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Abstract: As one of the most critical tasks in legal artificial intelligence, legal judgment prediction (LJP)
has garnered growing attention, especially in the civil law system. However, current methods often
overlook the challenge of imbalanced label distributions, treating each label with equal importance,
which can lead the model to be biased toward labels with high frequency. In this paper, we propose
a label-enhanced prototypical network (LPN) suitable for LJP, that adopts a strategy of uniform
encoding and separate decoding. Specifically, LPN adopts a multi-scale convolutional neural network
to uniformly encode case factual description to capture long-distance features of the document. At
the decoding end, a prototypical network incorporating label semantic features is used to guide the
learning of prototype representations of high-frequency and low-frequency labels, respectively. At the
same time, we also propose a prototype-prototype loss to optimize the prototypical representation. We
conduct extensive experiments on two real datasets and show that our proposed method effectively
improves the performance of LJP, with an average F1 of 1.23% and 1.13% higher than the state-of-the-
art model on two subtasks, respectively.

Keywords: legal judgment prediction; document classification; prototypical network; label-enhanced

1. Introduction

Legal judgment prediction (LJP) refers to predicting the judgment result based on
the factual description of cases and established statutes [1]. Depending on the results, it
is usually divided into three subtasks, i.e., relevant article prediction, charge prediction,
and penalty term prediction. In real-world scenarios, this task is exclusively undertaken by
legal practitioners who have undergone years of professional training. Each step of making
a judgment is time-consuming process that requires a solid foundation in the legal field.
This places a significant burden on the restricted pool of legal practitioners. In Brazil, an
astounding 1.66 million cases related solely to financial matters are filed each day, with the
majority of cases taking years to resolve [2]. Whereas if there is an automated LJP system
as an auxiliary tool, it will significantly boost the productivity of legal practitioners and
alleviate the backlog of cases. In addition, since it is constructed based on previous cases, it
can also effectively improve the fairness and consistency of judgments [3].

With the vigorous development of deep learning techniques, there is growing interest
in LJP. Existing approaches usually regard LJP as a document classification task and have
proposed some commendable methods. For example, the topological multi-task framework
proposed by Zhong et al. [4] effectively utilized the principle of information consistency
among sub-tasks and has been widely adopted by subsequent researchers. However,
there is a notable challenge in LJP, i.e., a large number of case categories and severely
imbalanced distribution make it difficult for the model to learn the features of cases with
limited samples (few-shot cases). As illustrated in Figure 1, there is an obvious long-tail
distribution phenomenon about legal articles and charges in cases, and the few-shot cases
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account for more than 50%. In reality, however, legal practitioners tend to spend more time
on these uncommon cases. It is urgent to develop LJP models to assist them in improving
this situation.

Figure 1. An example of LJP, the line graph on the right shows the frequency of each article and
charge in the CAIL-Small dataset.

To address this issue, Hu et al. [5] introduced manually labeled attributes to help
predict few-shot charges, while it has poor transferability. Recently, Liu et al. [6] divided
cases into high-frequency and low-frequency according to the frequency of legal articles
or charges and then fed them into the model simultaneously as tuples. Inspired by them,
we divide legal cases into the “head set” (high-frequency) and “tail set” (low-frequency).
Subsequently, we employ a strategy of unified encoding and separate decoding for learning.
Unlike them, we explore improving few-shot performance with a simple and effective
prototypical network [7]. Specifically, we first adopt a multi-scale convolutional neural
network (CNN) to encode the factual description, so that realize the transfer of the underly-
ing features learned in large samples to few-shot ones. Subsequently, the features of these
two sets are then decoded independently using two decoders. These decoders fuse the
semantic information from established statutes (as shown in Table A1) with a prototype
network to effectively learn the corresponding prototype representation for each category.
Finally, we achieve LJP by similarity measures between cases and each prototype.

To evaluate the efficacy of the proposed model, we conduct experiments on two real-
world datasets constructed from Chinese criminal cases. As a consequence, we make the
following four primary contributions:

1. We divide the dataset into the “head set” and “tail set”, then decode them separately
to alleviate the problem of model learning bias caused by data imbalance.

2. We propose a label-enhanced prototypical network(LPN) for LJP, which incorporates
established article description information as label enhancement to learn the prototype
representation of labels.

