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Abstract: The assessment of seismic risk and the prevention of earthquake occurrences during reser-
voir operation present significant challenges in terms of accurate determination. This study aims
to address this issue by developing a numerical model. The primary objective is to estimate the
vulnerability of different fault types to reservoir impoundment. This model integrates essential
parameters such as fault dip and the relative orientation between the reservoir and potential earth-
quakes, and it is structured within a risk framework using polar coordinates. Through comprehensive
computations, we evaluate the alterations in elastic stress and fluid pore pressure resulting from
water impoundment. This is achieved by employing a fully coupled two-dimensional poroelastic
approach. Furthermore, our model incorporates relevant seismic data to enhance its accuracy. The
findings of our study underscore that the critical factor lies in the fault’s precise positioning with
respect to the reservoir. The risk associated with a fault is contingent upon both its location and its
orientation, emphasizing the importance of these factors in determining hazardous zones.

Keywords: reservoir-induced seismicity; Coulomb failure criterion; seismic hazard assessment

1. Introduction

The impoundment of artificial reservoirs can trigger earthquakes, leading to loss of
life and property, and giving rise to safety issues such as chemical spills [1–5]. This issue
has garnered significant attention, particularly with the escalating development of water
conservation and hydropower projects. Reservoir impoundment promotes earthquakes by
increasing the crustal pore pressure and changes the stress state on pre-existing faults [6–8].
Research has predominantly focused on elucidating the diffusion effects of pore pres-
sure [9,10]. For instance, the seismic activity near the Song Tranh 2 Reservoir in Vietnam
has been attributed to pore pressure diffusion, observed through time delays subsequent to
water impoundment [11]. Similarly, the spatiotemporal seismic trends near the Açu Dam
in Northeast Brazil underscore the significance of pore pressure in reservoir-induced seis-
micity [12]. Exploring the Polyphyto Dam in Northern Greece, Michas et al. [13] indicated
a delayed regional seismic response, correlating it with pore pressure diffusion.

Studies have also attempted to synthesize the influences of both diffusion and loading
effects. These endeavors often involve the construction of numerical models to elucidate
induced seismicity patterns. Notably, the Aswan reservoir-triggered ML 5.7 earthquake in
1981 was assessed through finite element modeling, demonstrating increased pore pressure
and Coulomb failure stress [14]. It is under debate whether the May 2008 Ms 8.0 Wenchuan
earthquake and the abnormal seismicity prior to it were caused by the impoundment
of the nearby Zipingpu Reservoir [15–19]. Tao et al. [20] employed a three-dimensional
numerical model to simulate the pore pressure and stress, proposing that the Zipingpu
Reservoir’s impoundment in China altered the regional tectonic stress field before the
Wenchuan earthquake, although others think the link between the Zipingpu Reservoir and
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the Wenchuan earthquake is low [18]. Similarly, seismicity around China’s Dagangshan
Reservoir was attributed to the combined effects of pore pressure and elastic loading in
numerical simulations [21].

Recent studies have highlighted the role of elastic stress perturbation in various in-
duced seismicity scenarios, including reservoir impoundment, fluid injection, mining,
and geothermal production [4,22]. Instances such as earthquake sequences in Cushing,
Oklahoma and Crooked Lake, Alberta underscore that elastic responses may dominate
induced seismicity after fluid injection [22,23]. The extensive seismic events following
enhanced geothermal system activities in Basel, Switzerland were attributed to modifica-
tions in the ambient stress field due to fluid injection [24]. Recently, earthquake nowcast-
ing [25–27], which is based on natural time [28,29], has been applied to induced seismicity
by Luginbuhl et al. [26], with very interesting results.

