = xi i ∈ (n, M + n)
Z1 =

⌈(
X1× 216)modM

⌉ (15)

Step 5: Extract M + n + 1 to 2M + n position from the x sequence and substitute them
into Equation (16) to beget a sequence L1 of length M−1.{

X2 = xi i ∈ (M + n + 1, 2M + n)
L1 =

⌈(
X2× 216)modM

⌉ (16)
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Step 6: Perform cyclic shift processing on the first row of image matrix D using
Equation (17).

PBi = (D >>> (N− Z1i)|(Di <<< Z1i)), i = 1 (17)

Step 7: The L1 value is used to select a pixel from the previous row. The numeric value
of this pixel controls the shift direction, with odd numbers corresponding to cyclic right
shifts, and even numbers to cyclic left shifts, processed by Equation (18).{

PBi = (Di >>> (N− Z1i)|(Di <<< Z1i)), if D(i− 1, L1i) = 2n, i ∈ [2, M]
PBi = (Di <<< (N− Z1i)|(Di >>> Z1i)), if D(i− 1, L1i) = 2n + 1, i ∈ [2, M]

(18)

Step 8: Similarly, bits n to N + n of the y sequence are extracted to control column
shifts. Substituting into Equation (19) gives the shift strides Z2 required for column shifts,
where N denotes image width.{

X3 = yi i ∈ (n, N + n)
Z2 =

⌈(
X3× 216)modN

⌉ (19)

Step 9: Bits N + n + 1 to 2N + n of y are taken and applied in Equation (20) to generate
the parameter L2 controlling column shift directions.{

X4 = yi i ∈ (N + n + 1, 2N + n)
L2 =

⌈(
X4× 216)modN

⌉ (20)

Step 10: Cyclic column shifts are performed on each column of matrix PB using
Equation (21) to obtain the column-shifted matrix AA.

AAj =
(
PBj >>>

(
M− Z2j

)∣∣(PBj <<< Z2j
))

, j = 1
AAj =

(
PBj >>>

(
M− Z2j

)∣∣(PBj <<< Z2j
))

, if PB
(
L2j, j− 1

)
= 2n, j ∈ [2, N]

AAj =
(
PBj <<<

(
M− Z2j

)∣∣(PBj >>> Z2j
))

, if PB
(
L2j, j− 1

)
= 2n + 1, j ∈ [2, N]

(21)

Step 11: Repeat Steps 4–10 to scramble the RGB components.
Figure 26 shows a comparison with several conventional algorithms, which indicates

that the proposed algorithm is the least time-consuming and is suitable to be applied to
achieve fast image encryption.
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3.4. Decryption Algorithm

Decryption is the inverse process of encryption, and the overall flow of decryption is
shown in Figure 27.
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First, the encrypted image must undergo scrambling decryption. The encryption
matrix AA is column-decrypted using Equation (22) to obtain matrix PBK:

PBKj =
(
AAj <<<

(
M− Z2j

)∣∣(AAj <<< Z2j
))

, j = 1
PBKj =

(
AAj <<<

(
M− Z2j

)∣∣(AAj >>> Z2j
))

, if P
(
L2j, j− 1

)
= 2n, j ∈ [2, N]

PBKj =
(
AAj >>>

(
M− Z2j

)∣∣(AAj <<< Z2j
))

, if P
(
L2j, j− 1

)
= 2n + 1, j ∈ [2, N]

(22)

Then, Equation (23) is utilized to acquire the row decryption matrix DZ:
DZi = (PBKi <<< (N− Z1i)|(PBKi <<< Z1i)), i = 1

DZi = (PBKi <<< (N− Z1i)|(PBKi >>> Z1i)), if P(i− 1, L1i) = 2n, i ∈ [2, M]
DZi = (PBKi >>> (N− Z1i)|(PBKi <<< Z1i)), if P(i− 1, L1i) = 2n + 1, i ∈ [2, M]

(23)

After scrambling decryption, matrix DZ is utilized to extract the hidden matrix W via
Equation (8). The optimal solution F is restored based on the rules in Section 3.2.1 for
subsequent decryption. Note that the restored data may have missing or altered values.
The mode value from a data group is chosen as the optimal solution F for the next step of
decryption.