3. We design a prototype-prototype loss to optimize the learning process according to
the structure of LPN.

4. Experimental results on two datasets show that our proposed method effectively
improves the performance of LJP, and the average F1 on the two subtasks is 1.23% and
1.13% higher than the state-of-the-art model, respectively. Especially in the few-shot
data where LPN leads by a wider margin.

2. Related Work

This section reviews the existing literature related to our research and points out the
differences between previous studies and our work.

2.1. Legal Judgment Prediction

LJP has a long research history. Early works employed mathematical statistics and rule-
based methods, e.g., Kort et al. [8] and Nagel et al. [9]. These methods make the prediction
results interpretable but require manual rule-making and are poorly transferable.

With the successful usage of neural network methods on natural language processing [10,11],
researchers have mostly adopted neural models to solve LJP. For example, Bao et al. [12] proposed
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an attentional neural network, which predicted the legal article first and then employed the
article to help improve charge prediction. Chen et al. [13] proposed a multiple residual article-
wise attention network, which adopted a multi-scale convolutional network to encode factual
descriptions, and incorporated label information instead of just using labels as the index to achieve
LJP. Considering the dependencies among multiple subtasks, Zhong et al. [4] formalized the
dependencies as a Directed Acyclic Graph(DAG) and proposed a topological multi-task learning
framework to realize the three subtasks predictions, which is very representative and effective.
Subsequently, Yue et al. [14] proposed a circumstance-aware framework that utilized the results
of intermediate subtasks to separate the factual description into different circumstances and
exploited them to make the predictions of other subtasks. Furthermore, Chen et al. [15] improves
the performance of LJP by exploiting the consistency constraint relations of the three subtasks.

However, none of them considered the problem of severely imbalanced label distri-
bution in the data of LJP. Hu et al. [5] achieved few-shot charge prediction by introducing
some attributes constructed manually, but it has poor transferability. And Han et al. [16]
proposed BERT-Attention based on easy data augmentation techniques to achieve few-
shot charge prediction, which added a large amount of data to alleviate the imbalanced
distribution of the original data, but it is easy to cause overfitting. Recently, Liu et al. [6]
constructed case triples as input which contain two similar cases and one dissimilar case,
using the relationship and frequency information of cases to optimize model learning, and
achieved good results. Taking inspiration from these approaches, we divide the dataset
into the “head set” and the “tail set” based on the label frequency, constructing separate
decoders for each. Thereby alleviating the problems caused by data imbalance.

2.2. Few-Shot Classification

Few-shot classification is a classification task that aims to train models to perform well
for classes with very few training samples. Some efficient algorithms have been proposed
for this task, such as gradient-based methods [17] and metric-based methods [7,18]. For
the metric-based methods, their basic idea is first to learn a feature mapping function that
projects samples into an embedding space, then compute their relations through some
metrics for classification. Among them, the prototypical network is one of the most popular
methods for few-shot learning due to its simplicity and effectiveness.

Based on the above two methods, transferring the existing knowledge to realize the
few-shot classification has been proven effective [19]. Recently, Mueller et al. [20] and
Liu et al. [21] improved few-shot classification performance by exploiting the semantic
information inherent in labels. Specifically, Mueller et al. [20] proposed a method for
incorporating label semantics into generative models during pretraining to improve few-
shot intent recognition. Liu et al. [21] proposed a novel label-enhanced prototypical network
for multi-label few-shot aspect category detection, but only for n-way k-shot datasets.
Different from them, we not only transfer the underlying knowledge learned from large
samples to few-shot ones but also improve the prototype network fusing label semantic
information to get rid of the n-way k-shot limitation.

3. Method

This section introduces the framework of our proposed model LPN (as shown in
Figure 2). Since we improve LJP performance from the perspective of optimizing the
representation of few-shot legal cases, we only solve the two sub-tasks of relevant article
prediction and charge prediction. LPN consists of the following components, i.e., the factual
description encoder composed of multi-scale CNN, articles encoder for label enhancement,
category decoder as a switch that aims to distinguish the head and tail cases, head and tail
decoder based on prototype network, etc. Next, we will present them in detail. Note that
we denote the matrix in bold.
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Figure 2. Overview of our proposed model (LPN).

