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Abstract: Coherence-assisted transformation under incoherent operations is discussed. For trans-
formation from the pure state to the mixed state, we show that the coherence loss can be partially
recovered by adding auxiliary coherent states. First, we discuss the coherence-assisted transfor-
mation for qubit states and give the sufficient and necessary condition for the partial recovery of
coherence loss, and the maximum of the recovery of coherence loss is also studied in this case.
Second, the maximally coherent state can be obtained in the above recovery scheme, so we give the
full characterization of obtaining the maximally coherent state in a qubit system. Finally, we show
that the coherence-assisted transformation for arbitrary finite-dimensional main coherent states and
low-dimensional auxiliary coherent states is always possible, and the coherence loss also can be
partially recovered in these cases.

Keywords: coherence; coherence transformation; coherence loss; coherence recovery

1. Introduction

Quantum resource theory originally comes from the resource theory of quantum en-
tanglement [1–6]. With the further evolution of quantum information, it has been gradually
extended to other quantum resource theories such as coherence [7–11], asymmetry [12,13],
reference frames [14,15], thermodynamics [16,17] and so on. In this paper, we focus on the
resource theory of quantum coherence. Quantum coherence is not only a basic concept in
quantum mechanics but also an important physical resource. It plays an important role in
quantum information processing [18–20], quantum biology [21,22], quantum thermody-
namics, quantum cryptography [23–26] and quantum measurement [27,28]. Therefore, it is
necessary to study the resource theory of quantum coherence.

The resource theory of quantum coherence was first proposed by Baumgratz et al., and
they established a rigorous framework of quantifying coherence [29]. In the resource theory
of quantum coherence, due to the interaction with the environment, the decoherence phe-
nomenon occurs. Singh et al. proved that quantum chaos and diminishing of information
about the mixed initial state favors the generation of quantum coherence through unitary
evolution [30]. Kurashvili et al. proved that nonunitary evolution leads to the generation
of quantum coherence in some cases [31]. From another point of view, according to the
golden rule of quantum resource theory, the coherence of the state does not increase under
free operations. Therefore, in this paper, we study the partial recovery of coherence loss in
state transformations under free operations. So far, the state transformation problem for
two pure coherent states has been studied extensively, Du et al. proposed the sufficient
and necessary condition for the transformation from a pure coherent state to another pure
coherent state under incoherent operations [32]. Thus, we can determine whether the
above state transformation can be realized. Suppose the above state transformation can
be realized; it follows that the coherence of the state does not increase under incoherent
operations: that is, the coherence loss in the state transformation is inevitable. For this
case, Xing proposed a recovery scheme that adds an auxiliary system to the original system
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such that the coherence loss can be partially recovered in pure state transformations [33].
The process of adding auxiliary systems to the original system and performing a joint
incoherent operation on the two systems is called coherence-assisted transformation. When
the coherence of the auxiliary coherent state increases, the whole process recovers from
coherence loss. However, due to the existence of noise, most states are mixed states in
practice. Therefore, in this article, we discuss the recovery of coherence loss from a pure
state to a mixed state.

In this paper, we discuss coherence-assisted transformation under incoherent oper-
ations. For comparable main coherent states, i.e., a pure state that can be transformed
to a mixed state under incoherent operations, we show that the coherence loss can be
partially recovered by adding auxiliary coherent states. First, we consider the simplest
coherence-assisted transformation, i.e., both the main coherent states and auxiliary coherent
states are qubit states. We give the sufficient and necessary condition for the coherence loss
that can be partially recovered in a coherence-assisted transformation. Thus, we can find all
of the auxiliary coherent states that satisfy the above conditions. Moreover, for given main
coherent states satisfying the condition in Proposition 1, we give the concrete auxiliary
coherent state that can obtain the maximum of the recovery of coherence loss. Second,
as a direct application of the above recovery scheme, we give the full characterization
of obtaining a maximally coherent state in a qubit system. Finally, we show that if the
arbitrary finite-dimensional main coherent states satisfy a strictly majorization relation,
there exist two-dimensional auxiliary coherent states that can realize the above recovery
scheme.

The paper is organized as follows. In Section 2, we introduce the preliminary knowl-
edge of quantum coherence, including incoherent states, incoherent operations, the relative
entropy of coherence and the necessary and sufficient condition for the transformation from
a pure coherent state to a mixed coherent state under incoherent operations. In Section 3, we
discuss the coherence-assisted transformation for qubit states and obtain some interesting
conclusions. In Section 4, we give the full characterization for obtaining a two-dimensional
maximally coherent state in the above recovery scheme. In Section 5, we show that the re-
covery for arbitrary finite-dimensional main coherent states and low-dimensional auxiliary
coherent states is always possible.

2. Preliminary

In the resource theory of quantum coherence, we first need to understand incoherent
states and incoherent operations [29]. Let {|i〉}d

i=1 be a fixed orthonormal basis in d-
dimensional Hilbert space; if the density matrix is diagonal in the basis, then the diagonal
density matrix is called an incoherent state. The set of all incoherent states is denoted
by I for any δ ∈ I, which can be written as δ = ∑d

i=1 δi|i〉〈i|. Otherwise, it is called a
coherent state. Incoherent operations (IOs) are defined as the set of completely positive
and trace-preserving maps for which the Kraus operators {Kl} take incoherent states to
incoherent states, i.e., KlρK†

l /tr
(
KlρK†

l
)
∈ I for all ρ ∈ I , where ∑l K†

l Kl = I.
In order to quantify the coherence of a quantum state, we need to choose a proper

coherence measure. A proper coherence measure needs to satisfy four conditions [29], and
one of the conditions is monotonicity, i.e., the coherence of the quantum state does not
increase under incoherent operations. Here, we adopt the relative entropy of coherence
to explain the corresponding results because it is easy to calculate. Notice that the results
in the paper are also equally applicable to other proper coherence measures. The relative
entropy of coherence is equal to the distillable coherence [34] and can be interpreted as
the minimal amount of noise required for fully decohering a state [35]; it is defined as
Cr(ρ) = S

(
ρdiag

)
− S(ρ), where S(ρ) = −tr(ρ log ρ) is the von Neumann entropy of the

quantum state, and ρdiag is the diagonal part of ρ. If the non-zero eigenvalues of ρ are
{λx}r

x=1, r = rank(ρ), the von Neumann entropy of the quantum state can be written as
S(ρ) = −∑r

x=1 λx log λx. Moreover, the coherence measure of the pure state is easy to
calculate. Notice that if ρ is a pure state, Cr(ρ) = S

(
ρdiag

)
.