Small–large-magnitude induced earthquakes have prompted the development, in
the research community, of seismic risk models that serve both to estimate the impact
of these events and to explore the efficacy of different risk mitigation strategies [30,31].
While discussions surrounding elastic stress’s effects on induced seismicity are plentiful,
few studies have managed to predict seismic events preemptively, offer reservoir siting
guidelines, or delineate risk zones during impoundment. Therefore, the imperative lies in
establishing risk assessment models to monitor induced seismicity. This paper addresses
this gap by crafting seismic risk maps for earthquake risk mitigation. We investigate the
seismic reaction to water impoundment in a mechanically and hydraulically homogeneous
medium. Employing a fully coupled poroelastic model, we compute elastic stress and fluid
pore pressure arising from surface water impoundment. Our model accounts for fault
characteristics and seismic tendencies, substantiated by existing data. Notably, our findings
emphasize that earthquakes are prone to occur when faults possess a suitable dip and are
strategically located in relation to a reservoir. Ultimately, this model holds promise for
enhancing seismic risk management around water reservoirs.

2. Materials and Methods
2.1. Poroelastic Model

We follow the linear poroelasticity theory [32–34] to calculate the stress and pore
pressure perturbations resulting from reservoir impoundment. The governing equations of
linear poroelasticity for an isotropic, homogeneous medium can be written as follows:

G∇2u + G
1−2ν∇ε− α∇ p = 0, (1)

1
M

∂p
∂t + α ∂ε

∂t −∇·
(

κ
η∇p

)
= 0, (2)

where we have ignored the body force and fluid source for the boundary value problem. In
the equations, G is the shear modulus, u is the displacement vector, ν is the Poisson’s ratio
under drained conditions, ε = ∇·u is the volumetric strain, α is the Biot–Willis coefficient,
p is the excess pore pressure, M is the Biot modulus, κ is the permeability, and η is the
fluid viscosity.

The stress tensor is calculated from the strain and pore pressure through the constitu-
tion equation in poroelasticity:

σij =
2Gν

1−2ν εδij + 2Gεij − αpδij. (3)

In Equation (2), M−1 represents the bulk compressibility, which can be measured by
evaluating the amount of water in a soil with constant volume under pressure [32], given by

M−1 = 9
2

(1−2νu)(νu−ν)

(1−2ν)(1+νu)
2GB2 , (4)
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where νu is the undrained Poisson’s ratio [33] and B is the Skempton’s coefficient, which
quantifies the change in pore pressure against confining pressure [33,35]. The undrained
conditions prevail if pore fluid is prevented from escaping or entering [8].

We began by considering a designated water storage rate applied to a surface area of
2 km (L = 2 km), within a homogeneous full space, as depicted in Figure 1. The reservoir,
structured as a two-dimensional entity, spanned 2 km in length and 100 m in depth. Our
approach effectively approximated the reservoir as a surface load, while fully accounting
for the dynamic history of water filling.
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Figure 1. Model configuration: (a) The two-dimensional domain is described by a homogeneous
granite medium, and the formation properties are given in Table 1. The reservoir is located at the
origin of the coordinates. (b) The filling history. The water level increases to its maximum at 100 m in
100 days and remains constant.

Table 1. Parameters for the reference model.

Model Parameter Symbol Value

Young’s modulus E 37.5 GPa
Drained Poisson’s ratio ν 0.25

Undrained Poisson’s ratio νu 0.34
Skempton’s coefficient B 0.75

Fluid viscosity η 1 × 10−3 Pa·s
Permeability κ 2.5 × 10−18 m2

Diffusivity c 0.42 m2/s

To ensure the fidelity of our simulations, we established a model domain measuring
100 km× 50 km. This choice of dimensions effectively eliminated potential boundary effects.
Employing a finite element method (FEM), we solved the two-dimensional boundary value
problem. Specifically, our model domain was discretized into 5000 rectangular elements.
This considerable scale ensured that our model not only accommodated the necessary
breadth but also featured a highly refined mesh. This refinement was essential for effectively
capturing boundary effects and addressing gradients that might arise. We defined the
bottom and side boundaries to be unrestricted in their sliding motion. Simultaneously, the
upper surface assumed the role of a free surface. Furthermore, the seepage gradient at
both the bottom and the sides was established at zero. This configuration was designed to
establish initial hydrostatic equilibrium within the model.