Finally, further decryption of the encryption matrix DZ is conducted using Equa-
tion (24) to acquire the decrypted image I:

Ii =

{
(DZi −DZi−1 − Bi)mod256, if i ∈ [2, M]

(DZi − IM − Bi)mod256, if i = 1
(24)

4. Security Analysis

4.1. The Results of Encryption and Decryption

To assess the encryption performance of this algorithm, we conducted tests using
images of varying sizes, as shown in Table 4. The experimental testing was performed
on the Matlab R2023a platform. The results of the experimental tests are illustrated in
Figure 28.
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Table 4. The data of test images.

Name of the Image Image Type Image Size

Cameraman.bmp Grayscale image 256 × 256
Baboon.jpg Color image 256 × 256
House.png Color image 256 × 256

Airplane.bmp Color image 512 × 512
Pepper.tiff Color image 512 × 512
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Figure 28. Encryption and decryption renderings of the test images: (a) encryption and decryption
image of cameraman; (b) encryption and decryption image of baboon; (c) encryption and decryption
image of house; (d) encryption and decryption image of airplane (e) encryption and decryption image
of pepper.
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4.2. Histogram Analysis

Figure 29 depicts the three-dimensional histograms of different images before and
after encryption. It is evident that the pixel distribution becomes uniform after encryption,
validating the algorithm’s robustness against statistical analysis attacks.
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Figure 29. Three-dimensional histograms of the original and encrypted images: (a) baboon, (b) house,
(c) airplane, (d) pepper.

4.3. χ2 Test

Furthermore, we can assess the histogram distribution based on testing. According
to Equation (25), we computed the image, and when the calculated result is less than
293.2483, it indicates that the distribution of the encrypted image on the histogram is
relatively uniform.

χ2 =
M∗N

∑
i=0

(Ki − Si)
2

Si
(25)

The encrypted images were tested, and the results are shown in Table 5.

Table 5. Different images χ2 Test data results.

Image
χ2 Test

R G B

Baboon (256 × 256) 236.8828 248.0649 255.3281
House (256 × 256) 260.0078 264.8750 223.5625

Airplane (512 × 512) 251.3828 241.2832 252.7246
Pepper (512 × 512) 231.4551 232.3555 248.7051

4.4. Information Entropy

The information entropy of the image can be calculated using Equation (26):

H = −
N−1

∑
i=0

P(Si)log2 P(Si) (26)

The closer the encryption result is to 8, the higher the security of the encryption
algorithm. Table 6 provides the entropy of the test images, and the entropy comparison
with other algorithms is presented in Table 7. Figure 30 offers a more visual depiction of
the comparative results.
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Table 6. Information entropy of plaintext image and ciphertext image.

Image/Size RGB Components of the Image Information Entropy of
Plaintext Image

Information Entropy of
Ciphertext Image

Cameraman.bmp (256 × 256) - 7.0097 7.9974
R 7.5856 7.9974

Baboon.jpg G 7.8284 7.9973
256 × 256 B 7.3319 7.9972

R 6.4311 7.9974
House.png G 6.5389 7.9977
256 × 256 B 6.2320 7.9977

R 6.7178 7.9993
Airplane.bmp G 6.7990 7.9993

512 × 512 B 6.6390 7.9994
R 7.3319 7.9994

Pepper.tiff G 7.5254 7.9993
512 × 512 B 7.0973 7.9994

Table 7. Comparison of information entropy with other algorithms.

Encryption
Algorithm R G B

Pepper.png
(512 × 512)

Proposed 7.9994 7.9993 7.9994
Ref. [49] 7.9993 7.9993 7.9994

House.png
(256 × 256)

Proposed 7.9974 7.9977 7.9977
Ref. [50] 7.9970 7.9976 7.9975

Airplane.bmp
(512 × 512)

Proposed 7.9993 7.9993 7.9994
Ref. [51] 7.9993 7.9992 7.9994

Baboon.jpg
(256 × 256)

Proposed 7.9974 7.9973 7.9972
Ref. [52] 7.9965 7.9963 7.9967
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4.5. Adjacent Pixel Correlation

Equations (27)–(30) are utilized to calculate the correlation coefficients between adja-
cent pixels. The closer the correlation coefficients of the ciphertext are to 0, the higher the
level of security.

