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Abstract: Null models are crucial tools for investigating network topological structures. However,
research on null models for higher-order networks is still relatively scarce. In this study, we introduce
an innovative method to construct null models for hypergraphs, namely the hyperedge swapping-
based method. By preserving certain network properties while altering others, we generate six
hyper-null models with various orders and analyze their interrelationships. To validate our approach,
we first employ hypergraph entropy to assess the randomness of these null models across four
datasets. Furthermore, we examine the differences in important statistical properties between the
various null models and the original networks. Lastly, we investigate the impact of hypergraph
randomness on network dynamics using the proposed hyper-null models, focusing on dismantling
and epidemic contagion. The findings show that our proposed hyper-null models are applicable to
various scenarios. By introducing a comprehensive framework for generating and analyzing hyper-
null models, this research opens up avenues for further exploration of the intricacies of network
structures and their real-world implications.

Keywords: null models; hypergraphs; randomness; network dynamics

1. Introduction

Over the past two decades, research on complex networks has made remarkable
advancements and has become a fundamental paradigm applicable to sociology, biology,
and other fields [1,2]. In the traditional domain of complex networks, the intermediary of
interaction between nodes is typically represented by edges. Such networks are commonly
referred to as pairwise networks. However, pairwise networks cannot describe interactions
beyond two nodes, i.e., higher-order interactions, in the real world; for example, a metabolic
reaction often involves a variety of compounds [3], and collaborative articles require
contributions from multiple scholars [4]. Therefore, higher-order networks have been
increasingly attracting the attention of scientific researchers [5,6]. Hypergraphs are one of
the most common higher-order networks [7]. Unlike traditional graphs, where edges only
link pairs of nodes, the edges of a hypergraph (called hyperedges) can connect more than
two nodes [8]. Due to the flexibility of hypergraphs, the current related research mainly
focuses on aspects like network dynamics on hypergraphs [7,9], the hypergraph neural
network [10,11] and so on.

Topological statistics serve as a fundamental tool for describing complex network
structures. However, due to the large variation in network sizes and the fact that the
statistics are dimensionless, it is necessary to introduce a reference to compare the statistical
properties of different networks [12–14]. The null model is a randomization-based model
that can be generated by randomly rearranging the connections in the network [15,16].
The goal is to generate a network that changes some specific metrics while keeping other
statistical metrics constant as the original network [17]. By comparing original networks
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with the null models, we can determine whether the structure or pattern in the original
network is statistically significant and understand how altering the structure can affect
the functionality.

Higher-order networks have a more complex structure compared to traditional bi-
nary networks [18], and their null models have been studied relatively little. Previous
research on null models for hypergraphs, referred to as hyper-null models in this paper,
has predominantly focused on specific configuration models [19], rather than exploring a
comprehensive range of null models. Klimm et al. [20] proposed a new ER-hypergraph
model. This is achieved by generating a random model through the selection of K nodes
and assigning them to a hyperedge of size K. This method preserves the original network’s
node number, hyperedge number, and hyperedge cardinality. Chodrow et al. [21] proposed
two new configuration models, which keep the hyperdegree and hyperedge size constant,
respectively, i.e., the vertex-labeled configuration model and the stub-labeled configuration
model. The construction of these two models involves sampling specific attributes from
the original network using a Markov chain Monte Carlo scheme. Miyashita et al. [22]
proposed random hypergraph models, preserving the pairwise joint degree distribution
and the clustering coefficient by defining a new property: a distance for which the edges
can be rewiring if the distance is decreasing.Nevertheless, these methods fail to provide a
comprehensive definition for a range of hyper-null models. Instead, they only focus on spe-
cific configuration models that address randomness from a limited perspective. Therefore,
a more all-encompassing set of null models is needed in order to fully capture and analyze
the randomness and structural characteristics of hypergraphs. In 2021, Nakajima et al. [23]
introduced the dK-series null models for a hypergraph based on the configuration model.
It can maintain some statistical characteristics of the original network. However, both the
ER graph and configuration model generate the null models by starting with an empty
network. These methods involve reconnecting all the hyperedges and excluding some
errors (self-loops and repeated hyperedges), which can lead to increased complexity or
potential loss of other important network features.

Another gap of hyper-null models lies in the fact that some models juxtapose the re-
tained feature relationships without exhibiting any inclusion relation, making randomness
difficult to distinguish. For example, the null models that displace the preservation of
the hyperedge degree and the preservation of the nodes’ hyperdegree both belong to the
1k null model, and the two are juxtaposed. Therefore, it is imperative to adopt metrics
that measure the randomness of the hypergraph to aid in understanding the relationship
between the hyper-null models.When researchers investigate the randomness of networks,
entropy is commonly employed as a quantification method [24]. Among the established
methods are Shannon entropy [25], degree distribution entropy [26], and others. Networks
with higher entropy values generally exhibit greater randomness and uncertainty, while
networks with lower entropy values often display more orderliness and predictability [25].
By comparing the entropy values of different networks, we gain insights into their unique
characteristics and evolution processes [27]. At present, some scholars have extended
entropy from pairwise networks to higher-order networks. Hu et al. [28] employed the
node degree distribution to estimate the hypergraph entropy by fitting it to the Shannon
entropy formula.