Entropy 2023, 25, 1375 3 of 14

In this paper, for any pure coherent states |ψ〉 = ∑d
i=1
√

αi|i〉 and |φ〉 = ∑d
i=1
√

βi|i〉,
without loss of generality, the squared coefficients {αi}, {βi} are real numbers and are
arranged in non-increasing order, i.e., α1 > α2 > . . . > αd > 0 and β1 > β2 > . . . > βd > 0.
Let λψ = (α1, . . . , αd), λφ = (β1, . . . , βd); we say λψ is majorized by λφ, i.e., λψ ≺ λφ, if
∑l

i=1 αi 6 ∑l
i=1 βi for all l = 1, . . . , d and ∑d

i=1 αi = ∑d
i=1 βi = 1.

So far, state transformations under incoherent operations have been studied exten-
sively, Du et al. give the sufficient and necessary condition for the transformation from a
pure coherent state to another pure coherent state under incoherent operations.

Lemma 1 ([32]). For any two pure coherent states |ψ〉 = ∑d
i=1
√

αi|i〉 and |φ〉 = ∑d
i=1
√

βi|i〉,
|ψ〉 IO−→ |φ〉 if and only if λψ ≺ λφ.

Furthermore, Du et al. also give the sufficient and necessary condition for the transfor-
mation from a pure state to a mixed state under incoherent operations. Here, we state the
following result by majorization relation.

Lemma 2 ([36]). For any pure state ψ = |ψ〉〈ψ| and mixed state σ, ψ
IO−→ σ if and only if there

exists a pure state ensemble
{

qj, |φj〉
}r

j=1 of σ such that λψ ≺ ∑r
j=1 qjλφj .

By Lemma 2, we can judge whether a pure state can be transformed to a given mixed
state by majorization relation. For example, let ψ = |ψ〉〈ψ|, σ = 9

10 |φ1〉〈φ1|+ 1
10 |φ2〉〈φ2|,

where |ψ〉 =
√

0.4|0〉+
√

0.35|1〉+
√

0.25|2〉, |φ1〉 =
√

0.5|0〉+
√

0.25|1〉+
√

0.25|2〉, |φ2〉 =√
0.5|0〉 +

√
0.3|1〉 +

√
0.2|2〉. The above states satisfy the majorization relation λψ ≺

∑2
j=1 qjλφj , i.e., (0.4, 0.35, 0.25) ≺ (0.5, 0.255, 0.245), so we can obtain ψ

IO−→ σ.

3. Coherence-Assisted Transformation for Qubit States

In this part, we show that the coherence loss from a pure state to a mixed state can
be partially recovered in coherence-assisted transformation. Coherence-assisted trans-
formation [33] is the process of adding an auxiliary system to the ordinary coherence
transformation. More specifically, during the state transformation for comparable main
coherent states, we add auxiliary coherent states such that the whole transformation can
still be realized under joint incoherent operations. Here, the initial and final auxiliary
coherent states are different; such a transformation is called a coherence-assisted trans-
formation. In a coherence-assisted transformation, when the coherence of the auxiliary
coherent state increases, the coherence loss can be partially recovered. The following is a
detailed description of the recovery scheme.

Suppose a pure coherent state ψ can be transformed to a mixed coherent state σ

under incoherent operations, i.e., ψ
IO−→ σ. We add a pure auxiliary coherent state ω1 and

perform a joint incoherent operation on the two particles ψ and ω1 such that the coherence-

assisted transformation
(
ψ⊗ω1

IO−→ σ⊗ω2
)

can still be realized, where Cr(ω2) > Cr(ω1).
Then, the coherence loss can be partially recovered, and the recovered coherence loss is
∆ = Cr(ω2)− Cr(ω1).

We can see that the coherence of the auxiliary coherent state is increased—that is, the
reduced coherence of the initial main coherent state can be partially transformed to the
final auxiliary coherent state—then, the coherence loss can be partially recovered, and the
recovered coherence loss is ∆ = Cr(ω2)− Cr(ω1). This is due to the fact that the relative
entropy of coherence satisfies additivity, i.e, Cr(ρ⊗ σ) = Cr(ρ) + Cr(σ) [34].

The core of the coherence-assisted transformation ψ⊗ω1
IO−→ σ⊗ω2 is that we need

to perform joint incoherent operations. In the following, we give the specific incoherent
operations that are implemented. For the main coherent states ψ = |ψ〉〈ψ| and σ =

∑m
l=1 ql |φl〉〈φl | of dimension d1, auxiliary coherent states ω1 = |ω1〉〈ω1| and ω2 = |ω2〉〈ω2|

of dimension d2, where |ψ〉 = ∑d1
i=1
√

αi|i〉, |φl〉 = ∑d1
i=1

√
βli|i〉. According to Lemma 2, we
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can obtain ψ⊗ω1
IO−→ σ⊗ω2 ⇐⇒ λψ⊗ω1 ≺ ∑m

l=1 qlλφl⊗ω2 ; the proof of the result is similar
to that found in the literature [36]. First, according to the majorization relation satisfied on
the right, we define an intermediate pure state

|η〉 = ∑d1
i=1

√
∑m

l=1 |
√

ql βli|2|i〉 = ∑d1
i=1 ηi|i〉;

then, there exists an incoherent operation Φ1 such that Φ1(ψ⊗ω1) = η⊗ω2. Next, for any
1 6 l 6 m, define

Kl = ∑d1
i=1 ∑d2

j=1

√
ql βl j

ηi
|ij〉〈ij|.