3.1. Task Formalization

Like most existing studies [6,22], we regard LJP as a document classification task. The
main mathematical notations in the paper are shown in Table 1. The training legal cases
set can be denoted as Γ = (Sd

i , Yi)
N
i=1, where N is the number of legal cases. As mentioned

above, we aim to predict the relevant article and the charge for each case simultaneously, so
Yi = {ya

i , yc
i }, where ya

i ∈ Ya and yc
i ∈ Yc. Our goal is to learn a classifier f from Γ that can

predict the judgment results on data with unknown labels, i.e., f (Sd
u, Ya, Yc) ⇒ {ŷa

u, ŷc
u},

where Sd
u /∈ Γ.

Table 1. Main mathematical notations.

Notation Description

Sd
i = {wd

1 , . . . , wd
ld} the factual description of case i

Ya = {a1, . . . , am} the set of article labels
Yc = {c1, . . . , cn} the set of charge labels

Sai = {wai
1 , . . . , wai

la} the description of article ai
Yt = {0, 1} the set of category labels

3.2. Factual Description Encoder

First, we convert each word of factual description Sd
i into its word embedding, so that

gets its embedding representation Xi ∈ Rld×k, where k is the dimension of word embedding
and ld is the length of Sd

i . Since the core information of factual description is scattered, we
employ multiple convolutional operations with different filter sizes to capture rich textual
representation. Taking the filter size s as an example, the specific calculation is as follows:

cs = ∩ld
j=1Ws · Xj:j+s−1

i + bs (1)

ds = max{c1, . . . , cld−s+1} (2)

where ∩ld
j=1 represents a convolution operation from left to right, Ws ∈ R f×(s×k) is the

trainable parameter matrix, Xj:j+s−1
i ∈ Rs×k is a part of Xi, bs ∈ R f is the bias vector,

ds ∈ R f is the output of filter s, where f is the output channel size.
Subsequently, since each filter has the same out-channel size f , we concatenate the

output obtained with different filter sizes to get the representation of the factual description
v f ∈ Rh, where h is the hidden dimension equals to the number of filters multiplied by f .

3.3. Established Articles Encoder

The established statutes all have specific descriptions, as shown in Table A1. We
encode these descriptions as the label-enhanced information of the legal article, integrating
them into the model. Specifically, we use the same method as in Section 3.2 to obtain the
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matrix representation A = {A1, . . . , Am} ∈ Rm×h of all the articles’ description, where m is
the number of articles. Then we put Ai as the initial prototype of article label i.

3.4. Category Decoder

The category decoder has been shown to be effective in [6], which is designed to
distinguish whether a case belongs to the high frequency set or few-shot ones. Its role is
not only to transfer the underlying features learned in the “head set” to the “tail set” but
also to alleviate the problem of imbalanced distribution of original data.

Specifically, we first count the occurrence frequency of different labels and arrange
them in descending order. Next, we establish a threshold variable, denoted as µ, and divide
the head and tail sets according to the ratio of µ:1. In our implementation, we use 1 and 0
to distinguish head and tail sets .

vt = W2
t · ReLU(W1

t · v f ) + bt (3)

ŷt = argmax
exp(vt)

∑ exp(vt)
(4)

where W1
t ∈ Rh×h, W2

t ∈ Rh×2 and bt ∈ R2 are trainable weight matrix and bias. ŷt is the
predicted category label.

3.5. Head/Tail Prototype Decoder

According to the category label yt, we select the corresponding branch to decode the
factual description v f . Note that the decoders on both head and tail branches have the
same structure, but do not share parameters.

3.5.1. Multi-Task Decoder

First, a multi-task framework is required to achieve both article prediction and
charge prediction at the same time. We adopt the topological framework proposed by
Zhong et al. [4] to obtain the corresponding hidden representations ha and hc of the differ-
ent subtasks, the detailed calculation process is as follows:[

ha
ca

]
= LSTMCell

(
v f ,
[

h̄a
c̄a

])
(5)[

h̄c
c̄c

]
= Wc ∗

[
ha
ca

]
+ bc (6)[

hc
cc

]
= LSTMCell

(
v f ,
[

h̄c
c̄c

])
(7)

where Wc ∈ Rh×h and bc ∈ Rh are the trainable weight and bias, h̄a, c̄a are the initial hidden
state and the memory cell of the article prediction task, respectively. Finally, we get the
decoded representations ha and hc of these two tasks.

