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Abstract: Secrecy capacity is usually employed as the performance metric of the physical layer
security in fiber-optic wiretap channels. However, secrecy capacity can only qualitatively evaluate
the physical layer security, and it cannot quantitatively evaluate the physical layer security of an
imperfect security system. Furthermore, secrecy capacity cannot quantitatively evaluate the amount
of information leakage to the eavesdropper. Based on the channel model of an optical CDMA
network using wiretap code, the information leakage rate is analyzed to evaluate the physical layer
security. The numerical results show that the information leakage rate can quantitatively evaluate the
physical layer security of an optical CDMA wiretap channel, and it is related to transmission distance,
eavesdropping position, confidential information rate and optical code.

Keywords: optical CDMA; physical layer security; secrecy capacity; information leakage rate

1. Introduction

Fiber-optic communication systems are vulnerable to various types of physical layer
attacks [1]. For example, an eavesdropper (Eve) can extract a portion of the transmitted
signal by bending the fiber. In this way, Eve can recover the original signal and cannot be
detected easily by legitimate users [2]. Quantum key distribution (QKD) can theoretically
provide absolute security, but it cannot support high-speed data streams, such as a key rate
of only 0.014 bps under a 833 km optical fiber transmission distance [3].

The physical layer security of fiber-optic networks is increasingly important because it
guarantees the confidentiality of information without compromising the computing power
of Eve, and it eliminates the key distribution and management required by traditional
encryption techniques [4–7]. In 1975, Wyner proposed the wiretap channel model and
secrecy capacity [8]. Secrecy capacity was defined as the maximum achievable system
transmission rate at which Eve could not gain any useful information about a message.
Later, it was extended to broadcast channels with confidential messages and Gaussian
wiretap channels [9,10]. Kyle Guan et al. analyzed the security of space-division multi-
plexed fiber-optic communication systems and used distortion as a quantitative metric for
secrecy. They investigated how the rate of reliable communication between the legitimate
transmitter–receiver pair could be chosen to maximize reconstruction errors of Eve [11].
Then, they further analyzed the information theoretic security of multiple-input–multiple-
output space-division multiplexed fiber-optic communication systems in the presence
of multiple Eves [12]. Physical layer security is an important performance parameter of
optical code division multiple access (OCDMA), which can improve the security of optical
fiber transmission systems [13]. Yeteng Tan et al. proposed a novel secure communication
scheme based on OCDMA technology, and secrecy capacity was employed to evaluate
the physical layer security level [14]. The secrecy capacity of a quantum secure direct
communication system was studied [15]. Andrew Lonnstrom et al. proposed a method for
optimizing the information theoretic secure goodput of a multiple-input–multiple-output
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degraded wiretap channel using inverse precoding [16]. In order to quantify the security
of specific coding schemes, the rate distortion of multimode optical fiber communication
systems was studied [17].

A wiretap code can be designed by choosing two code rates, namely, the codeword
rate Rb and the rate of transmitted confidential information Rs [18]. The redundancy rate
Re = Rb − Rs is used to confuse Eve. In order to ensure the reliability and security, we
must ensure Rb ≤ CB and Re ≥ CE, where CB and CE are the main channel capacity and the
wiretap channel capacity, respectively. When the main channel is better than the wiretap
channel, secrecy capacity is defined as CS = CB − CE, which is the difference between the
main channel capacity and the wiretap channel capacity. Secure communication can be
achieved as long as Rs ≤ CS.

However, for a long-distance fiber-optic communication system, when Eve is close to
the transmitter, Eve can obtain a higher signal-to-noise ratio (SNR) than the legitimate users.
Although we can reduce the channel capacity of Eve by sending artificial noise [19], the
system still cannot guarantee the physical layer security. On the other hand, because Eve’s
location is unknown, there are several different cases of security in the whole communica-
tion link. (1) CS ≥ Rs: in this case, the communication system can achieve perfect security.
(2) 0 < CS < Rs: in this case, some confidential information is leaked to Eve. (3) CS = 0: in this
case, Eve can obtain all the confidential information. Therefore, secrecy capacity can only
qualitatively evaluate the physical layer security under perfect security conditions; it cannot
quantitatively evaluate the physical layer security under imperfect security conditions.
Moreover, secrecy capacity cannot quantitatively evaluate the information leakage.