It is easy to check that the map Φ2(·) = ∑m
l=1 Kl(·)K

†
l is an incoherent operation, and

we have Kl(|η〉 ⊗ |ω2〉) =
√

ql |φl〉 ⊗ |ω2〉. Last, it is obvious that the composition of any
two incoherent operations is still an incoherent operation, so Φ = Φ2 ◦Φ1 is an incoherent
operation, and

Φ2 ◦Φ1(|ψ〉〈ψ| ⊗ |ω1〉〈ω1|) = ∑m
l=1 ql |φl〉〈φl | ⊗ |ω2〉〈ω2| = σ⊗ω2.

Let us give a concrete example: the following example makes this phenomenon of
partial recovery of coherence loss in a coherence-assisted transformation more intuitive.

Example 1. Consider the states with the following form

ψ = |ψ〉〈ψ|, σ =
2
5
|φ1〉〈φ1|+

3
5
|φ2〉〈φ2|,

where |ψ〉 =
√

0.63|0〉 +
√

0.37|1〉, |φ1〉 =
√

0.6|0〉 +
√

0.4|1〉, |φ2〉 =
√

0.8|0〉 +
√

0.2|1〉.
It is easy to see that the squared coefficients of the above states satisfy the majorization relation

λψ ≺ ∑2
j=1 qjλφj , i.e., (0.63, 0.37) ≺ (0.72, 0.28), so we can obtain ψ

IO−→ σ. At the same time,
there exist auxiliary coherent states |ω1〉 =

√
0.64|0〉+

√
0.36|1〉, |ω2〉 =

√
0.58|0〉+

√
0.42|1〉

that satisfy majorization relation λψ⊗ω1 ≺ ∑2
j=1 qjλφj⊗ω2 , i.e., (0.4032, 0.2368, 0.2268, 0.1332) ≺

(0.4176, 0.3024, 0.1624, 0.1176), so we can obtain ψ ⊗ ω1
IO−→ σ ⊗ ω2 and Cr(ω2) ≈ 0.98 >

Cr(ω1) ≈ 0.94. Then, the recovered coherence loss is ∆ = Cr(ω2)−Cr(ω1) ≈ 0.98− 0.94 = 0.04.

In above coherence-assisted transformation, let ω1 be a given auxiliary coherent state;
we can see that the choice of auxiliary coherent state ω2 is not unique. As in Example
1, there exists another auxiliary coherent state |ω2〉 =

√
0.62|0〉 +

√
0.38|1〉 such that

ψ⊗ ω1
IO−→ σ⊗ ω2 and Cr(ω2) > Cr(ω1). A natural question is how to find all auxiliary

coherent states ω2, i.e., for given states (ψ, σ, ω1) that satisfy ψ
IO−→ σ, what kind of ω2 can

realize the coherence-assisted transformation
(
ψ⊗ω1

IO−→ σ⊗ω2
)

and Cr(ω2) > Cr(ω1).
Let us start with the simplest case, in which the main coherent states and the auxiliary
coherent states are both qubit states (d = 2). Let σ = q|φ1〉〈φ1| + (1− q)|φ2〉〈φ2| be a
pure state decomposition of σ; notice that we only consider mixed state σ of rank-2 in
this part. Then, the main coherent states ψ = |ψ〉〈ψ| and σ have the following pure state
decomposition

|ψ〉 =
√

α|0〉+
√

1− α|1〉,
|φ1〉 =

√
β1|0〉+

√
1− β1|1〉,

|φ2〉 =
√

β2|0〉+
√

1− β2|1〉. (1)



Entropy 2023, 25, 1375 5 of 14

Here the squared coefficients are arranged in non-increasing order, which mean 1
2 6 α 6 1,

1
2 6 β1 6 1 and 1

2 6 β2 6 1. In order to give our main result, we first give the following
lemma.

Lemma 3 ([37]). Suppose A = {a1, . . . , an}, B = {b1, . . . , bn}; sort the elements in B in de-
creasing order and denote its elements by b(1) > b(2) > . . . > b(n); then, A ≺ B if and only
if

max
A′⊆A,|A′ |=l

∑
ai∈A′

ai 6
l

∑
i=1

b(i), 1 6 l 6 n,

and equality holds when l = n.

Proposition 1. Suppose ψ
IO−→ σ; there exist auxiliary coherent states |ω1〉 =

√
c|0〉+

√
1− c|1〉,

|ω2〉 =
√

d|0〉+
√

1− d|1〉 such that ψ⊗ω1
IO−→ σ⊗ω2 and Cr(ω2) > Cr(ω1), if and only if

1
2 6 α 6 β 6 1 and

(1) when 1
2 < c 6 β, max

{
1
2 , αc

β

}
6 d < c;

(2) when β < c < max{β1, β2}, max
{

(1−α)c+α−β
1−β , min

{
c−(1−q)β2

q , c−qβ1
1−q

}}
6 d < c,

where β = qβ1 + (1− q)β2.

Proof. The condition ψ
IO−→ σ means

1
2
6 α 6 qβ1 + (1− q)β2 = β 6 1. (2)

The condition Cr(ω2) > Cr(ω1) is equivalent to

1
2
6 d < c 6 1. (3)

Because Cr(ω1) 6 Cr(ω2) is equivalent to λω2 ≺ λω1 in a qubit system, the equality holds
only when d = c. By Lemma 2, the proof of the proposition can be reduced to finding the
conditions that satisfy majorization relation λψ⊗ω1 ≺ ∑2

j=1 qjλφj⊗ω2 and Equation (3) with
assumption (2).