Table 1 lists the nominal material parameters used in the calculations. We used an
average Skempton’s coefficient of 0.75 [36]. The permeability in the reference model corre-
sponded to a diffusivity of 0.42 m2/s, which satisfied the laboratory measurements [10].

2.2. Coulomb Stress and Seismic Risk Model

We used the Coulomb failure criterion [37] to characterize the tendency of frictional
slip. The change in Coulomb failure stress (CFS) is expressed as follows:

∆CFS = ∆τ + µ(∆σ + ∆p), (5)
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where ∆τ is the shear stress change along the slip direction, ∆σ is the normal stress change
acting on the fault plane (positive for tension), ∆p is the excess pore pressure, and µ is the
coefficient of friction. A positive ∆CFS promotes slip, while a negative one prohibits slip.

For an arbitrary point (x1, x3) in the model domain, we calculated the Coulomb stress
for normal or thrust faults with arbitrary dip angles. On this basis, we were able to find the
faults that were more likely to be activated. Combing the results at all points, we provided
a spatial distribution of the seismic risk.

We assumed a uniform distribution of faults in the medium, and the location a possible
hypocenter can be characterized by its distance from the geometric center of the reservoir

r =
√

x2
1 + x2

3 and the polar angle θ = arccos(−x1/r), where θ is a counterclockwise
rotation from the horizontal (Figure 2a).
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Figure 2. The projection method: (a) A schematic showing the location of a fault relative to the
reservoir. The fault is represented by an orange plane, the red star indicates the hypocenter, the blue
area represents the reservoir, and the yellow plane represents the vertical cross-section containing the
geometric center of the reservoir and the hypocenter. The strike of the fault is perpendicular to the
cross-section. The dip angle and polar angle are denoted by δ and θ, respectively. (b) Projection of
the hypocenter onto the θ − δ plane. The seismic risk map shows normalized Coulomb stress for a
constant distance at any time after water impoundment.

For a specific distance r, we made a seismic risk map by calculating the normalized
Coulomb stress change for every polar angle and dip angle. In the schematic risk map, a
fault with a polar angle θ and a dip angle δ is represented by a point (θ, δ) in the θ − δ
plane. Here, the radius in the plot represents the dip angle (Figure 2b). We calculated
the Coulomb stress change at every point in the polar plane and normalized the values
against the maximum Coulomb stress change. The normalized ∆CFS(θ, δ) is presented by
color on the seismic risk map, where warm and cold colors indicate high and low seismic
risk, respectively.

3. Results
3.1. Numerical Results

Figure 3 shows the seismic risk maps for normal and thrust faults for different dis-
tances (3, 5, and 10 km). For normal faults, the high-risk area is mostly right beneath the
reservoir (polar angle 60~120◦). Those faults with dip angles of 50~80◦ are most susceptible
to reservoir loads. The pattern of the seismic risk does not change significantly when the
distance r changes. On the contrary, thrust faults located beneath the reservoir will be stabi-
lized under the loads. Although the seismic risk generally reduces at greater distances, the
overall distribution of positive and negative Coulomb stress does not change with distance.
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Figure 3. Snapshots of normalized Coulomb failure stress for normal and thrust faults at
r = 3, 5, and 10 km at t = 1000 days after reservoir impoundment.

Figure 4 shows the seismic risk maps for normal and thrust faults at different times
after the water impoundment for r = 5 km. Due to the delayed increase in pore pressure,
the seismic risk increases with time, especially for those areas that are at low risk initially.
However, the general pattern (i.e., the distribution of areas at risk) does not change signifi-
cantly with time. Figures 3 and 4 suggest that we can use the seismic risk map made at a
moderate distance and time to conduct risk analysis for reservoir-induced seismicity.
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Figure 4. Snapshots of normalized Coulomb failure stress for normal and thrust faults at
t = 100, 500, and 1000 days after reservoir impoundment for r = 5 km.