In this paper, we investigate the information leakage rate of an OCDMA network
using wiretap code. The rest of this paper is organized as follows: In Section 2, we propose
the channel model of the OCDMA network using wiretap code and theoretically analyze
the information leakage rate of the fixed-rate wiretap code. The numerical results and
discussions will be given in Section 3. The conclusion will be given in Section 4.

2. System Model and Theoretical Analysis

Figure 1 depicts the channel model based on OCDMA using wiretap code. At the
transmitter, Alice outputs confidential information M, which is encoded by a wiretap
channel encoder and an OCDMA encoder. Then, an n-vector Xn is transmitted through the
fiber channel. The length of the fiber link is L, and the legitimate user Bob receives Yn. After
using a matched OCDMA decoder and optically amplified receiver (OAR), Bob can recover
confidential information via the wiretap channel decoder. On the other hand, Eve intends
to obtain useful information at extraction location l with an extraction ratio x. According to
Kerckhoffs’s principle [20], Eve knows the data rate, coding type and code length, but does
not know the specific optical code used by the legitimate user. Hence, Eve receives Zn and
can only use an unmatched OCDMA decoder. The wiretap system adopts random coding.
The confidential information rate is Rs = H(M)/n, where H(M) is the entropy of M. The
codeword rate is Rb = H(Xn)/n, where H(Xn) is the entropy of Xn. The wiretap code is
constructed by generating 2nRb codewords. For each message u =

{
1, 2, 3, · · · , 2nRs

}
, we

randomly select one codeword from v =
{

1, 2, 3, · · · , 2n(Rb−Rs)
}

. The OCDMA encoder
uses optical orthogonal code (F, W, 1, 1), where F is the code length, W is the code weight
and the autocorrelation and cross-correlation limits are 1.

At the receiver, OAR includes an erbium-doped fiber amplifier (EDFA), an optical
filter, a photodiode, a low-pass electrical filter (LPF) and a decision circuit, as shown in
Figure 2. In this system, the noise mainly includes shot noise, signal–spontaneous beat
noise, spontaneous–spontaneous beat noise, thermal noise and dark current noise.

At the transmitter, P is the optical power of chip “1” after the OCDMA encoder. The
optical fiber attenuation coefficient is a, and the chip power Pl at the position l is [21]

Pl =
P

10αl/10 (1)
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Because Eve adopts an unmatched decoder, the cross-correlation value of optical
orthogonal code is 1. Therefore, the optical power of Eve’s receiver is

PEve = xPl (2)

The legitimate user adopts a matched decoder, and the autocorrelation peak value of
optical orthogonal code is W. Hence, the optical power of Bob’s receiver is

PS = (1− x)
WP

10αL/10 (3)

When the user data are “1”, the mean current value and the total noise are expressed
as [22]

Im1 = Rc(GPS + PASE) (4)

σ2
m1 = σ2

sh1 + σ2
s-sp1 + σ2

sp-sp + σ2
th + σ2

d

= 2eBeRc(GPS + PASE) + 2 Be
Bo

GR2
c PSPASE + Be

B2
o
(RcPASE)

2(2Bo − Be)

+(4kBT/R)Be + 2eIdBe

(5)

where Rc is the receiver responsivity, Bo is the optical bandwidth, G is the amplifier gain,
e is electron charge and Nsp is the spontaneous radiation factor. Amplified spontaneous
radiation noise power is PASE = 2hvNsp(G − 1)Bo and R is the receiver load resistance.
Photodetector bandwidth Be = (3/4)FRb, T is the temperature, kB is Boltzmann constant
and Id is dark current.