First, we can obtain the squared coefficients of |ψ〉 ⊗ |ω1〉, |φ1〉 ⊗ |ω2〉 and |φ2〉 ⊗ |ω2〉:

A = {αc, α(1− c), (1− α)c, (1− α)(1− c)},
B1 = {β1d, β1(1− d), (1− β1)d, (1− β1)(1− d)},
B2 = {β2d, β2(1− d), (1− β2)d, (1− β2)(1− d)}. (4)

In order to find the three inequalities that satisfy the majorization relation λψ⊗ω1 ≺ ∑2
j=1 qjλφj⊗ω2—

notice that the fourth equality is trivial—we need to sort the elements in Equation (4) in decreasing
order and denote its elements by a(1) > a(2) > a(3) > a(4), b(1)1 > b(2)1 > b(3)1 > b(4)1 and

b(1)2 > b(2)2 > b(3)2 > b(4)2 . It is obvious that a(1) = αc, a(4) = (1− α)(1− c), b(1)1 = β1d, b(4)1 =

(1− β1)(1− d), b(1)2 = β2d, b(4)2 = (1− β2)(1− d).
Second, we can obtain the first and third inequalities of the majorization relation

a(1) 6 qb(1)1 + (1− q)b(1)2 ⇔ αc 6 qβ1d + (1− q)β2d = βd⇔ d >
αc
β

(5)

and
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3

∑
i=1

a(i) 6 q
3

∑
i=1

b(i)1 + (1− q)
3

∑
i=1

b(i)2 ⇔ a(4) > qb(4)1 + (1− q)b(4)2 ⇔ (1− α)(1− c)

> q(1− β1)(1− d) + (1− q)(1− β2)(1− d) = (1− β)(1− d)⇔ d >
(1− α)c + α− β

1− β
.

(6)

Third, we need to determine the next-largest element of B1, B2 in Equation (4). If
β j 6 d, we have β j(1− d) 6

(
1− β j

)
d; if β j > d, we have β j(1− d) >

(
1− β j

)
d, j = 1, 2.

Then, the following four cases can determine the second- and the third-largest elements
in B1, B2: (i) β1 6 d, β2 6 d, (ii) β1 > d, β2 > d, (iii) β1 6 d, β2 > d and (iv) β1 > d, β2 6 d.
After finding all the possibilities for B1 and B2, we can calculate ∑l

i=1 b(i)1 and ∑l
i=1 b(i)2 for

all l = 1, . . . , 4.
Finally, we still need to calculate ∑l

i=1 a(i) to obtain the second inequality of the
majorization relation. In Equation (4), a(1) + a(2) = αc + α(1− c) = α or a(1) + a(2) =
αc + (1− α)c = c; by Lemma 3, we have a(1) + a(2) = max{α, c}. Based on the above
results, we can obtain the second inequality of the majorization relation.

(i) β1 6 d, β2 6 d: We have b(2)1 = (1− β1)d, b(2)2 = (1− β2)d, then ∑2
i=1 a(i) 6

q ∑2
i=1 b(i)1 + (1− q)∑2

i=1 b(i)2 ⇔ max{α, c} 6 qd + (1− q)d = d. This case contradicts
Equation (3).

(ii) β1 > d, β2 > d: We have b(2)1 = β1(1− d), b(2)2 = β2(1− d); then ∑2
i=1 a(i) 6

q ∑2
i=1 b(i)1 + (1− q)∑2

i=1 b(i)2 ⇔ max{α, c} 6 qβ1 + (1− q)β2 = β. The condition α 6 β is
implied in Equation (2). In this case we have

c 6 β, d < min{β1, β2}. (7)

(iii) β1 6 d, β2 > d: We have b(2)1 = (1− β1)d, b(2)2 = β2(1− d); then ∑2
i=1 a(i) 6

q ∑2
i=1 b(i)1 +(1− q)∑2

i=1 b(i)2 ⇔ max{α, c} 6 qd+(1− q)β2 ⇔ max
{

α−(1−q)β2
q , c−(1−q)β2

q

}
6 d. So

max
{

α− (1− q)β2

q
,

c− (1− q)β2

q
, β1

}
6 d < β2.

Since α 6 β, we have β1 > α−(1−q)β2
q . At the same time, we have c < β2. Otherwise

c > β2 > qd + (1− q)β2; this is in contradiction with the above second inequality
(c 6 qd + (1− q)β2). Combining the two conditions c < β2 and β1 < β < β2, we can
divide the system into two parts: c 6 β and β < c < β2 . Similarly, for c 6 β, we have
β1 > c−(1−q)β2

q ; for β < c < β2, we have β1 < c−(1−q)β2
q . This means that the above

inequality can be simplified. In this case, we have

c 6 β, β1 6 d < β2;

β < c < β2,
c− (1− q)β2

q
6 d < β2. (8)

(iv) β1 > d, β2 6 d: We have b(2)1 = β1(1− d), b(2)2 = (1− β2)d; then ∑2
i=1 a(i) 6

q ∑2
i=1 b(i)1 + (1− q)∑2

i=1 b(i)2 ⇔ max{α, c} 6 qβ1 + (1− q)d ⇔ max
{

α−qβ1
1−q , c−qβ1

1−q

}
6 d.

So

max
{

α− qβ1

1− q
,

c− qβ1

1− q
, β2

}
6 d < β1.

Same as in case (iii), in this case we have

c 6 β, β2 6 d < β1;
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β < c < β1,
c− qβ1

1− q
6 d < β1. (9)

Combining Equations (7)–(9), we obtain the second inequality of majorization relation

c 6 β, d < max{β1, β2};

β < c < max{β1, β2}, min
{

c− (1− q)β2

q
,

c− qβ1

1− q

}
6 d < max{β1, β2}. (10)

To sum up, combining Equations (3), (5), (6) and (10), we can obtain

1
2
< c 6 β, max

{
1
2

,
αc
β

,
(1− α)c + α− β

1− β

}
6 d < c;

β < c < max{β1, β2}, max
{

1
2

,
αc
β

,
(1− α)c + α− β

1− β
, min

{
c− (1− q)β2

q
,

c− qβ1

1− q

}}
6 d < c.

When 1
2 < c 6 β, it follows that αc

β > (1−α)c+α−β
1−β . When β < c < max{β1, β2}, it follows

that αc
β 6 (1−α)c+α−β

1−β and 1
2 < (1−α)c+α−β

1−β . So we obtain

1
2
< c 6 β, max

{
1
2

,
αc
β

}
6 d < c;

β < c < max{β1, β2}, max
{
(1− α)c + α− β

1− β
, min

{
c− (1− q)β2

q
,

c− qβ1

1− q

}}
6 d < c.

Thus, the proof of the proposition is completed.