In this paper, we extend the concept of the null model from pairwise networks to
hypergraphs and present a novel approach to constructing hyper-null models, namely the
hyperedge swapping-based method. Additionally, we employ Shannon entropy as a key
metric to evaluate the randomness of the six types of hyper-null models across four datasets.
Moreover, we propose a framework to analyze their comparative results by applying the
hyper-null models and the original network in the same case. And it is validated in the
analysis of topological statistics, hypergraph dismantling and epidemic contagion.

Our contributions are three-fold as follows:

• We propose a new method to construct null models for hypergraphs and summarize
the relationship between our proposed hypergraph models.
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• We introduce the concept of entropy to quantify the randomness of networks, retaining
different statistical properties, and explore the relationship between randomness and
the network structure.

• We utilize topological statistics analysis, network dismantling, and epidemic contagion
to showcase the universality of the framework employed in the original network and
its hyper-null models.

The paper’s structure unfolds as follows: Section 2 lays the groundwork by introducing
the methods used in this study. This includes explaining the fundamental aspects of
hypergraphs, clarifying the concept of randomness, and providing an in-depth presentation
of the novel hyper-null model method devised in this research. Section 3 validates the
effectiveness of the proposed method. It not only scrutinizes the method’s performance but
also delves into the intricate interplay between randomness and the dynamics of networks
through the lenses of hypergraph epidemic contagion and hypergraph dismantling. Finally,
Section 4 provides a comprehensive summary of this paper.

2. Methods
2.1. Hypergraphs

The hypergraph is a kind of higher-order network which mainly focuses on inter-
actions beyond pairwise connections. A hypergraph H = (V, E) contains a node set
V = {vi : i ∈ [1, n]} and a hyperedge set E = {ej : j ∈ [1, m]}, where each hyperedge is a
non-empty subset of V such that

⋃
j∈[1,m] ej = V [29]. Here, n denotes the number of nodes,

and m denotes the number of hyperedges.

2.2. Hyperedges and Hypertriangles

The hyperedge set is the basic component of a hypergraph. A hyperedge is a subset of
the node set. A hypertriangle is defined as a sequence consisting of three different nodes and
three different hyperedges [30]. For example, the nodes v1, v2, v5 and their corresponding
hyperedges e3, e4, e2 form a hypertriangle in Figure 1a. Notice that the nodes v1, v2, v3
cannot form a hypertriangle in Figure 1a, because they are in the same hyperedge e4.

2.3. Statistics of Hypergraphs

Statistics can be used to measure some topological properties of networks. For example,
in pairwise graphs, the node degree—representing the number of neighboring nodes—is
a measure of the importance of a node. Similarly, hypergraphs also have their own set of
metrics. Here are some fundamental ones.

Hyperdegree: The hyperdegree refers to the node degree in hypergraphs. It represents
the number of hyperedges that a node is located in.

Hyperedge degree: The hyperedge degree denotes the number of nodes that are
contained in a hyperedge.

Co-average hyperdegree: The co-average hyperdegree of node i represents the aver-
age hyperdegree of node i’s neighbors.

Hyperdegree distribution: The hyperdegree distribution denotes the probability that
a randomly chosen node across the entire hypergraph will have a hyperdegree of k.

Joint hyperdegree distribution: The joint hyperdegree distribution denotes the distri-
bution of hyperdegrees among nodes within each hyperedge.

Hypergraph clustering coefficient: The clustering coefficient of a node represents the
ratio of the number of existing hyperedges between its neighbors to the number of all
possible hyperedges. The clustering coefficient of the hypergraph is the average value of
the clustering coefficients of all nodes in the hypergraph.

Average neighbor degree: The average neighbor degree of a node denotes the average
of the neighbors’ degree of it.

Strength: The strength of node i represents the total number of hyperedges that node
i shares with any other node in the hypergraph.
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Figure 1. A hypergraph and its hyper-null models. (a,d) denote the original hypergraph and its
incidence matrix, (b,e) represent the H0k null model and its incidence matrix, (c,f) denote the H1k-HD
null model and its incidence matrix, (g,j) denote the H1k-HED null model and its incidence matrix,
(h,k) denote the HD-HED null model and its incidence matrix, (i,l) denote the H2k null model and
its incidence matrix. The green columns represent the randomly chosen hyperedges, while the red
boxes denote the nodes that undergo a single swap during the transformation process.