3.5.2. Prototype Learning Module

Next, we fuse A get from Section 3.3 to construct two Euclidean spaces for article labels
and charge labels, respectively. We adopt Euclidean distance to measure the similarity of the
hidden features ha, hc to each label prototype Pai , Pci as calculated in Equations (8) and (9).
Correspondingly Pai = Ai is the prototype representation of article ai. Pci is the prototype
representation of charge ci, which can be learned from LPN. Our goal is to learn prototypical
representations for each label, and then predict the relevant article and charge based on
these prototypes. The corresponding prediction process is as follows.

d(Pai , ha) = −‖
−→
Pai ,
−→
ha ‖2 (8)

d(Pci , ha) = −‖
−→
Pci ,
−→
hc ‖2 (9)
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ŷa = argmax
exp d(Pai , ha)

∑m
i=1 exp d(Pai , ha)

(10)

ŷc = argmax
exp d(Pci , hc)

∑n
i=1 exp d(Pci , hc)

(11)

Finally, we get the predicted article label ŷa and charge label ŷc.
Prototype-prototype loss. Considering the multitude of prototypes to be learned, to

ensure their separability in a relatively low-dimensional space, we propose a prototype-
prototype loss. This loss function serves to increase the distance between prototypes of
different labels, so that the factual descriptions of different labels have enough space to
distinguish and reducing the likelihood of confusion. As shown in Figure 3, it is a two-
dimensional illustration of the legal article prototypes and factual description, where cases
with the same legal article surround their corresponding prototype. Cases S1, S2, S3 on the
left side in Figure 3 are more likely to be misclassified, while the distance among articles
a1, a2, a3 increases (as shown on the right side in Figure 3), the boundaries of different article
labels will become clearer.

Lp = −
(

1
m

m

∑
i=1

log
1

∑m
j=1 exp d(Pai , Paj)/α

+
1
n

n

∑
i=1

log
1

∑n
j=1 exp d(Pci , Pcj)/β

)
(12)

where α and β are adjustment coefficients that control the smoothness of the prototypical
distance distribution d. If they are set too large, it will make the distribution smoother. Con-
versely, if they are set too small, it will make the distribution more concentrated and peak.

Figure 3. A two-dimensional representation of the prototype of some legal articles and factual
description, where five-pointed stars represent the prototype of legal articles, and circles represent
factual descriptions.

3.6. Training

Our final training goal is to minimize the following loss function L, which consists
of three parts, i.e., the loss Lj generated by the main task LJP, the loss Lt generated by the
head-tail set classification auxiliary task, and the prototype-prototype loss Lp.

L = Lt + Lj + Lp (13)

Lt = L(yt, ŷt) (14)

Lj = La(ya, ŷa) + Lc(yc, ŷc) (15)

4. Experiments

In this section, we conduct extensive experiments on two real-world datasets to show
the effectiveness of our approach and present a detailed analysis.

4.1. Datasets Preparation

We use the publicly available dataset in experiments, i.e., CAIL-small and CAIL-big [23].
Following the previous data processing method [4,6,14,22], we remove cases with less than
10 meaningful words and with multiple charges or legal articles. Whereas we retain cases
with a frequency less than 100 and construct a validation set for the CAIL-Big data set at a
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ratio of 9:1. In addition, we also remove duplicate cases in the dataset. The detailed statistics
are shown in Table 2.

Table 2. Statistics of the datasets.

CAIL-Small CAIL-Big

Training Set Cases 103,170 1,390,706
Test Set Cases 27,656 185,603
Validation Set Cases 14,232 158,761
Legal Articles 177 181
Charges 191 193

4.2. Baselines

We compare the proposed model with the following strong baselines for document clas-
sification where all single-task neural network models are trained in a multi-task framework.

• SVM + Word2vec: use SVM [24] to classify the text represented by the word2vec [25].
• HAN [10]: a hierarchical attention network for document encoding consists of word-

level and sentence-level.
• Prototypical Network [7]: classify by computing the distance to each class prototype.
• MultiResCNN [11]: a multi-filter residual convolutional neural network that consists

of a multi-filter convolutional layer and a residual convolutional layer.

Furthermore, we also compare the proposed model with the following representative
LJP baselines.

• TopJudge [4]: a topological multi-task learning model that incorporates the DAG
dependencies among multiple sub-tasks of LJP.

• LADAN [22]: an attention-based model that employs a graph neural network to learn
the distinction between confusing legal articles and further achieves to distinguish
confusing charges.