Notice that the condition c < max{β1, β2} of Proposition 1 is crucial in the recovery
scheme. The condition indicates that if we want to recover the coherence loss in the above
state transformation, the initial auxiliary coherent state ω1 must have enough coherence.

Proposition 1 tells us that the partial recovery of coherence loss in qubit state trans-
formation is always possible by choosing appropriate qubit auxiliary coherent states. At
the same time, Proposition 1 is constructive: it provides us a way to find all auxiliary
coherent states in the above recovery scheme. Here, we give a specific example to ex-
plain the effectiveness of the above proposition. As in Example 1, let ψ = |ψ〉〈ψ|, σ =
2
5 |φ1〉〈φ1|+ 3

5 |φ2〉〈φ2|, where |ψ〉 =
√

0.63|0〉+
√

0.37|1〉, |φ1〉 =
√

0.6|0〉+
√

0.4|1〉, |φ2〉 =√
0.8|0〉+

√
0.2|1〉; by Lemma 2, we can obtain ψ

IO−→ σ. Let the auxiliary coherent state
|ω1〉 =

√
0.64|0〉+

√
0.36|1〉; we have c = 0.64 < β = 0.4× 0.6 + 0.6× 0.8 = 0.72; accord-

ing to Proposition 1, max
{

1
2 , αc

β

}
= max{0.5, 0.56} = 0.56, so we find all auxiliary coherent

states |ω2〉 =
√

d|0〉+
√

1− d|1〉 such that ψ⊗ω1
IO−→ σ⊗ω2 and Cr(ω2) > Cr(ω1), where

0.56 6 d < 0.64.
For given states (ψ, σ, ω1) that satisfy ψ

IO−→ σ, we find all auxiliary coherent states ω2
that can recover the coherence loss in a qubit system. We ask what kind of ω2 can maximize
the recovery of coherence loss. Since ω1 is a given state, we have that Cr(ω1) is a fixed
constant and denote it by m, so ∆ = Cr(ω2)− Cr(ω1) = −d log d− (1− d) log(1− d)−m,
where ∆ is a decreasing function in 1

2 6 d 6 1. That is, in order to obtain the maximum
recovery of coherence loss, we only need to find the smallest d among all the possibilities
of ω2. As in Example 1, we obtain 0.56 6 d < 0.64; when we choose the final auxiliary
coherent state as |ω2〉 =

√
0.56|0〉+

√
0.44|1〉, we can obtain the maximum recovery of

coherence loss ∆ = Cr(ω2)− Cr(ω1) ≈ 0.99− 0.94 = 0.05. Now we ask what happens

if ω1 is not a given state, i.e., for given states (ψ, σ) that satisfy ψ
IO−→ σ, we ask what

kind of ω1 and ω2 can maximize the recovery of coherence loss. We discuss the problem
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in the following examples. As in Example 1, let ψ = |ψ〉〈ψ|, σ = 2
5 |φ1〉〈φ1|+ 3

5 |φ2〉〈φ2|,
where |ψ〉 =

√
0.63|0〉 +

√
0.37|1〉, |φ1〉 =

√
0.6|0〉 +

√
0.4|1〉, |φ2〉 =

√
0.8|0〉 +

√
0.2|1〉;

by Lemma 2, we can obtain ψ
IO−→ σ. According to Proposition 1, we can obtain all the

possible auxiliary coherent states ω1 and ω2: (1) 0.5 < c 6 0.57, 0.5 6 d < c, (2) 0.57 <
c 6 0.72, 0.875c 6 d < c, (3) 0.72 < c < 0.745, 1.32c− 0.32 6 d < c and (4) 0.745 < c <
0.8, 2.5c− 1.2 6 d < c. In Figure 1, we can see that at c = 0.745, d = 0.664, the recovery of
coherence loss is largest, and ∆max = 0.10183.

Figure 1. The amount of the recovery of coherence loss in Example 1.

Example 2. Let ψ = |ψ〉〈ψ|, σ = 2
5 |φ1〉〈φ1| + 3

5 |φ2〉〈φ2|, where |ψ〉 =
√

0.6|0〉 +
√

0.4|1〉,
|φ1〉 =

√
0.63|0〉+

√
0.37|1〉, |φ2〉 =

√
0.83|0〉+

√
0.17|1〉; by Lemma 2, we can obtain ψ

IO−→ σ.
According to Proposition 1, we can obtain all the possible auxiliary coherent states ω1 and ω2:
(1) 0.5 < c 6 0.625, 0.5 6 d < c, (2) 0.625 < c 6 0.75, 0.8c 6 d < c and (3) 0.75 < c <
0.83, 2.5c− 1.245 6 d < c. In Figure 2, we can see that at c = 0.75, d = 0.6, the recovery of
coherence loss is largest, and ∆max = 0.15967.

Figure 2. The amount of the recovery of coherence loss in Example 2.

Example 3. Let ψ = |ψ〉〈ψ|, σ = 4
5 |φ1〉〈φ1|+ 1

5 |φ2〉〈φ2|, where |ψ〉 =
√

0.64|0〉+
√

0.36|1〉,
|φ1〉 =

√
0.85|0〉+

√
0.15|1〉, |φ2〉 =

√
0.6|0〉+

√
0.4|1〉; by Lemma 2, we can obtain ψ

IO−→ σ.
According to Proposition 1, we can obtain all the possible auxiliary coherent states ω1 and ω2:
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(1) 0.5 < c 6 0.625, 0.5 6 d < c, (2) 0.625 < c 6 0.8, 0.8c 6 d < c, (3) 0.8 < c 6
0.8125, 1.8c− 0.8 6 d < c and (4) 0.8125 < c < 0.85, 5c− 3.4 6 d < c. In Figure 3, we can see
that at c = 0.8125, d = 0.6625, the recovery of coherence loss is largest, and ∆max = 0.22619.

Figure 3. The amount of the recovery of coherence loss in Example 3.