When the user data are “0”, the mean current value and the total noise are expressed
as [22]

Im0 = RcPASE (6)

σ2
m0 = σ2

sh0 + σ2
sp-sp + σ2

th + σ2
d

= 2eBeRcPASE + 2 Be
Bo

GR2
c PSPASE + Be

B2
o
(RcPASE)

2(2Bo − Be)

+(4kBT/R)Be + 2eIdBe

(7)
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The bit error rate (BER) of legitimate users can be calculated by

Pe =
1
2

er f c(
Q√

2
) ≈ exp(−Q2/2)

Q
√

2π
(8)

where Q = (Im1 − Im0)/(σm1 + σm0), erfc() is the complementary error function. Similarly,
Eve’s BER can be calculated.

It is assumed that the probability of user data being “0” and “1” is equal, and the
channel is simplified to a binary symmetric channel model with an error transmission
probability Pe, as shown in Figure 3.
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The main channel capacity is

CB = max{I(Xn; Yn)} = 1− h(Pe) (9)

where h(Pe) = −Pe log(Pe)− (1− Pe) log(1− Pe). After calculating the BER of Eve, the
channel capacity of Eve can also be obtained.

Partial secrecy is usually quantified by the equivocation. In this paper, we use frac-
tional equivocation, which is defined as [10]

∆ =
H(M|Zn)

H(M)
(10)

H(M|Zn) is denoted as the entropy of residual uncertainty at Eve. Therefore, in a
partial secrecy scenario, the maximum achievable fractional equivocation can be obtained
from the following equation [23]:

∆ =


1, i f CE ≤ CB − Rs

CB−CE
Rs

, i f CB − Rs < CE < CB
0, i f CB ≤ CE

(11)

Given the transmission rate of confidential information Rs, the information leakage
rate can be obtained [23]:

RL =
I(M; Zn)

n
= (1− ∆)Rs (12)

Hence, the lower bound of the information leakage rate is obtained:

RL =


0, i f CE ≤ CB − Rs

h(Pm)− h(Pw) + Rs, i f CB − Rs < CE < CB
Rs, i f CB ≤ CE

(13)

Here, Pm and Pw are the BER of Bob and Eve, respectively. The lower bound of the
information leakage rate of Equation (13) represents the minimum secret information which
is obtained by Eve.
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3. Numerical Result and Discussion

In this section, we use MATLAB software for numerical analysis. The system parame-
ters are as follows: The extraction ratio is 1%, the bit rate is 10 Gbit/s, the optical wavelength
is 1550 nm, the EDFA gain G= 20 dB, the EDFA noise index Fn = 5 dB, Bo = 62.43 GHz,
Be = 52.5 GHz, Rc = 0.8 A/W, α = 0.2 dB/km, Id = 2 nA, T = 300 K and R = 50 Ω. Legitimate
users use optical orthogonal code (7,2,1,1). In order to meet the reliability requirement, the
transmitted power must be designed to ensure Bob’s BER ≤ 10−9. In this case, the channel
capacity of legitimate users is close to 1 bit/symbol.

Figure 4 shows the relationship between the secrecy capacity, information leakage
rate and the eavesdropping distance of Eve. The transmission distance of Alice and Bob
is 100 km, Rb = CB and Rs = 0.9Rb. With the increase in the eavesdropping distance, the
SNR of Eve will deteriorate. Hence, the secrecy capacity gradually increases. As can be
seen from Figure 4, when the eavesdropping distance is 62 km, CS = Rs. In a [0, 62] km
link, CS ≤ Rs, Eve can obtain some confidential information. In a [62, 100] km link, Rs ≤ CS,
Eve will not obtain any information. Therefore, the secrecy capacity can only qualitatively
describe which link segment is secure and which link segment is insecure, and cannot
quantitatively evaluate the security of the whole link.
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In a fiber-optic communication system, it is generally impossible to guarantee that the
whole link has perfect security. Therefore, it is necessary to use the information leakage rate
to quantitatively evaluate physical layer security in imperfect secure links. As can be seen
from Figure 4, with the increase in the eavesdropping distance, the information leakage rate
remains unchanged at first, then gradually decreases, and finally reduces to zero. In the
[0, 0.2] km link, the information leakage rate is equal to Rs, which corresponds to secrecy
capacity of 0. This distance is defined as the complete interception distance. At this time,
Eve can obtain all the confidential information. In the [0.2, 62] km link, the information
leakage rate is less than Rs, which means that some confidential information is leaked to
Eve. Hence, this distance is defined as the partial interception distance. In the [62, 100] km
link, the information leakage rate is equal to 0, which means that the secrecy capacity is no
less than Rs. At this point, the link is perfectly secure, and no confidential information is
leaked to Eve. This distance is defined as the safe transmission distance.