ρ(x, y) =
cov(x, y)√

D(x)
√

D(y)
(27)
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where

Cov(x, y) =
1
N

N

∑
i=1

[xi − E(x)][yi − E(y)] (28)

D(x) =
1
N

N

∑
i=1

[xi − E(x)]2 (29)

E(x) =
1
N

N

∑
i=1

xi (30)

By evaluating the correlations before and after encrypting the Lena image as depicted
in Figure 31, it becomes visually evident that the correlations in various directions are
significantly reduced after encryption. Table 8 provides a comparison of correlations with
other encryption algorithms.
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B-channel correlation after encryption. 

Table 8. Comparison with correlation coefficients of other studies. 

Correlation This Paper Ref. [53] Ref. [49] Ref. [52] Ref. [51] Ref. [50] Ref. [54] 
Red Channel        
Horizontal −0.0011 0.0030 −0.0050 0.00073 −0.0049 −0.0013 −0.0050 

Vertical −0.0014 −0.0022 −0.0084 0.00311 −0.0174 −0.0111 −0.0025 
Diagonal 0.0005 0.0006 −0.0062 −0.00508 0.0045 0.0046 0.0035 

Figure 31. Correlation comparison before and after image encryption. (a) R-channel correlation
before encryption. (b) G-channel correlation before encryption. (c) B-channel correlation before
encryption. (d) R-channel correlation after encryption. (e) G-channel correlation after encryption.
(f) B-channel correlation after encryption.

Table 8. Comparison with correlation coefficients of other studies.

Correlation This Paper Ref. [53] Ref. [49] Ref. [52] Ref. [51] Ref. [50] Ref. [54]

Red Channel
Horizontal −0.0011 0.0030 − 0.0050 0.00073 −0.0049 − 0.0013 −0.0050

Vertical − 0.0014 −0.0022 − 0.0084 0.00311 −0.0174 − 0.0111 −0.0025
Diagonal 0.0005 0.0006 −0.0062 −0.00508 0.0045 0.0046 0.0035

Green
Channel

Horizontal −0.0016 −0.0091 0.0163 −0.00054 0.0011 0.0135 −0.0096
Vertical −0.0004 −0.0129 −0.0101 0.00076 −0.0156 0.0064 −0.0032

Diagonal 0.0007 0.0043 0.0117 0.00331 −0.0160 −0.0241 −0.0023
Blue Channel

Horizontal −0.0013 −0.0113 −0.0162 0.00147 −0.0045 0.0179 0.0018
Vertical −0.0029 −0.0038 0.0273 −0.00147 −0.0175 0.0131 0.0015

Diagonal −0.0031 −0.0164 0.0256 0.006219 0.0018 0.0023 −0.0042
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4.6. Differential Attack Analysis

In this study, the encrypted images underwent differential attack testing. The computation
formulas for differential attack resistance are respectively shown in Equations (31)–(33).

NPCR =

M
∑

i=1

N
∑

j=1
D(i, j)

M× N
× 100% (31)

UACI =

M
∑

i=1

N
∑

j=1
|P1(i, j)− P2(i, j)|

255×M× N
× 100% (32)

where

D(i, j) =
{

0 P1(i, j) = P2(i, j)
1 P1(i, j) 6= P2(i, j)

(33)

The theoretically ideal values of UACI and NPCR, computed according to the afore-
mentioned equations, are 33.4635% and 99.6094% respectively. For this study, three test
images of the same size were chosen. Among these images, 20 randomly selected pixel
values were subjected to testing. The calculated NPCR and UACI values are presented
in Figure 32. The average NPCR and UACI values for 20 points in the Lena image are
compared with those reported in other studies in Table 9.
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Figure 32. Anti-differential attack test: (a) NPCR test results for different images; (b) UACI test
results for different images.

Table 9. Comparison of NPCR and UAIC results for Lena color image.