Assortativity: Based on the assortativity r proposed by Newman [31], we calculate
the assortativity for hypergraphs as

r =
M−1 ∑i jiki −

[
M−1 ∑i(ji + ki)

]2
M−1 ∑i

1
2
(

j2i + k2
i
)
−
[

M−1 ∑i
1
2 (ji + ki)

]2 , (1)

where M denotes the number of edges, and ji and ki are the degrees of the nodes at the
ends of the i-th edge, where i = 1 · · ·M.
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2.4. Matrices of Hypergraphs
2.4.1. Hyperdegree Matrices

The hyperdegree matrix D of a hypergraph denotes the number of hyperedges in
which the node is located. It can be expressed as

Dn×n = (dij),

where dij represents the number of hyperedges that contain both node i and j. Further, dii
is the hyperdegree of node i.

2.4.2. Hyperedge degree Matrices

The hyperedge degree matrix De of a hypergraph represents the size of each hyperedge,
that is

Dem×m = (deij),

where deij denotes the number of nodes in both hyperedge i and j. Moreover, deii means
the hyperedge degree of hyperedge i.

2.4.3. Incidence Matrices

The incidence matrix C of a hypergraph represents the relationship between nodes
and hyperedges. It can be expressed as

Cn×m =
(
cij
)
. (2)

For each item cij in the incidence matrix of C, if hyperedge ej contains node i, then
cij = 1; else, cij = 0. Because a hyperedge can contain more than two nodes, a single
column in an incidence matrix can contain multiple instances of “1". The incidence matrix
of the toy hypergraph in Figure 1a is shown in Figure 1d.

2.4.4. Adjacency Matrices

The adjacency matrix A of a hypergraph represents the connection relationship be-
tween nodes. It can be expressed as

An×n =
(
aij
)
. (3)

In a hypergraphH, the item aij of the adjacency matrix denotes the number of hyper-
edges that contain both node i and node j. As two nodes can be contained in more than
one hyperedge, aij is usually an integer greater than or equal to 0.

The adjacency matrix can also be represented by the incidence matrix

A = CCT − D, (4)

where D is the hyperdegree matrix ofH. Note that the diagonal elements are zero in the
adjacency matrix. The sum of the i-th row in A denotes the strength of node i. Moreover,
the hyperedge adjacency matrix is defined as

Bm×m =
(
bij
)
= CTC− De, (5)

where bij represents the number of nodes shared by two hyperedges, and De represents the
degree matrix of hyperedges, which is a diagonal matrix, and each entry on the diagonal is
a hyperedge degree.

2.5. Randomness

In this paper, we use the hypergraph entropy proposed by Hu et al. [28] to quantify
the randomness of hyper-null models. This method uses the node degree distribution to
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fit the Shannon entropy formula. Specifically, given the node hyperdegree distribution
d1, d2, · · · , dn, the hypergraph entropy can be calculated as

I(H) = −
n

∑
i=1

(
dt

i

∑n
j=1 dt

j
log

dt
i

∑n
j=1 dt

j

)
(6)

2.6. Hyper-Null Models Based on Hyperedge Swapping

In order to generate the hyper-null models more accurately and efficiently, in this
section, we present methods for constructing six types of hyper-null models based on
hyperedge swapping. The construction rule for hypergraphs is an extension of the rule
used in pairwise networks [15]. The original toy hypergraph is shown in Figure 1a. Its
hyper-null models with different orders, which are obtained by changing the incidence
matrix of the original hypergraph, are shown in Figure 1b,c,g,h,i. The detailed process
of generating each type of hyper-null model is described below. In our experiment, the
number of repetitions is 10 times the number of hyperedges.

2.6.1. Hyper-0k Null Model

The hyper-0k null model (H0k null model) maintains the same number of nodes and
hyperedges as the original hypergraph, thus ensuring that the average hyperdegree of
the original hypergraph is preserved in the null model. To construct the null model of
the toy hypergraph (Figure 1a), we need to arrange five nodes among four hyperedges,
where each node is in more than one hyperedge, and each hyperedge contains at least one
node. The construction process involves randomly selecting two columns in the incidence
matrix (corresponding to two hyperedges in the network), then randomly choosing an
entry from each of these columns (corresponding to one node in each hyperedge), and
finally swapping these two selected entries if they have distinct values. As illustrated in
Figure 1b,e, we randomly select two columns in the incidence matrix, say, e2 and e4, and
then swap the “0” and “1” entries corresponding to these two columns.