3.2. Application to Reservoir-Triggered Earthquakes

Well-documented reservoir-triggered earthquakes were projected onto our risk model
(Figure 5). The cases of reservoir-induced earthquakes included the Koyna-Warna sequence
in India [38], the Czorsztyn M 4.8 earthquake in Poland [39], the Oroville earthquakes
(Pacific Earthquake Engineering Research Center (PEER)) and the Monticello earthquake
sequence [6] in the United States, the Dagangshan seismic sequence [40] and Shuikou
sequence [41] in China, the Tous earthquakes in Spain [42], and the earthquakes near the
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Polyphyto Dam in Greece [13]. The earthquake catalogs and the fault solutions are included
in Table S1. It is accepted that the pore pressure plays a significant role at short distances
to the reservoir [17,18]; the proposed projection method is less effective at short distances
because the pore pressure dominates over the elastic stresses. Faults of any orientation
will be at high risk (Figure S1). We thus ignore the earthquakes that were within 1 km of
the reservoir in the application below. About 80% of the earthquakes occurred in areas
where the normalized Coulomb stress was positive, and the earthquakes were mainly
concentrated on the fault range from 30◦ to 60◦ dip angle. The outliers may be related to
unknown fluid pathways that are beyond the scope of this study.
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Figure 5. The reservoir-induced earthquakes projected onto the risk model: (a) Maps showing
the locations of the reservoirs. (b,c) The normal and thrust earthquakes projected onto the risk
model, respectively. The Coulomb failure stress was calculated for r = 5 km and t = 1000 days.
Abbreviations: poly = Polyphyto Dam; orvi = Orville Dam; tous = Tous New Dam; warn = Koyna-
Warna Dam; czor = Czorsztyn Lake; shui = Shuikou Reservoir.

4. Discussion

The interaction between solid matrix stress and pore pressure variations resulting from
reservoir impoundment plays a pivotal role in triggering earthquakes along pre-existing
faults. Accurately identifying fault segments at elevated risk of activation stands as a crucial
step in effective hazard mitigation strategies. Presently, the primary tool for monitoring
revolves around intensive station observation, which is reliant on seismicity and fault slip
data. Regrettably, this approach falls short in its predictive capabilities. By conducting
comprehensive geological surveys around reservoirs and integrating the earthquake now-
casting [26,27] with the risk model proposed here, it becomes possible to predict the time
and location of reservoir-induced earthquakes and substantially mitigate the associated
seismic hazard. This study unveils a consistent pattern wherein seismicity escalates beneath
the reservoir in the presence of a normal fault with a 30~60◦ dip. Furthermore, destabiliza-
tion tendencies emerge in areas marked by a steeply dipping thrust fault, particularly when
the reservoir is positioned at the fault’s footwall or on the hanging wall of a gently inclined
thrust fault. The methodology presented here holds the promise of serving as a blueprint
for a generalized reservoir earthquake model. This approach effectively categorizes fault
types that pose heightened risks under reservoir loading conditions. Future extensions
of this analysis could encompass multiple fault scenarios, incorporate three-dimensional
models, and explore the dynamics of strike-slip faults.
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4.1. Fault Risk Tendency

The potential of fault triggering is profoundly influenced by the relative positioning
of the fault with respect to the reservoir, as well as by the specific geometry of the fault.
Utilizing our model, we adeptly delineated zones of heightened risk. Notably, the area
of concern encompasses scenarios where a steep normal fault is directly situated beneath
a reservoir. The propensity for seismic induction is particularly pronounced when the
reservoir is positioned on the footwall of a steeply dipping thrust fault or on the hanging
wall of a shallowly dipping one (Figure 5). Roeloffs [7] found that reservoir-induced
seismicity’s impact is contingent upon the fault’s characteristics and location, a notion
further discussed by Talwani [8], emphasizing the reservoir’s stability in relation to fault
dynamics. Our model not only corroborates Roeloffs’ theory but also extends it, providing
a more comprehensive and intuitive representation of the phenomenon (Figure 5).