Encryption
Algorithm

NPCR (%) UACI (%)
R G B R G B

Proposed 99.6110 99.6068 99.6030 33.4318 33.4552 33.4678
Ref. [49] 99.6826 99.6170 99.5773 33.5152 33.5370 33.3782
Ref. [52] 99.6245 99.6245 99.6245 33.0704 30.7620 27.8720
Ref. [51] 99.6257 99.6145 99.6257 33.4892 33.4798 33.4916
Ref. [50] 99.6429 99.6628 99.6261 33.4440 33.4876 33.4167
Ref. [54] 99.6116 99.6052 99.6070 33.4382 33.4862 33.4426

4.7. Noise Attack

In this paper, we simulated the noise attack by adding different densities of noise
to the ciphertext image, and Figure 33 shows the decryption effect after adding different
densities of noise.
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Figure 33. Decrypted image under different levels of noise attack. (a) Noise density of 0.01. (b) Noise
density of 0.05. (c) Noise density of 0.1. (d) Noise density of 0.15.

Here, we introduce the Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity
(SSIM) metrics to evaluate the effectiveness of encryption and decryption on images sub-
jected to noise. A higher PSNR value indicates better image quality, while an SSIM value
closer to 1 indicates superior image quality, as displayed in Table 10. It can be observed
that the algorithm exhibits a certain degree of noise resistance.

Table 10. Calculation of PSNR and SSIM of images after adding different levels of noise.

Noise Intensity PSNR SSIM

0.01 25.4208 0.9454
0.05 19.1361 0.7984
0.1 16.3294 0.6637

0.15 14.7205 0.5627

4.8. Occlusion Attack

During transmission, images may also be subjected to malicious occlusion. This study
verifies the algorithm’s resilience against occlusion by decrypting ciphertext images that
have been occluded to different extents. Figure 34 illustrates the decryption outcomes
for images occluded to varying degrees. Table 11 provides evaluation values using SSIM
and PSNR metrics for the decrypted images after occlusion. It can be observed that the
algorithm possesses a certain degree of occlusion resistance.
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Table 11. Calculation of PSNR and SSIM for images with different levels of Occlusion.

Occluded Degree PSNR SSIM

1/32 23.1124 0.9169
1/16 20.1185 0.8483
1/8 17.1374 0.7400
1/4 14.0933 0.5578

4.9. Opting for a Plaintext Attack

The encrypted results of entirely black and entirely white plaintext images are depicted
in Figure 35. Table 12 presents the calculated results for the ciphertext images’ entropy,
chi-square test, and correlation coefficients between adjacent pixels. From the outcomes, it
is evident that the encryption algorithm in this study is effective in encrypting both entirely
black and entirely white plaintext images. Additionally, within the encryption process,
this study designed algorithms related to the plaintext to counteract the occurrence of
equivalent keys [55], thereby thwarting chosen-plaintext attacks.
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(b) Encryption and decryption image of all-white image.

Table 12. Information entropy and correlation coefficients for test images.

χ2 Test
Information

Entropy
Correlation

Horizontal Vertical Diagonal

All-black
encrypted image 283.5584 7.9993 −0.0049 −0.0051 −0.0033

All- white
encrypted image 237.5155 7.9991 −0.0049 −0.0051 −0.0033

4.10. Encryption Time

To assess the encryption speed of the algorithm proposed in this study, experimental
testing was conducted using Matlab R2023a on a system with the following specifications:
CPU: AMD Ryzen 7 5800H, RAM: 16.0 GB. Images of different sizes and types were used to
test the encryption time, and the results are presented in Table 13. A comparison with results
from other studies is shown in Table 14. Figure 36 provides a more visual representation of
the comparative outcomes.

Table 13. Different-size color image encryption time tests (Unit: s).

Image Types 256 × 256 512 × 512 768 × 768 1024 × 1024

Grayscale image 0.007677 0.017778 0.038957 0.076597
Color image 0.022775 0.046174 0.109098 0.210875
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Table 14. Comparison of encryption times for different algorithms (Unit: s).

Encryption
Algorithm 128 × 128 × 3 256 × 256 × 3 512 × 512 × 3 1024 × 1024 × 3

Proposed 0.006990 0.020775 0.044174 0.208875
Ref. [53] 0.05621 0.27413 1.01921 -
Ref. [49] 0.014233 0.048602 0.151934 0.671352
Ref. [52] - 2.750966 - -
Ref. [51] 0.006679 0.03156 0.142001 0.775764
Ref. [50] - 1.2271 - -
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5. Conclusions