2.6.2. Hyper-1k Null Model with Hyperdegree Constant

The hyper-1k null model with hyperdegree constant (H1k-HD null model) is extended
from the 1k null model in pairwise networks and keeps the hyperdegree distribution
constant. As shown in Figure 1c,f, to construct the H1k-HD null model, we begin by
randomly selecting two hyperedges, e2 and e4, which are the second and fourth columns
of the incidence matrix in Figure 1f. Then we choose two entries that are from these two
columns and are located in the same row (corresponding to one node in the two selected
hyperedges). If these two entries are different, we swap them. This process aims to preserve
the hyperdegree of nodes in these two selected hyperedges, which corresponds to the sum
of each row in the incidence matrix. In Figure 1f, the red boxes corresponding to node
v3 in e2 and e4 are swapped. This swap ensures that the row sum of the matrix remains
constant before and after the exchange. Repeat this process several times to construct the
H1k null model.

2.6.3. Hyper-1k Null Model with Hyperedge Degree Constant

The hyperedge degree null model with hyperedge degree constant (H1k-HED null
model) is also extended from the hyper-1k null model and keeps the hyperedge degree
constant. As shown in Figure 1g,j, to construct an H1k-HED null model, we randomly
select a hyperedge e2 , which is the second column of the incidence matrix in Figure 1j.
Then we randomly choose two entries with different values in this column (corresponding
to two nodes in this hyperedge) and swap them. The aim of this process is to preserve
the sum of each column in the incidence matrix. In Figure 1j, the red boxes corresponding
to nodes v3 and v5 in e2 are swapped. The column sum of the matrix remains constant
before and after the exchange. Repeat this process multiple times to create the H1k-HED
null model.
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2.6.4. Hyperdegree–Hyperedge Degree Null Model

The hyperdegree–hyperedge degree null model (HD-HED null model) keeps the
hyperdegree and hyperedge degree constant. As shown in Figure 1h,k, to construct an
HD-HED null model, we randomly select two hyperedges e3 and e4, which are the third
and fourth columns of the incidence matrix in Figure 1k. Then we pick two pairs of entries
from these hyperedges, ensuring that each pair is from the same row while containing
distinct entry values. Then we compare the selected two pairs: if the two entry values
in one pair differ from their counterparts in the other pair, we swap the two pairs. This
process preserves the sum of each row and column of the incidence matrix. In Figure 1k,
the red box pairs in the second and fifth rows denote the two entry pairs that are swapped.
That means that v2 is put into e3 and v5 is put into e4. The HD-HED null model can be
constructed by repeating the process several times.

2.6.5. Hyper-2k Null Model

The hyper-2k null model (H2k null model) keeps the joint hyperdegree distribution
constant. This constraint requires the H2k null model to maintain a constant hyperdegree
sum of nodes within each original hyperedge. As shown in Figure 1i,l, to construct an
H2k null model, we first pick two hyperedges randomly, say, e2 and e4 here. Then we
pick one node at random in each of the two hyperedges, which is v1 and v5. Note that
the node which is common to both the two hyperedges cannot be selected. If these two
nodes have the same hyperdegree, they can be swapped. For example, the red boxes in
Figure 1l indicate that v1 and v5 can be swapped because they have the same row sum in
the incidence matrix. Repeating this process several times leads to the construction of the
H2k null model.

2.6.6. Hyper-2.25k Null Model

The hyper-2.25k null model (H2.25k null model) keeps the joint hyperdegree distribu-
tion and clustering coefficient constant. To construct a hyper-2.25k null model, we need to
calculate the clustering coefficient of the network after the same node selection operation
in the H2k null model construction. If the clustering coefficient remains unchanged, the
exchange can be performed; otherwise, we need to find other two nodes that satisfy the
conditions. Repeating this process several times leads to the construction of the H2.25k
null model.

It should be noted that, across all orders of null models, an empty hyperedge is not
permissible. So, it is necessary to check it after each exchange operation; if the hyperedge is
not empty, the exchange is successful.

We describe the relationship between the above hyper-null models in Figure 2 and gen-
eralize this relationship as H0K ⊆ H1k− HD/H1k− HED ⊆ H2k ⊆ H2.25k ⊆ HDk = H.
The size of the null model’s area indicates its level of randomness: a larger area represents
stronger randomness, while a smaller area represents weaker randomness. The closer the
occupied area is to the original network, i.e., the core part, the more features it retains
from the original network. As depicted in the figure, the H0K null model demonstrates
the strongest randomness and retains the fewest features from the original network. It is
important to note that both the H1k-HD and the H1k-HED belong to the 1k null model,
but they are distinct from each other. They do not have a strict theoretical inclusion re-
lationship. On the other hand, the HD-HED null model simultaneously maintains the
properties of both H1k-HD and H1k-HED. Previous studies only investigated statistical
properties or dynamical processes within the original network itself. Yet here, by using our
proposed hyper-null models, we are able to use a framework that comparatively analyzes
these properties in hypergraphs, which provides a comparable quantitative result for us to
analyze the networks with different scales. And the impact of different network properties
or randomness on application scenarios can also be summarized.