• NeurJudge [14]: use the established articles and the results of intermediate subtasks
to help separate the factual description to improve LJP.

• CTM [6]: some contrastive-case relations are introduced to construct case triples as
input of the model for LJP.

4.3. Implementation Details
4.3.1. Evaluation Metrics

We use four metrics for performance evaluation, including Accuracy (ACC), Macro
Precision (MP), Macro Recall (MR) and Macro F1-score (F1). We mainly use ACC and F1
as the evaluation metric. Taking the article prediction task as an example, the calculation
process of the evaluation metrics is as follows:

MP =
1
m

m

∑
i=1

TPai

TPai + FPai

(16)

MR =
1
m

m

∑
i=1

TPai

TPai + FNai

(17)

F1 =
1
m

m

∑
i=1

2× Pai × Rai

Pai + Rai

(18)

ACC =
1
N

N

∑
i=1

1(ŷa
i = ya

i ) (19)

where TPai , FPai , and FNai are the number of true positives, false positives, and false
negatives corresponding to article ai, respectively.
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4.3.2. Parameter Settings.

We employ Thulac (http://thulac.thunlp.org/, accessed on 8 January 2023) for Chinese
segmentation. For the SVM + Word2vec model, we use the RBF kernel function. For the
HAN-based models, we set the maximum number of sentences in the document to 15
and the maximum sentence length to 100. The hidden size is set to 256. For the CNN-
based models, we set the maximum document length to 512, the filter size to 50 and the
convolution windows size to (3,5,7,9). For the Prototypical-based model, we initialize the
prototype space with Glorot initialization [26] if without article-enhanced.

During training, we employ Adam [27] as the optimizer, setting the learning rate
to 1 × 10−4 and the weight decay to 1 × 10−4. We set the batch size to 128, the epoch
to 20, and use an early stop mechanism with patience to 5. For the variables in LPN,
we set µ to 0.4, α to 1, and β to 0.5. All baselines are implemented on Tensorflow 1.15.0
(https://www.tensorflow.org/, accessed on 8 September 2022) or Pytorch 1.10.0 (https:
//pytorch.org/, accessed on 8 September 2022) by referring to their source code and
parameter settings. The configuration of the detailed running environment is shown in the
Appendix A.1.

4.4. Result Analysis
4.4.1. Comparison with Baselines

The experimental results on the two datasets are shown in Tables 3 and 4 respectively,
from which we have the following observations: (1) The LJP baselines (i.e., TopJudge,
LADAN, NeurJudge, CTM) are overall better than the general document classification base-
lines (SVM + Word2vec, HAN, Prototypical, MultiResCNN) combined with the multi-task
framework. On the CAIL-Small, MultiResCNN + MTL is the best among generic classifica-
tion baselines, and the average F1-score of two tasks exceeds HAN + MTL 3.43% and Proto-
typical + MTL 4.6%, even slightly surpassing LADAN and NeurJudge. All LJP baselines
significantly outperform all general classification baselines except MultiResCNN + MTL.
On the CAIL-Big, however, the lead of the LJP baselines wanes, with only CTM sur-
passing all general classification baselines. We speculate that this is because the general
model narrows the gap to the domain model moderately when given more sufficient data.
(2) LPN and CTM outperform other LJP methods by a large margin. On the CAIL-Small,
their average F1-scores of two tasks are 3.72% and 4.95% higher than the best model, Mul-
tiResCNN + MTL, respectively. Especially on the CAIL-Big, they lead even more, with
average F1-scores of 6.76% and 7.89% higher than the best model HAN + MTL, respectively.
What LPN and CTM have in common is they both set the category decoder to fuse the
frequency information of labels. In addition, the data distribution of CAIL-Big is more
uneven than that of CAIL-Small. It indicates that LPN and CTM are excellent in handling
samples with imbalanced distribution, specifically, the category decoder of LPN and CTM
works. (3) LPN performs best on average F1 metric, outperforming CTM by a small margin
of 1.23% on CAIL-Small and 1.13% on CAIL-Big. However, we must point out that the
input of CTM is a triplet composed of three cases, which require three times the size of
training data to participate in the training, and takes longer.

Table 3. Experimental results on CAIL-Small of our model and baselines. (Values in the table are
percentages, and the best results are shown in bold).