This paper introduces a three-dimensional chaotic system that demonstrates sensi-
tivity to parameter variations, exhibiting diverse phase trajectories, offset behaviors, and
expansion–contraction phenomena. The system encompasses a wide range of chaotic
regions. The generated sequences pass the NIST tests, rendering them suitable for image
encryption. Moreover, the proposed chaotic system is implemented using FPGA, and
a chaotic sequence generator is designed for image encryption. In terms of encryption
algorithm design, this paper presents a fast image encryption algorithm with an adaptive
mechanism. Through preprocessing before encryption, the optimal encryption strategy is
selected, and a rapid scrambling algorithm is devised. By collaborating with the chaotic se-
quence generator, rapid image encryption can be achieved. Furthermore, security analysis
of the encrypted images reveals the algorithm’s capability to effectively counter differential
attacks, cropping attacks, noise attacks, chosen-plaintext attacks, and statistical analysis
attacks. The encrypted images display an information entropy close to 8, and the corre-
lation coefficients approach 0, confirming the algorithm’s security. Through comparison
with different algorithms, the encryption algorithm proposed in this paper demonstrates
superior processing speed, enabling encryption of large amounts of data within a short
time. It can be applied for video, real-time images, and various other encryption scenarios.



Entropy 2023, 25, 1399 33 of 35

Author Contributions: Conceptualization, Y.W.; Methodology, Y.W.; Software, Y.W.; Validation, B.D.;
Investigation, Y.W.; Data curation, B.D.; Writing—original draft, Y.W.; Writing—review & editing,
X.L. and C.Z.; Supervision, X.L., C.Z. and B.D.; Funding acquisition, B.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, L.; Chai, B.; Xiang, J.; Zhang, Z.; Liu, J. Chaotic image encryption based on spiral traversal and finite field bidirectional

diffusion. Phys. Scr. 2023, 98, 035217. [CrossRef]
2. Messadi, M.; Kemih, K.; Moysis, L.; Volos, C. A new 4D Memristor chaotic system: Analysis and implementation. Integration

2023, 88, 91–100. [CrossRef]
3. Du, C.; Liu, L.; Zhang, Z.; Yu, S. A memristive conservative chaotic circuit with two different offset boosting behaviors. AEU-Int.

J. Electron. Commun. 2022, 147, 154146. [CrossRef]
4. Khennaoui, A.A.; Ouannas, A.; Bekiros, S.; Aly, A.A.; Alotaibi, A.; Jahanshahi, H.; Alsubaie, H. Hidden homogeneous extreme

multistability of a fractional-order hyperchaotic discrete-time system: Chaos, initial offset boosting, amplitude control, control,
and Synchronization. Symmetry 2023, 15, 139. [CrossRef]

5. Zhang, X.; Li, C.; Dong, E.; Zhao, Y.; Liu, Z. A conservative memristive system with amplitude control and offset boosting. Int. J.
Bifurc. Chaos 2022, 32, 2250057. [CrossRef]

6. Wang, Q.; Yan, S.; Wang, E.; Ren, Y.; Sun, X. A simple Hamiltonian conservative chaotic system with extreme multistability and
offset-boosting. Nonlinear Dyn. 2023, 111, 7819–7830. [CrossRef]

7. Vaidyanathan, S.; Tlelo-Cuautle, E.; Anand, P.G.; Sambas, A.; Guillén-Fernández, O.; Zhang, S. A new conservative chaotic
dynamical system with lemniscate equilibrium, its circuit model and FPGA implementation. Int. J. Autom. Control. 2021, 15,
128–148. [CrossRef]

8. Dong, E.; Liu, G.; Wang, Z.; Chen, Z. Energy conservation, singular orbits, and FPGA implementation of two new Hamiltonian
chaotic systems. Complexity 2020, 2020, 8693157. [CrossRef]

9. Huang, Y.; Zhou, L. A hyper-chaos-based image encryption scheme with double parity alternate scrambling. Multimed. Tools
Appl. 2023, 1–15. [CrossRef]

10. Yang, Y.-G.; Guan, B.-W.; Li, J.; Li, D.; Zhou, Y.-H.; Shi, W.-M. Image compression-encryption scheme based on fractional
order hyper-chaotic systems combined with 2D compressed sensing and DNA encoding. Opt. Laser Technol. 2019, 119, 105661.
[CrossRef]