4. The Obtainment of Maximally Coherent State

A direct application of the above recovery scheme in a qubit system is that we can ob-

tain the maximally coherent state under joint incoherent operations, i.e., ψ⊗ω
IO−→ σ⊗Φ2,

where |Φ2〉 = 1√
2 ∑2

i=1 |i〉 is a two-dimensional maximally coherent state. Examples include

such main coherent states ψ = |ψ〉〈ψ|, σ = 2
5 |φ1〉〈φ1|+ 2

5 |φ2〉〈φ2|+ 1
5 |φ3〉〈φ3|, where |ψ〉 =√

0.54|0〉 +
√

0.46|1〉, |φ1〉 =
√

0.82|0〉 +
√

0.18|1〉, |φ2〉 =
√

0.88|0〉 +
√

0.12|1〉, |φ3〉 =√
0.65|0〉+

√
0.35|1〉. The above states satisfy the majorization relation λψ ≺ ∑3

j=1 qjλφj ,

i.e., (0.54, 0.46) ≺ (0.81, 0.19), so we can obtain ψ
IO−→ σ. At the same time, there ex-

ists auxiliary coherent state |ω〉 =
√

0.7|0〉 +
√

0.3|1〉 such that λψ⊗ω ≺ ∑3
j=1 qjλφj⊗Φ2 ,

i.e., (0.378, 0.322, 0.162, 0.138) ≺ (0.405, 0.405, 0.095, 0.095); then, we can obtain ψ⊗ω
IO−→

σ ⊗ Φ2. A natural problem is how to obtain the maximally coherent state. We give a
full characterization of obtaining the maximally coherent state in a qubit system in the
following proposition.

Proposition 2. For given main coherent states ψ = |ψ〉〈ψ| and σ = ∑r
j=1 qj|φj〉〈φj|, where

|ψ〉 =
√

α|0〉+
√

1− α|1〉, |φj〉 =
√

β j|0〉+
√

1− β j|1〉, j = 1, . . . , r, suppose ψ
IO−→ σ; there

exists an auxiliary coherent state |ω〉 =
√

c|0〉+
√

1− c|1〉 such that ψ⊗ω
IO−→ σ⊗Φ2 if and

only if 1
2 6 α 6 β 6 1 and 1

2 ≤ c ≤ β
2α , where β = ∑r

j=1 qjβ j.

Proof. The condition ψ
IO−→ σ means

1
2
6 α 6

r

∑
j=1

qjβ j = β 6 1. (11)

By Lemma 2, the proof of the proposition can be reduced to finding the condition that
satisfies majorization relation λψ⊗ω ≺ ∑r

j=1 qjλφj⊗Φ2 with assumption (11).
First, we can obtain the squared coefficients of |ψ〉 ⊗ |ω〉,

A = {αc, α(1− c), (1− α)c, (1− α)(1− c)}. (12)
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Notice that for |φj〉 ⊗ |Φ2〉, there only exist two different elements 1
2 β j and 1

2
(
1− β j

)
, where

1
2 β j >

1
2
(
1− β j

)
, j = 1, . . . , r. For convenience, we denote the non-increasing coefficients of

|φj〉 ⊗ |Φ2〉 by b(1)j > b(2)j > b(3)j > b(4)j , j = 1, . . . , r. Similarly, we need to sort the elements

in A in decreasing order and denote its elements by a(1) > a(2) > a(3) > a(4). It is obvious
that a(1) = αc, a(4) = (1− α)(1− c).

Second, we can obtain the first and third inequalities of the majorization relation

a(1) 6
r

∑
j=1

qjb
(1)
j ⇔ αc 6

1
2

r

∑
j=1

qjβ j =
β

2
⇔ c 6

β

2α
(13)

and

3

∑
i=1

a(i) 6
r

∑
j=1

3

∑
i=1

qjb
(i)
j ⇔ a(4) >

r

∑
j=1

qjb
(4)
j ⇔

(1− α)(1− c) >
1
2

r

∑
j=1

qj
(
1− β j

)
⇔ c 6

1− 2α + β

2(1− α)
. (14)

Finally, we still need to calculate ∑l
i=1 a(i) to obtain the second inequality of the

majorization relation. In Equation (12), a(1) + a(2) = αc + α(1− c) = α or a(1) + a(2) = αc +
(1− α)c = c; by Lemma 3, we have a(1) + a(2) = max{α, c}. Then the second inequality of
the majorization relation can be written as max{α, c} 6 ∑r

j=1 qjβ j = β. The condition α 6 β
is implied in Equation (11). In this case, we have

c 6 β. (15)

To sum up, combining Equations (13)–(15) and 1
2 ≤ c ≤ 1, we can obtain

1
2
≤ c 6 min

{
β

2α
,

1− 2α + β

2(1− α)
, β

}
.

Notice that 1
2 6 α 6 β 6 1; we have β > β

2α and 1−2α+β
2(1−α)

> β
2α . So the above inequality can

be simplified as
1
2
≤ c 6

β

2α
.

Thus, the proof of the proposition is completed.

The above proposition gives us a new way to obtain the maximally coherent state.

For the transformation ψ
IO−→ σ, as long as the parameter c of the auxiliary coherent state

satisfies 1
2 ≤ c 6 β

2α , we can prepare the maximally coherent state under joint incoherent
operations.

5. Coherence-Assisted Transformation for Arbitrary Finite-Dimensional Main
Coherent States and Low-Dimensional Auxiliary Coherent States

In Section 3, we obtain that the partial recovery of coherence loss in two-dimensional
state transformations is always possible by choosing appropriate two-dimensional auxil-
iary coherent states. In fact, we can show that the coherence-assisted transformation for
arbitrary finite dimensional main coherent states and two-dimensional auxiliary coherent
states is always possible, and the coherence loss can be partially recovered simultane-
ously. Specifically, for given main coherent states ψ = |ψ〉〈ψ| and σ = ∑r

j=1 qj|φj〉〈φj|

that satisfy ψ
IO−→ σ, where |ψ〉 = ∑n

i=1
√

αi|i〉, |φj〉 = ∑n
i=1

√
β ji|i〉, j = 1, . . . , r, let λψ =

(α1, . . . , αn), λφj =
(
φj1, . . . , φjn

)
; then, the squared coefficients of the above states satisfy

the majorization relation λψ ≺ ∑r
j=1 qjλφj . If all inequalities in above majorization relation
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are strict, we call it a strict majorization relation and denote it by λψ � ∑r
j=1 qjλφj . Next,

we show that there exist two-dimensional auxiliary coherent states such that the recovery
is always possible in this case.