Entropy 2023, 25, 1390 8 of 16

H0k

H1k-HEDH1k-HD HD-HED

H2k

H2.25k

HDk=ℋ

Figure 2. The relationship between hyper-null models. From the inside to the outside are the null
models of different orders. HDk = H denotes the original network.

3. Results

In this section, we discuss the relationship between the randomness of the network
and its structure and function. The analysis begins by examining the variations in network
structure across different levels of randomness. Subsequently, the impact of network ran-
domness on network function is evaluated through dismantling experiments and epidemic
contagion experiments. Furthermore, this study investigates the suitability of different null
models as benchmark models for evaluating network properties.

3.1. Data Description

Four different datasets are used in this experiment: Algebra [32], Bars-Rev [32],
iAF1260b [33], and iJO1366 [33]. These datasets exhibit varied topological features, allowing
us to assess the robustness of our proposed method across diverse network structures. The
statistical characteristics are shown in Table 1.

• Algebra: A question–answer network, which is collected from MathOverflow.net,
where the nodes denote users, and the users who answered the same question are
enclosed in a hyperedge.

• Bars-Rev: A review hypergraph collected from Yelp.com, where a hyperedge consists
of the users who reviewed the same bars.

• iAF1260b and iJO1366 : The metabolic hypergraph where nodes denote metabolites
and the hyperedges represent the reaction that is involved in the same metabolic.

Initially, we aim to verify the validity of our null model generation by quantifying
the randomness exhibited by various types of null models. This crucial step involves
generating multiple instances of null models with different orders and assessing their level
of randomness. The experiments involve generating null models of various orders multiple
times (specifically, 10 times) and measuring the average randomness of these models as
the times of hyperedge exchanges increase. The results of these experiments are depicted
in Figure 3. Figure 3 showcases the progressive increase in randomness observed in null
models of varying orders as the times of hyperedge swaps escalate. Upon reaching a certain
threshold of exchanges, the model’s randomness enters a stationary phase. Furthermore,
through a comparative analysis of the randomness across different null models, we observe
a gradual reduction in randomness as the order of the null model increases. It can be
observed in Figure 3 that there is much difference between H0k, H1k-HD and the original
network, and the HD-HED null model also exhibits some differences from the original
network in some hyperedges. Yet, the H2k and H2.25k null models demonstrate relatively
closer resemblance to the original network as a whole.
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Table 1. Basic characteristics of the studied networks.

Networks n e 〈k〉 〈kH〉 C Node Hyperedge

Algebra 423 1268 78.90 19.53 0.79 User Question
Bars-Rev 1234 1194 174.30 9.62 0.58 User Bar review
iAF1260b 1668 2351 13.26 5.46 0.55 Metabolite Metabolic interaction
iJO1366 1805 2546 16.92 5.55 0.58 Metabolite Metabolic interaction

Here, n denotes the number of nodes; e denotes the number of hyperedges; 〈k〉 represents the average degree;
〈kH〉 denotes the average hyperdegree; and C represents the average clustering coefficient.

Algebra Bar-Reva b

iAF1260b iJO13660c d

10,000 20,000 10,000 20,000

9.02121

9.02121

9.02121

R
an
do
m
ne
ss
(I
(H
))

R
an
do
m
ne
ss
(I
(H
))

12,680 11,940

2,3510 25,460

10,000

10,000 20,000

10,000
10,000

9.079505

9.079495

9.079495

10,000

Times
10,000 20,000

Times

9.73315

9.73310

9.73305

9.73300

Figure 3. The trend of randomness on four datasets. (a–d) demonstrate how the randomness of
different null models changes as the times of swapped hyperedges increase in datasets Algebra,
Bar-Rev, iAF1260b and iJO13660. The x-axis denotes the times of hyperedge swapping, while the
y-axis represents the randomness (degree distribution entropy) of the network. The subfigures in
the top right of a, b, c, d are the enlarged drawing of HD-HED, H2k and H2.25k. The red dotted line
denotes actual swapped times. Here, we choose 10 times the number of hyperedges.

3.2. Statistical Analysis Based on Hyper-Null Models

We proceed to investigate the topological properties of the networks with several
metrics. Specifically, we calculate four fundamental statistical indices, namely hyperdegree,
hyperedge degree, clustering coefficient, and co-average hyperdegree, for the iAF1260b
network in Figure 4. The statistical indices for the other three datasets are provided in the
Supplementary Material. Since the distributions of HD-HED, H2k, and H2.25k in these
four metrics are basically consistent with the original network, they are not shown here.