Tasks Relevant Articles Charges LJP

Metrics ACC. MP MR F1 ACC. MP MR F1 Avg. F1

SVM + Word2vec 72.62 53.28 46.47 46.45 74.99 59.20 51.54 51.90 49.18
HAN + MTL 76.34 63.40 60.58 59.61 80.68 70.47 67.99 67.70 63.66

Prototypical + MTL 78.25 65.22 60.03 59.59 80.98 71.01 66.29 65.39 62.49
MultiResCNN + MTL 79.21 68.02 61.66 62.26 83.80 77.19 70.64 71.91 67.09

http://thulac.thunlp.org/
https://www.tensorflow.org/
https://pytorch.org/
https://pytorch.org/
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Table 3. Cont.

Tasks Relevant Articles Charges LJP

Metrics ACC. MP MR F1 ACC. MP MR F1 Avg. F1

TopJudge 77.74 63.86 61.87 60.77 80.57 71.06 68.89 67.94 64.36
LADAN 77.37 65.28 63.89 62.44 82.54 73.41 71.73 71.16 66.80

NeurJudge 79.84 67.90 63.35 62.72 81.01 71.83 68.00 67.86 65.29
CTM 80.22 67.65 69.09 65.84 87.14 76.05 78.63 75.77 70.81

LPN 83.25 69.37 68.91 67.32 87.85 78.76 78.92 76.75 72.04

Table 4. Experimental results on CAIL-Big of our model and baselines. (Values in the table are
percentages, and the best results are shown in bold).

Tasks Relevant Articles Charges LJP

Metrics ACC. MP MR F1 ACC. MP MR F1 Avg. F1

SVM + Word2vec 94.06 65.15 49.04 52.08 93.65 71.36 53.83 57.43 54.76
HAN + MTL 96.18 76.40 63.44 66.82 96.14 82.90 70.98 74.04 70.43

Prototypical + MTL 95.75 74.78 62.01 65.30 95.75 84.33 68.94 73.16 69.23
MultiResCNN + MTL 95.71 77.40 60.15 64.75 95.63 84.83 67.11 72.29 68.52

TopJudge 94.85 66.67 56.15 57.75 94.50 69.90 58.90 60.17 58.96
LADAN 95.88 73.87 64.37 67.30 95.65 80.34 69.39 72.55 69.93

NeurJudge 95.85 75.35 64.99 67.48 95.42 81.82 70.57 72.97 70.23
CTM 96.73 77.59 73.64 74.54 96.57 83.04 79.15 79.83 77.19

LPN 96.72 78.99 73.03 73.96 96.73 85.52 82.11 82.67 78.32

4.4.2. Comparison on Few-Shot Cases

To further evaluate the potential of LPN in predicting few-shot cases, we evaluate the
model performance on the “tail set” (More than 95% of the data have label frequencies
less than 100.) and compare with MultiResCNN, NeurJudge and CTM, which all perform
well on CAIL-Small. Experiment results are shown in Figure 4, from which we have the
following observations: (1) LPN significantly outperforms MultiResCNN and NeurJudge
on all four metrics, while slightly ahead of CTM, consistent with Table 3, indicating that
CTM is a strong baseline. (2) Compared with the results on CAIL-Small, it can be seen that
the overall performance of all models on the “tail set” is lower than that on CAIL-Small.
(3) Furthermore, we also find that LPN leads more on the “tail set”. On the CAIL-Small, the
F1 of LPN on article prediction achieves 5.06% and 4.6% higher than that of MultiResCNN
and NeurJudge, respectively. While on the few-shot data, LPN is 12.06% and 11.45% higher,
respectively. Comparing the result of the charge prediction, LPN also leads more in the
“tail set”. This verifies that LPN is better at handling few-shot legal cases than baselines.

(a) (b)

Figure 4. Comparison of LJP results on the tail dataset. Article scores and charge scores refer to the
metrics score of the relevant article prediction and charge prediction, respectively. (a) Comparison of
relevant article prediction. (b) Comparison of charge prediction.
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4.4.3. Curves Variation of Loss and Metrics

The loss curves changing during the training process on CAIL-Small are shown in
Figure 5. Figure 5a shows the variation curves of losses with the number of epochs. It
can be seen that the losses in the first two epochs have a significant decline, and the losses
tend to be stable within 5 epochs. Furthermore, the variation of L,La,Lc is consistent. The
specific changes of every 200 batches in the first two epochs are shown in Figure 5b–d,
where the curves of different losses with the number of steps changes are consistent too.
The above indicates that the loss function setting of LPN is effective.