By calculating the information leakage rate of different eavesdropping distances, the
physical layer security of the whole link can be quantitatively evaluated. For example,
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RL will be 0.784 bit/symbol, 0.57 bit/symbol and 0.324 bit/symbol for eavesdropping
distances of 20 km, 30 km and 40 km, respectively.

Figure 5 is the information leakage rate under different optical orthogonal codes. It
is shown that the information leakage rate of OOC (7,3,1,1) is lower than that of OOC
(7,2,1,1). The reason for this is that, whether using OOC (7,3,1,1) or OOC (7,2,1,1), Eve can
only obtain one chip pulse by using an unmatched decoder. The legitimate user can obtain
three chip pulses by using OOC (7,3,1,1), while it can obtain two chip pulses by using
OOC (7,2,1,1). Therefore, by using OOC (7,3,1,1), Alice can achieve reliable transmission
at lower chip power. This reduces Eve’s receiving power, resulting in a decrease in the
eavesdropping channel capacity.
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Figure 6 shows the relationship between the information leakage rate and eavesdrop-
ping distance under different Rs. With the decrease in Rs, the information leakage rate
decreases. This is because Eve will receive more redundant information, resulting in less
confidential information. This indicates that redundant information can effectively improve
the physical layer security. On the other hand, with the decrease in Rs, the distance range
with no information leakage increases, that is, the safe transmission distance increases.

We consider an extreme case where Rs = Rb, that is, the system does not use wiretap
code. As shown in Figure 6, even at 100 km, Eve can obtain confidential information. The
reason for this is that the transmitted information has no redundancy information. From
the perspective of secrecy capacity, this shows that the whole optical fiber link is insecure.
However, from the perspective of the information leakage rate, the security of the whole
link can be evaluated quantitatively.

Figure 7 shows the relationship between different Rs and information leakage rates
at a certain eavesdropping distance de. As can be seen from Figure 7, with the increase in
the eavesdropping distance, the information leakage rate will decrease. This indicates that
the information leakage rate and transmission efficiency are restricted mutually. Under a
certain eavesdropping distance, when Rs is less than a threshold, the information leakage
rate will be equal to 0, that is, perfect secrecy will be achieved. As the eavesdropping
distance increases, the threshold for perfect secrecy will increase, that is, a higher rate of
confidential information can be transmitted. For example, to achieve perfect secrecy, Rs
should be no larger than 0.1 bit/symbol for de = 20 km, while Rs should be no larger than
0.3 bit/symbol for de = 30 km.
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4. Conclusions

Based on the OCDMA network using wiretap code, the information leakage rate is
used as the performance metric to evaluate the physical layer security. The relationship
between eavesdropping distance, confidential information rate and information leakage
rate is quantitatively analyzed from the perspective of a partial security system. The results
show that the information leakage rate decreases with the increase in the eavesdropping
position. With the increase in the confidential information rate, the information leakage rate
will decrease. It is also shown that the information leakage rate and transmission efficiency
are restricted mutually.
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Unlike secrecy capacity, the information leakage rate can quantitatively evaluate the
security of the entire fiber link, which allows designers to have a clearer understanding of
the physical layer security of communication systems. Considering practical systems, it
is necessary to study the information leakage rate using finite length encoding. In future
work, we will investigate the physical layer security of specific error correction code.
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