We observe that, with the exception of the H0k and the H1k-HED null models, all other
null models preserve the same hyperdegree distribution as the original network. This aligns
with the rules followed when generating different null models. Additionally, the basic
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null model attribute, that is, having the same hyperedge degree as the original network, is
also observed in the H1k-HED, HD-HED, H2k and H2.25k null models, which ensures a
constant hyperedge degree. In the H0k null model, we observe a higher number of nodes
with small hyperdegrees compared to other null models and the original network. As
the exchange proceeds, the number of nodes with large hyperdegrees decreases gradually.
This significant number of nodes with uniform hyperdegree contributes to the network’s
robustness and facilitates information transmission. Similarly, nodes in the H0k null
model exhibit relatively uniform co-average degrees. This characteristic also facilitates the
dissemination of information or the spread of diseases within the network.

The hyperedge degree distribution of these null models exhibits a decreasing trend
as the hyperedge degree increases, while the number of hyperedges with large hyperedge
degrees in H0k is the smallest. This loose structure in the network corresponds to a lower
likelihood of network collapse. Regarding the clustering coefficient, the number of nodes
with a clustering coefficient of around 0.5 in H0k is the highest. The H0k null model has the
lowest clustering coefficient, followed by the H1k-HED null model, and then the H1k-HD
null model. The original network has the highest clustering coefficient among all models.
This observation suggests that there are dispersion and uniform nodes in the H0k and other
order null models compared to the original network. These relationships make the network
more resistant to dismantling.

In addition to providing the distribution of the local indicators, we also analyze the
important global statistics of these four empirical networks as shown in Table 2.

Table 2 displays the assortativity of the original networks in the first row. It can be
observed that Algebra is more neutral, while Bars-Rev tends to be assortative, and the
iAF1260b and iJO1366 networks tend to be disassortative. To analyze the significance, we
introduce a null model-based analytical framework through introducing the significance
metric µ, which is calculated as the ratio of the metric value of the current model and
the original network. We compute the assortativity of six types of null models and their
significance metric µ in comparison to the original network. As the randomness of the null
model increases, the assortativity tends to be neutral. The H0K null model has the strongest
randomness, and its performance is significantly different from the original network in
all four empirical networks. The higher-order null models, like the HD-HED, H2K, and
H2.25K null models, show assortativity that is relatively closer to the original networks.
Hence, we choose the two hyper-1K null models for our analysis here. By comparing the
deviation of µ and 1, we can analyze the significance of the assortativity of a network. As
observed in the table, the µ of the assortativity of Bars-Rev is better than that of Algebra,
iAF1260b and iJO1366, which means that the assortativity of Bars-Rev is more significant
than the other three datasets. As for the clustering coefficient, the µ of Bars-Rev is less
than that of Algebra, iAF1260b and iJO1366, which means that the clustering coefficient
of Algebra, iAF1260b and iJO1366 is more significant than that of Bars-Rev. The average
neighbor degree of Algebra and Bars-Rev is more significant because the µ of these two
datasets is larger than that of other datasets.
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Figure 4. Statistical indices of network iAF1260b and its hull models. The x-axis in four rows from
top to bottom represents the distribution of hyperdegree (HD), hyperedge degree (HED), clustering
coefficient (CC) and co-average hyperdegree (CHD). The y-axis of each subgraph represents the
proportion p of all nodes that are under the current value.

Table 2. The assortativity, clustering coefficient, average neighbor degree and their µ of each network.

Statistics Network Original H0k H1k-HED H1k-HD HD-HED H2k H2.5k

Assortativity (µ)

Algebra −0.10 −0.02 (0.20) −0.03 (0.30) −0.05 (0.50) −0.08 (0.80) −0.09(0.90) −0.09(0.90)

Bars-Rev 0.30 −0.002
(−0.01) 0.08 (0.27) 0.26 (0.87) 0.27 (0.90) 0.29 (0.97) 0.29 (0.97)

iAF1260b −0.30 −0.03 (0.10) −0.16 (0.53) −0.22 (0.73) −0.26 (0.87) −0.28 (0.93) −0.28 (0.93)
iJO1366 −0.29 −0.03 (0.10) −0.14 (0.48) −0.23 (0.79) −0.25 (0.86) −0.27 (0.93) −0.28 (0.97)

Clustering coefficient (µ)

Algebra 0.80 0.66 (0.83) 0.75 (0.93) 0.76 (0.95) 0.79 (0.99) 0.80(1.00) 0.80(1.00)
Bars-Rev 0.58 0.28 (0.48) 0.44 (0.76) 0.49(0.84) 0.57 (0.98) 0.58 (1.00) 0.58(1.00)
iAF1260b 0.55 0.46 (0.84) 0.54 (0.98) 0.55 (1.00) 0.55 (1.00) 0.55 (1.00) 0.55(1.00)
iJO1366 0.58 0.45 (0.77) 0.55 (0.95) 0.57 (0.98) 0.57 (0.98) 0.57 (0.98) 0.58(0.98)