(a) (b)

(c) (d)

Figure 5. Loss variation during LPN training. The total loss is L, article loss refers to the loss La of
the relevant article prediction task, and correspondingly, the charge loss refers to the loss Lc of the
charge prediction task. (a) Loss curves with the number of epochs. (b) Total loss curves with the
number of steps. (c) Article loss curves with the number of steps. (d) Charge loss curves with the
number of steps.

We further evaluate the robustness performance of LPN, whose metrics variation on
the validation set during training are shown in Figure 6. It can be seen that the changes in
the article metrics and the charge metrics are consistent. They all rise rapidly in the first
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five epochs, then rise slowly with fewer fluctuations, and stablize after 15 epochs. It shows
that the setting of LPN is reasonable.

(a) (b)

Figure 6. Metrics score variation on the validation set during LPN training. Article scores and charge
scores refer to the metrics score of the relevant article prediction and charge prediction, respectively.
(a) Article metrics curves with the number of epochs. (b) Charge metrics curves with the number
of epochs.

4.4.4. Ablation Study on CAIL-Small

To further analyze the role of each module in LPN, we conduct an ablation study
on CAIL-Small, the results are shown in Table 5. Specifically, we first consider removing
the category decoder (denoted as -CD), i.e., keeping only one prototype decoder without
distinguishing head/tail sets. Next, we remove the article description module (denoted
as -AE), i.e., randomly generating each article prototype. Then we remove the prototype-
prototype loss (denoted as -PPL), i.e., the loss function of LPN in Equation (13) degenerates
to L = Lt + Lj. Finally, we remove the head prototype module (denoted as -HP) and
tail prototype module (denoted as -TP) respectively, i.e., the prediction results are di-
rectly calculated after passing through the corresponding multi-task decoder (as shown in
Equations (5)–(7)).

Table 5. Experimental results of the ablation studies on CAIL-Small. -CD refers to removing the
category decoder, -AE refers to removing the article encoder, -PPL refers to removing the prototype-
prototype loss, -HP refers to removing the head prototype module, -TP refers to removing the tail
prototype module. (Values in the table are percentages, and the best results are shown in bold).

Tasks Relevant Articles Charges

Metrics ACC. MP MR F1 ACC. MP MR F1

-CD 78.86 67.79 62.24 62.57 84.05 72.90 69.86 69.69
-AE 81.67 67.34 68.80 66.23 87.85 76.85 77.91 75.81
-PPL 82.80 67.33 68.06 65.67 87.86 77.74 77.56 75.23
-HP 82.90 69.06 68.19 66.42 87.51 76.41 78.50 75.78
-TP 82.12 67.40 68.92 66.44 87.24 75.43 76.61 74.44

LPN 83.25 69.37 68.91 67.32 87.85 78.76 78.92 76.75

Experimental results show that the performance of LPN decreases when any module is
removed, indicating the effectiveness of these modules. -CD drops substantially, indicating
that the category decoder module plays an important role in LPN. After all, the more
balanced the category distribution of data, the more conductive to the learning of prototype
representation. -HP also has a slight decrease, indicating that LPN improves the prediction
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ability not only for few-shot cases but also for overall cases. Comparing -TP with -HP, -TP
drops more, indicating that the impact of the tail prototype module is greater than that of
the head prototype module. It is consistent with our conjecture that the prototype module
can effectively improve the prediction of few-shot cases.

4.4.5. Hyperparameter Optimization

To further evaluate the robustness of LPN, we compare its performance change un-
der different hyperparameter settings. Since the above analysis shows that the category
decoder module of LPN has a great influence, we conduct a set of experiments to com-
pare the changes of various indicators when µ is 0.3, 0.4, 0.5, 0.6, 0.7 respectively. The
experimental results are shown in Figure 7. We found that the overall changes of MP, MR,
and F1 are consistent, achieving the maximum value at µ = 0.6. However, the ACC and
AVG((ACC + F1)/2) value is the best and the overall performance of the model is the best
when µ equals 0.4, then gradually decreases with the increase of µ. That’s because as µ
increases, the data distribution of the “head set” becomes more convex, while the “tail set”
is relatively smooth. Correspondingly, since the ACC value is greatly affected by the “head
set” result, it will become worse. On the contrary, the F1 value is greatly affected by the
“tail set”, and will become better.