Proposition 3. If λψ � ∑r
j=1 qjλφj , then there exist two-dimensional auxiliary coherent pure

states ω1 and ω2 such that ψ⊗ω1
IO−→ σ⊗ω2 and Cr(ω2) > Cr(ω1).

Proof. The condition λψ � ∑r
j=1 qjλφj means ψ

IO−→ σ. Let |ω(p)〉 be a two-dimensional

state with λω(p) = (p, 1− p); then for any p ∈
( 1

2 , 1
)
, we have ψ⊗ ω(p) IO−→ σ ⊗ ω(p).

Notice that the selection of p determines the orders of the squared coefficients of |ψ〉 ⊗
|ω(p)〉 and |φj〉 ⊗ |ω(p)〉, j = 1, . . . r. Instead, let us start from the perspective of the orders
of the squared coefficients. In fact, there is only a finite number of possible individual
orders (at most n! orders) of the squared coefficients of |ψ〉 ⊗ |ω(p)〉 and |φj〉 ⊗ |ω(p)〉,
j = 1, . . . r. At the same time, there is only a finite number of possible whole orders (at most
(n!)r orders) of the squared coefficients of |φj〉 ⊗ |ω(p)〉, j = 1, . . . r. For each of the above
(whole) orders, we can obtain a feasible set of p, i.e., the order is valid in the feasible set of
p. Each nonempty feasible set is either a discrete point or an interval in

( 1
2 , 1
)
. Furthermore,

there are an infinite number of p ∈
( 1

2 , 1
)

and a finite number of the orders of the squared
coefficients such that λψ⊗ω(p) ≺ ∑r

j=1 qjλφj⊗ω(p); then there exists at least one order for
which the corresponding feasible set of p is an interval of non-zero length (a, b), where
1
2 < a < b < 1.

Based on the above analysis, let p belong to the above nontrivial feasible set F. We
are going to show that λψ⊗ω(p) � ∑r

j=1 qjλφj⊗ω(p) for all values of p ∈ F, except at most
2n− 1 nontrivial values of p. In the majorization relation λψ⊗ω(p) ≺ ∑r

j=1 qjλφj⊗ω(p), if one
of 2n− 1 nontrivial inequalities is an equality, we have

p
x

∑
i=1

αi + (1− p)
y

∑
i=1

αi = p
r

∑
j=1

sj

∑
i=1

qjβ ji + (1− p)
r

∑
j=1

tj

∑
i=1

qjβ ji, (16)

where r(x + y) = ∑r
j=1
(
sj + tj

)
, x > y, sj > tj for all j = 1, . . . , r. Equivalently,(

x

∑
i=1

αi −
y

∑
i=1

αi −
r

∑
j=1

sj

∑
i=1

qjβ ji +
r

∑
j=1

tj

∑
i=1

qjβ ji

)
p =

r

∑
j=1

tj

∑
i=1

qjβ ji −
y

∑
i=1

αi (17)

Notice that Equation (17) can be divided into two cases: (i) Equation (17) determines a
value of p or (ii) Equation (17) is independent of the value of p—it does not determine a
value of p. In fact, Case (ii) is impossible because Equation (17) is independent of the value

of p if and only if ∑x
i=1 αi = ∑r

j=1 ∑
sj
i=1 qjβ ji and ∑

y
i=1 αi = ∑r

j=1 ∑
tj
i=1 qjβ ji. As a result of

λψ � ∑r
j=1 qjλφj , we have rx > ∑r

j=1 sj and ry > ∑r
j=1 tj, which is in contradiction with the

condition r(x + y) = ∑r
j=1
(
sj + tj

)
. Therefore, each nontrivial equation in the majorization

relation λψ⊗ω(p) ≺ ∑r
j=1 qjλφj⊗ω(p) corresponds to a fixed value of p. Moreover, there are

at most 2n− 1 nontrivial equalities, i.e., there are at most 2n− 1 discrete values of p such
that λψ⊗ω(p) ≺ ∑r

j=1 qjλφj⊗ω(p) is not strict. Thus, we show that λψ⊗ω(p) � ∑r
j=1 qjλφj⊗ω(p)

for all values of p ∈ F, except at most 2n− 1 nontrivial values of p. That is to say, for such
values of p, the majorization relation is strict and the order of the squared coefficients is
preserved.

Thus, there exists a p ∈ F ⊆
( 1

2 , 1
)

and a 0 < ε < 1
2 such that λψ⊗ω(p) ≺ ∑r

j=1 qjλφj⊗ω(p−ε).

Let |ω1〉 = |ω(p)〉, |ω2〉 = |ω(p− ε)〉; it obvious that ψ ⊗ ω1
IO−→ σ ⊗ ω2 and Cr(ω2) >

Cr(ω1). Thus, the proof of the proposition is completed.
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The basic idea involved in the proof is as follows. First, we select a two-dimensional

auxiliary coherent state |ω(p)〉 with λω(p) = (p, 1− p); since ψ
IO−→ σ, then for any

p ∈
( 1

2 , 1
)

we have ψ ⊗ ω(p) IO−→ σ ⊗ ω(p). Second, we show that the majorization
relation is strict for all values of p ∈ F, except at most 2n− 1 nontrivial values of p. This
allows a perturbation of p to p− ε(ε > 0) on the right side of the 2n inequalities such that
the inequalities are still satisfied after perturbation. It also allows the order of the squared
coefficients to be preserved after perturbation. Finally, the above two facts reveal the exis-
tence of ε, i.e., there exists a 0 < ε < 1

2 such that λψ⊗ω(p) ≺ ∑r
j=1 qjλφj⊗ω(p−ε). Let |ω1〉 =

|ω(p)〉, |ω2〉 = |ω(p− ε)〉; it is obvious that ψ ⊗ ω1
IO−→ σ ⊗ ω2 and Cr(ω2) > Cr(ω1).