It is important to note that the delineated risk area is not indefinitely hazardous;
it is influenced by pore pressure diffusion and temporal decay. Our findings demon-
strate that the influence of diffusion intensifies over time (Figure 4), with the rate being
permeability-dependent [10,43]. Concurrently, induced seismicity follows a consistent
pattern of temporal decay. The poroelastic response resulting from reservoir loading can
gradually regress over months or even a few years, eventually reaching pre-event levels,
as depicted by seismicity rate models [44–47]. The seismic activity encircling the reservoir
emerges as an intricate interplay of elastic stress, pore pressure dynamics, and temporal
decay effects.

4.2. Simplified Model Setup

Notably, the faults in this paper were distributed uniformly within the medium,
and their elastic and hydraulic properties were consistent with those of the background
medium. However, it is important to acknowledge that the permeability of a fault can vary
significantly, causing the fault zone to function either as a conduit or as a barrier for fluid
flow dynamics [48]. In this study, we deliberately focused on a simplified and homogeneous
scenario. This choice serves to underscore the intricate relationship between fault attributes
and reservoir locations in the context of earthquake nucleation. To delve into the impact of
heterogeneous media incorporating faults, further investigations are warranted.

Our approach employs a two-dimensional model to simulate the alterations in elastic
stress and fluid pore pressure caused by water loading. It is worth noting that the two-
dimensional model does magnify the calculation results, with values approximately two
to four times higher than those of the three-dimensional model [19]. The limitation of
the two-dimensional model lies in its consideration of changes in only two dimensions,
effectively setting the third dimension to infinity. This inevitably neglects the alterations in
the third dimension and accentuates the influence of the two dimensions considered. Of
course, it is essential to recognize that the computational demands of a three-dimensional
model increase exponentially. The pragmatic utility of the two-dimensional model lies
in its ability to quantify results to a reasonable extent, all while significantly conserving
computational resources and time investments. As computers’ capabilities continue to
evolve, the realm of three-dimensional simulations holds promise for further exploration
and research.

5. Conclusions

In this study, we conducted a comprehensive analysis of the Coulomb failure stress
resulting from poroelastic stress and pore pressure alterations in a two-dimensional frame-
work of linear poroelasticity. The culmination of our findings was projected onto a polar
coordinate system, where the rotation angle θ and radius δ offer insightful perspectives.
Our results notably reveal a heightened seismic activity when a normal fault exhibits a
steeper dip directly beneath the reservoir. Additionally, destabilization tendencies emerge
when the reservoir is situated either on the footwall of a sharply inclined reverse fault or
on the hanging wall of a shallowly dipping thrust fault. It is imperative to underscore
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that not all faults encompassing the reservoir exhibit the potential to induce seismicity,
as this propensity is profoundly influenced by fault characteristics and the precise reser-
voir location.

Our study significantly underscores the selective nature of fault-induced seismicity,
pointing to the pivotal interplay between fault attributes and reservoir positioning. As
such, the implications of our research are poised to provide valuable insights for assessing
the risks associated with induced seismicity. In practical terms, any project involving
reservoirs should diligently consider the specific fault types at play and meticulously
construct a detailed risk model. By doing so, the safety of the surrounding region can be
more effectively secured, minimizing potential seismic hazards.

In conclusion, our investigation contributes a nuanced understanding of the intricate
relationships between fault mechanics, reservoir placement, and induced seismicity. As
we move forward, the lessons gleaned from this study have the potential to substantially
enhance risk assessment protocols and safeguard against the adverse effects of reservoir-
induced seismic activity.

Supplementary Materials: The following supporting information can be downloaded at: https:
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