(a) (b)

Figure 7. Comparison of LJP results with different hyperparameter settings. (a) Relevant article
prediction results. (b) Charge prediction results.

4.5. Visualization of Cases

We analyze the gain of category decoder from the perspective of case representations,
i.e., compare the case representations generated by LPN with those generated by TopJudge.
Specifically, we randomly sample 5 cases from ”head set” (or “tail set”) for each legal article
and charge, forming the corresponding smaller head (or tail) case set. We respectively
use t-SNE [28] to visualize the case representations generated by TopJudge and LPN on
different sets. Visualization results are shown in Figure 8. It can be clearly seen that LPN
can effectively distinguish the “head set” and “tail set”, indicating the effectiveness of the
category decoder.

Next, we perform a visual analysis of the representation of prototypes and cases.
Specifically, we randomly sample 5 prototypes and their corresponding cases from the
“tail set” and “head set” constructed in Section 3.4. The representation generated by LPN
is then visualized with t-SNE as shown in Figure 9, it can be seen that prototypes are
well surrounded by their corresponding cases. Correspondingly, it also explains our
prediction results to a certain extent, i.e., the prototype category closest to the sample is
predicted. Comparing the left and right figures, it is obvious that the “head set” prototype
representation is better, while there are some fuzzy points on the category boundaries
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on the “tail set”, and the prototype representation is not the center of the case. This is
reasonable because the prototype in LPN is different from [7]. It is not simply the average
value of all sample representations, is the parameter learned in the network.

Figure 8. Visualization of some randomly sampled cases with high and low frequency.

Figure 9. Visualization of some randomly sampled cases and their corresponding prototype repre-
sentations, where circles represent cases, and five-pointed stars represent prototypes. The left figure
is a sampling from the “tail set”, and the right figure is a sampling from the “head set”.

5. Conclusions

In this paper, we propose a label-enhanced prototypical network, LPN, to alleviate
the problem of model bias towards cases with high-frequency resulting from category
imbalance in LJP. LPN consists of the factual description encoder, article encoder, category
decoder, head prototype decoder, and tail prototype decoder. We conduct experiments
on two public datasets, and the results show that our method can effectively improve the
performance of LJP. That is, LPN achieves 67.32%/73.96% and 76.75%/82.67% in F1 of



Entropy 2023, 25, 1398 14 of 15

article prediction and charge prediction on CAIL-Small/CAIL-Big respectively, and the
average F1 of the two subtasks exceeds all baselines. Similarly, LPN also outperforms
other baselines on few-shot cases, verifying its excellent learning ability. However, the
interpretability of LPN has certain limitation, which just gives the predicted relevant article
and charge. It can explain the prediction results by staying at the model level, without
giving a comprehensible and convincing explanation for ordinary people, such as “the
defendant’s behavior led to the corresponding punishment”. In the future, we will explore
improving the interpretability of LJP, e.g., by fusing auxiliary knowledge such as guiding
cases and intermediate tasks into the model, or building a domain knowledge graph based
on the pre-trained large model to enhance the explainable of LJP.
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Appendix A

Appendix A.1. Running Environment

We run our models and baselines on the Ubuntu 22.04.2 LTS system, which has
four GPUs with the vision of Tesla V100 and each has 32 Gb memory. The model name
of the CPU is Intel(R) Xeon(R) Silver 4216 CPU @ 2.10 GHz, which has 32 Cores and
128 GB memory.

Appendix A.2. Legal Article Description

The description corresponds to legal article NO.244, which contains a lot of valuable
information, such as the definition of illegal acts, the basis for sentencing, etc.

Table A1. Description of legal article 244.

Legal Article Description

NO.244

[Crime of forced labor]
(1) Whoever forces others to work by means of violence, threats, or restriction of
personal freedom shall be sentenced to fixed-term imprisonment of not more th-
an three years or criminal detention and shall also be fined; if the circumstances
are serious, he shall be sentenced to fixed-term imprisonment of not less than th-
ree years but not more than ten years and shall also be fined.
(2) Whoever knows that others have committed the acts in (1), but still recruiting
or transporting personnel for them, or assisting and forcing others to work, shall
be punished following the provisions in (1).
(3) Units that commit the crimes mentioned in (1) and (2) shall be fined, where th-
e directly responsible managers and other directly responsible personnel shall be
punished following the provisions in (1).
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