For example, for the main coherent states ψ = |ψ〉〈ψ|, σ = 1
4 |φ1〉〈φ1|+ 3

4 |φ2〉〈φ2|, where
|ψ〉 =

√
0.4|0〉+

√
0.3|1〉+

√
0.2|2〉+

√
0.1|3〉, |φ1〉 =

√
0.6|0〉+

√
0.2|1〉+

√
0.2|2〉, |φ2〉 =√

0.5|0〉 +
√

0.3|1〉 +
√

0.2|2〉, by Lemma 2, we can obtain ψ
IO−→ σ. Choosing p = 0.8,

then we have λψ⊗ω(p) ≺ ∑r
j=1 qjλφj⊗ω(p). At the same time, we can calculate that for

0 < ε < 0.08, the order of the squared coefficients is preserved and the above states sat-
isfy the majorization relation λψ⊗ω(p) ≺ ∑r

j=1 qjλφj⊗ω(p−ε). Let |ω1〉 = |ω(0.8)〉, |ω2〉 =

|ω(0.75)〉; we can obtain ψ⊗ω1
IO−→ σ⊗ω2 and Cr(ω2) > Cr(ω1).

The above proposition shows that if λψ is strictly majorized by ∑r
j=1 qjλφj , recovery

with two-dimensional auxiliary coherent states is always possible. We now ask what
happens if λψ is not strictly majorized by ∑r

j=1 qjλφj . Next, we show that if there exist
certain equalities in the majorization relation, the recovery scheme is impossible with the
help of two- or three-dimensional auxiliary coherent states.

Proposition 4. If α1 = ∑r
j=1 qjβ j1 or αn = ∑r

j=1 qjβ jn, then the recovery scheme is not possible
with the help of two-dimensional auxiliary coherent states. Furthermore, if α1 = ∑r

j=1 qjβ j1 and
αn = ∑r

j=1 qjβ jn, then the recovery scheme is not possible with the help of three-dimensional
auxiliary coherent states.

Proof. (1) When α1 = ∑r
j=1 qjβ j1 or αn = ∑r

j=1 qjβ jn, suppose there exist two-dimensional

auxiliary coherent states |ω1〉 =
√

c|0〉+
√

1− c|1〉 and |ω2〉 =
√

d|0〉+
√

1− d|1〉 such

that ψ⊗ ω1
IO−→ σ⊗ ω2 and Cr(ω2) > Cr(ω1). From Cr(ω2) > Cr(ω1), we obtain c > d.

From ψ⊗ ω1
IO−→ σ ⊗ ω2, we have α1c 6 ∑r

j=1 qjβ j1d and αn(1− c) ≥ ∑r
j=1 qjβ jn(1− d).

Therefore, if α1 = ∑r
j=1 qjβ j1, it follows that c 6 d. This is in contradiction with c > d;

then the hypothesis is not valid. The case for αn = ∑r
j=1 qjβ jn is the same. So the recovery

scheme is not possible with the help of two-dimensional auxiliary coherent states.
(2) When α1 = ∑r

j=1 qjβ j1 and αn = ∑r
j=1 qjβ jn, suppose there exist three-dimensional

auxiliary coherent states |ω1〉 =
√

c1|0〉+
√

c2|1〉+
√

1− c1 − c2|2〉 and |ω2〉 =
√

d1|0〉+√
d2|1〉 +

√
1− d1 − d2|2〉 such that ψ ⊗ ω1

IO−→ σ ⊗ ω2 and Cr(ω2) > Cr(ω1). From

the condition ψ ⊗ ω1
IO−→ σ ⊗ ω2, we have α1c1 6 ∑r

j=1 qjβ j1d1 and αn(1− c1 − c2) ≥
∑r

j=1 qjβ jn(1− d1 − d2). Therefore, if α1 = ∑r
j=1 qjβ j1 and αn = ∑r

j=1 qjβ jn, it follows
that c1 6 d1 and c1 + c2 6 d1 + d2. So the majorization relation (c1, c2, 1− c1 − c2) ≺
(d1, d2, 1− d1 − d2) holds; then we can obtain |ω1〉

IO−→ |ω2〉, i.e., Cr(ω2) 6 Cr(ω1). This is
in contradiction with Cr(ω2) > Cr(ω1); then the hypothesis is not valid. So the recovery
scheme is not possible with the help of three-dimensional auxiliary coherent states.

Thus, under certain conditions, we show that the recovery for arbitrary finite di-
mensional main coherent states and two-dimensional auxiliary coherent states is always
possible. The above discussion has practical implications because low-dimensional coherent
states are easier to prepare in the context of current techniques and tools.
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6. Discussion

In this paper, for the transformation from a pure state to a mixed state under incoherent
operations, we add auxiliary coherent states such that the transformation can still be
realized under joint incoherent operations; such a process is called a ’coherence-assisted
transformation’. When the coherence of an auxiliary coherent state increases, the reduced
coherence of the initial main coherent state can be partially transformed to the final auxiliary
coherent state, so the coherence loss can be partially recovered. We first discuss the
coherence-assisted transformation for qubit states and give the sufficient and necessary
condition for the partial recovery of coherence loss. The maximum of the recovery of
coherence loss is also studied in this case. We also give the sufficient and necessary
condition for obtaining the maximally coherent state in a qubit system. If the parameter
of the initial auxiliary coherent state satisfies a certain condition, we can obtain a two-
dimensional maximally coherent state. Furthermore, the coherence-assisted transformation
for qubit states can be extended to the general case, i.e., arbitrary finite-dimensional main
coherent states and low-dimensional auxiliary coherent states. In this case, we show that if
the main coherent states satisfy a strictly majorization relation, there exist two-dimensional
auxiliary coherent states that can realize the above recovery scheme. At the same, there are
some open questions: What is the relation between the dimensionality of auxiliary coherent
states and the amount of coherence recovery? For the transformation between two mixed
states, what is the condition for the partial recovery of coherence loss? We hope that the
results presented in this paper contribute to a better understanding of the resource theory
of quantum coherence.
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