Average Neighbor Degree (µ)

Algebra 44.35 22.88 (0.52) 38.15 (0.86) 42.12 (0.95) 44.13 (0.99) 44.25 (0.99) 44.35 (1.00)
Bars-Rev 13.28 8.94 (0.67) 12.32 (0.93) 11.95 (0.90) 12.29 (0.93) 13.28 (1.00) 13.28 (1.00)

iAF1260b 141.425 25.66 (0.18) 37.21 (0.26) 135.27 (0.96) 139.49 (0.99) 141.395
(1.00)

141.425
(1.00)

iJO1366 159.46 30.85 (0.19) 150.43 (0.94) 42.79 (0.27) 157.45 (0.99) 157.79 (0.99) 159.46 (1.00)

In summary, as the order of the null model increases, that is, as the randomness
increases, the structure becomes closer and closer to the original network. And the network
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with moderate randomness (such as H1k-HD and H1k-HED) is more suitable as the
benchmark of the network.

3.3. Hypergraph Dismantling

In the following two sections, we analyze the impact of network randomness on
network function from the perspective of dynamics, specifically network dismantling and
network epidemic contagion. For network dismantling, we dismantle the hypergraph in
two ways: removing nodes and removing hyperedges.

3.3.1. Hypergraph Dismantling by Removing Nodes

This approach involves iteratively removing one node at a time and calculating the size
of the giant connected component (GCC) in the remaining network. The process continues
until the GCC size falls below the target size. The evaluation metric used is the number
of nodes removed, with a smaller value indicating a better outcome. In this experiment,
the target GCC size is set to 0.01× N, and the list of removed nodes can be sorted using
a hyperdegree, that is, nodes with larger hyperdegree will be preferentially removed.
As shown in the upper row of Figure 5, the dismantling trend of the original network
and various orders of null models by removing nodes according to the hyperdegree are
displayed. The inset graph illustrates the corresponding area under the GCC curve (GCC-
AUC, AUC for short) of each line of the number of removed nodes (hyperedges) versus the
GCC size of the network. The calculation of AUC comprises summing the GCC values for
each curve at each step until the GCC size is 0.01. The larger the AUC, the more slowly
GCC decreases when removing nodes, and the more cost is required for dismantling. On
the other hand, the network is easier to unravel. The result of the number of removed
nodes of each model is shown in Supplementary Materials.

It reveals that both the AUC and the number of removed nodes in the original network
are the lowest among the four datasets. So, it can be concluded that as the randomness
decreases in these seven networks (the original network and its corresponding six hyper-
null models), the network experiences a more rapid dismantling process.

iAF1260b iJO13660Algebra

GCC-AUC GCC-AUC GCC-AUC GCC-AUC

GCC-AUC

Bar-Rev

Algebra Bar-Rev iJO13660iAF1260b

GCC-AUC GCC-AUC GCC-AUC

a b c d

e f g h

N_H

N N N N

N_H N_H N_H

1e5

Figure 5. Dismantling networks by removing nodes (a–d) and hyperedges (e–h). The x-axis denotes
the number of removed nodes (a–d) or hyperedges (e–h). N denotes the number of removed nodes
while NH represents the number of removed hyperedges. The y-axis represents the GCC size of the
network. The small panels inside (a–h) denote the GCC-AUC of each null model in four datasets.
The GCC-AUC of each null model is shown at the right end of the column.
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3.3.2. Hypergraph Dismantling by Removing Hyperedges

Peng et al. [34] propose a dismantling method by removing hyperedges based on the
hyperedge degree. This process involves iteratively removing a hyperedge and calculating
the GCC size of the remaining network until the GCC size reaches the target size, which
is 0.01× N in this experiment. Figure 5 demonstrates that the rate of network collapse
increases as the randomness decreases in these seven networks (the original network and
its corresponding six hyper-null models). This observation further confirms the inverse
relationship between dismantling speed and network randomness. Additionally, the initial
leveling off followed by a rapid and steep drop in H0k can be attributed to the presence of
hyperedges with large hyperedge degrees in the network.