11. Borah, M.; Roy, B.K. Hidden multistability in four fractional-order memristive, meminductive and memcapacitive chaotic systems
with bursting and boosting phenomena. Eur. Phys. J. Spec. Top. 2021, 230, 1773–1783. [CrossRef]

12. Wang, C. Dynamic Behavior Analysis and Robust Synchronization of a Novel Fractional-Order Chaotic System with Multiwing
Attractors. J. Math. 2021, 2021, 6684906. [CrossRef]

13. Altun, K. Multi-Scroll Attractors with Hyperchaotic Behavior Using Fractional-Order Systems. J. Circuits Syst. Comput. 2022, 31,
2250085. [CrossRef]

14. Cang, S.; Kang, Z.; Wang, Z. Pseudo-random number generator based on a generalized conservative Sprott-A system. Nonlinear
Dyn. 2021, 104, 827–844. [CrossRef]

15. Dong, E.; Yuan, M.; Du, S.; Chen, Z. A new class of Hamiltonian conservative chaotic systems with multistability and design of
pseudo-random number generator. Appl. Math. Model. 2019, 73, 40–71. [CrossRef]

16. Matthews, R. On the derivation of a “chaotic” encryption algorithm. Cryptologia 1989, 13, 29–42. [CrossRef]
17. Zhu, S.; Deng, X.; Zhang, W.; Zhu, C. Image encryption scheme based on newly designed chaotic map and parallel DNA coding.

Mathematics 2023, 11, 231. [CrossRef]
18. Sun, B.; Zhang, C.; Peng, Q.; Du, B. Color image encryption algorithm based on 5D memristive chaotic system and group

scrambling. Optik 2023, 287, 171132. [CrossRef]
19. Yildirim, M. A color image encryption scheme reducing the correlations between R, G, B components. Optik 2021, 237, 166728.

[CrossRef]
20. Yan, M.; Xie, J. A conservative chaotic system with coexisting chaotic-like attractors and its application in image encryption. J.

Control. Decis. 2023, 10, 237–249. [CrossRef]
21. Zhou, M.; Wang, C. A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion

between blocks. Signal Process. 2020, 171, 107484. [CrossRef]
22. Du, C.; Liu, L.; Zhang, Z.; Yu, S. A conservative system based on a triangular wave memristor and its application in image

encryption. Nonlinear Dyn. 2023, 111, 15515–15529. [CrossRef]

https://doi.org/10.1088/1402-4896/acb9c6
https://doi.org/10.1016/j.vlsi.2022.09.004
https://doi.org/10.1016/j.aeue.2022.154146
https://doi.org/10.3390/sym15010139
https://doi.org/10.1142/S0218127422500572
https://doi.org/10.1007/s11071-022-08205-9
https://doi.org/10.1504/IJAAC.2021.113337
https://doi.org/10.1155/2020/8693157
https://doi.org/10.1007/s11042-023-15012-w
https://doi.org/10.1016/j.optlastec.2019.105661
https://doi.org/10.1140/epjs/s11734-021-00179-w
https://doi.org/10.1155/2021/6684906
https://doi.org/10.1142/S0218126622500852
https://doi.org/10.1007/s11071-021-06310-9
https://doi.org/10.1016/j.apm.2019.03.037
https://doi.org/10.1080/0161-118991863745
https://doi.org/10.3390/math11010231
https://doi.org/10.1016/j.ijleo.2023.171132
https://doi.org/10.1016/j.ijleo.2021.166728
https://doi.org/10.1080/23307706.2022.2043195
https://doi.org/10.1016/j.sigpro.2020.107484
https://doi.org/10.1007/s11071-023-08653-x


Entropy 2023, 25, 1399 34 of 35

23. Tuli, R.; Soneji, H.N.; Churi, P. PixAdapt: A novel approach to adaptive image encryption. Chaos Solitons Fractals 2022, 164, 112628.
[CrossRef]

24. Wang, X.; Liu, C.; Jiang, D. A novel visually meaningful image encryption algorithm based on parallel compressive sensing and
adaptive embedding. Expert Syst. Appl. 2022, 209, 118426. [CrossRef]

25. Wang, X.; Wang, X.; Teng, L.; Jiang, D. A novel meaningful image encryption algorithm based on newly-designed coupled map
lattice and adaptive embedding. Optik 2022, 270, 170073. [CrossRef]
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