3.4. Hypergraph Epidemic Contagion

To study the spreading performance of different order null models and explore the
impact of the randomness of different order null models, we employ the SIR epidemic
spreading model on hypergraphs [35] to achieve this goal. In the SIR epidemic spreading
model, each node can have one of three states, susceptible (S), infectious (I), and recovery
(R) state at a time step. Susceptible nodes have the potential to be infected with a probability
of β, infectious nodes have the probability of γ to recover, and nodes that have recovered
acquire immunity and will not be infected again. At the beginning of the experiment, all
nodes are set in the susceptible state, and a fraction of nodes are chosen as seeds, with their
states set as infectious. Within the epidemic spreading process, the infection probability βi
of each node i is not the same, and needs to be individually calculated. Specifically, for each
hyperedge e ∈ E containing node i, if the number of infectious nodes in e exceeds θ, then
this hyperedge itself becomes infectious. Any nodes infected by this hyperedge will be
included in the overall infection node number nall . Therefore, the infection probability βi of
node i can be calculated as βi = 1− e−β×nall . In this experiment, we set θ = 5, γ = 1. The
initial size of the seeds is 0.01× N, and the propagation capability is measured based on
the number of recovery state nodes in the steady state. We repeat this experiment 100 times
to decrease the impact of noise and randomness.

Figure 6 shows that with the increment of the order of the null model, the final
epidemic spreading capacity shows a downward trend. That is, the randomness of the
network is negatively correlated with the epidemic-spreading ability. We also conduct
supplementary experiments using the same parameter settings, except for varying the initial
seed size, which is set to 0.02× N and 0.05× N (the results are shown in Supplementary
Materials Figures S4 and S5). To explore the propagation capabilities of different networks,
we study how the infection probability β (0.1, 0.3, 0.5) influences the spreading capacity of
seeds in the four aforementioned datasets. We select the top 0.01× N nodes ranked by the
hyperdegree. The result is presented in Tables 3, S2 and S3 (Tables S2 and S3 are presented
in Supplementary Materials).

Table 3, S2 and S3 show that there is no big difference in the propagation results
between the original network and H2k and H2.25k. However, the propagation ability of
the null model of other orders decreases as the order increases.

Table 3. The recovery number of each dataset under β = 0.1.

Origin H0k H1k-HED H1k-HD HD-HED H2K H2.25k

Algebra 0.15 0.81 0.42 0.45 0.41 0.36 0.39
Bars-Rev 0.43 0.83 0.55 0.54 0.49 0.49 0.51
iAF1260b 0.04 0.20 0.04 0.04 0.05 0.04 0.05
iJO1366 0.29 0.65 0.31 0.28 0.27 0.29 0.30
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Figure 6. SIR epidemic contagion across four datasets with different infection rates. The first (a–d),
second (e–h), and third (i–l) rows denote the epidemic results for 1% initial infected nodes selected
randomly, based on degree, and using hyperdegree, respectively. The x-axis represents the different
infection rates β and the y-axis denotes the recovery number ratio at the steady state.

4. Conclusions

This paper introduces a novel approach to constructing null models in hypergraphs.
The order of the null model corresponds to the level of similarity it retains with the original
network, thereby establishing a relationship between the order of null models and the
degree of randomness. Furthermore, the hyper-null model we propose can adequately
provide references for the original network, i.e., it constitutes a research framework that
allows a comparative analysis of the original network and hyper-null models. Additionally,
we analyze the randomness of the four empirical networks and their null models, applying
the framework based on hyper-null models to the analysis of the four empirical networks
concerning three aspects: statistical properties, dismantling, and epidemic contagion.

We analyze some important local and global statistics. We find that the biggest
advantage of using hyper-null model analysis is the ability to give a quantitative evaluation
of the significance of the statistical properties of networks with different sizes, compared
to computing only the dimensionless statistics of the original network, that is, to quantify
the degree of nontriviality of the statistics themselves. Network dismantling experiments
demonstrate that the resilience of a network is positively correlated with its degree of
randomness. Similarly, epidemic contagion experiments reveal that the network’s ability to
facilitate the spread of contagion is also influenced by its level of randomness.

The hyper-null model proposed in this paper is constructed based on the method of
local hyperedge disruption, which is simple to operate and fully preserves the essential
features of the original network. The universality of the analysis framework based on the
hyper-null models is demonstrated through different applications. And it can provide
a formidable tool in the analysis of hypergraphs for complex networks and interdisci-
plinary researchers.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/e25101390/s1, Figure S1: Statistical indices of network

https://www.mdpi.com/article/10.3390/e25101390/s1
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Algebra and its hull models; Figure S2: Statistical indices of network Bars-Rev and its hull models;
Figure S3: Statistical indices of network iJO1366 and its hull models; Figure S4: The SIR epidemic
contagion under 2% initial infected nodes on four datasets with different infection rate β; Figure S5:
The SIR epidemic contagion under 5% initial infected nodes on four datasets with different infection
rate β; Table S1: Notations used in this paper; Table S2: The recovery proportion of each dataset
under β = 0.3; Table S3: The recovery proportion of each dataset under β = 0.5.
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