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Abstract: We propose a neural network-based approach to calculate the value of a chess square–piece
combination. Our model takes a triplet (color, piece, square) as the input and calculates a value that
measures the advantage/disadvantage of having this piece on this square. Our methods build on
recent advances in chess AI, and can accurately assess the worth of positions in a game of chess. The
conventional approach assigns fixed values to pieces ( = ∞, = 9, = 5, = 3, = 3, = 1). We
enhance this analysis by introducing marginal valuations. We use deep Q-learning to estimate the
parameters of our model. We demonstrate our method by examining the positioning of knights and
bishops, and also provide valuable insights into the valuation of pawns. Finally, we conclude by
suggesting potential avenues for future research.

Keywords: AI; AlphaZero; Bayes; chess; deep learning; neural network; chess piece values; knights;
bishops; pawns

1. Introduction

Chess is not a game. Chess is a well-defined form of computation. You may not be able to
work out the answers, but in theory, there must be a solution, a right procedure in any
position. —John von Neumann

The development of chess AI can be traced back to pioneering work by [1–5]. While
Shannon’s approach was primarily based on trial and error, leading to the “learning” of the
optimal policy, Turing and Champernowne emphasized marginal piece valuation. Notably,
the Shannon number estimates the number of possible chess board states to be 10152, out of
which 1043 are legal states. Turing and Champernowne’s positional evaluation functions
included criteria such as piece mobility, piece safety, king mobility, king safety, and the
ability to castle. Good took on a more linear programming-based approach to value the
chess pieces.

All of these methods have now been replaced with either α− β search ([6]) or deep
learning [7]. Deep learning models enable the evaluation of state-dependent objective
functions through learning. A reinforcement learning algorithm is used to estimate the
parameters of deep learning models using the trial-and-error self-play approach [8,9]. A tes-
tament to this advancement is AlphaZero, which, through self-play, can deduce effective
solution paths and “learn” chess in under four hours without any prior knowledge ([10,11]).

While there has been much recent work conducted in chess AI [9,12,13], the question
of the value of a chess square has not yet been explored. The goal of this study is to
use neural networks to measure the advantages/disadvantages, particularly the Q-value
of state s ∈ color× piece× square, offered by the state combination of particular chess
squares with different pieces. We argue that from the perspective of coaching and training
a chess player, it is more useful to understand the value of squares rather than knowing
what move needs to be made in any given position.
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For example, the notion that certain state combinations (such as having a White
on f 5 (as can be seen in Figure 1) provide an advantage to White players is a widely held
belief in the world of chess. We analyze these key combinations to see whether the games
of high-level chess grandmasters provide merit to this belief. Our investigation will shed
light on the strategic nuances and patterns that emerge from such positions and contribute
to the understanding of chess at the highest level of play.

To assess the value of pieces on squares, we develop a neural network to analyze
a dataset of grandmaster games and make predictions regarding winning probabilities.
This approach uses centipawn evaluations for specific subsets of chess states involving
knight and bishop pieces. The centipawn is used in chess as the unit of measure for the
advantage offered to one side, with one centipawn being equal to roughly a hundredth of a
pawn. The results show that our model successfully generated predictions for knights and
bishops. The predictions provided valuable insights into the advantages and disadvantages
associated with different states and positions on the chessboard. In addition, many pieces
of preexisting knowledge based on anecdotal evidence were confirmed by our analysis.
For example, the analysis revealed that knights placed on the corners of the board had
lower winning probabilities, likely due to their limited mobility and restricted influence.
On the other hand, as knights moved closer to the opponent’s side, their positional value
tended to increase, potentially allowing them to infiltrate enemy territory and exert greater
control over the game. The study’s results enhance the understanding and confirmation
of chess strategies and gameplay dynamics, aiding in strategic decision-making and the
evaluation of different gameplay approaches.

Several chess maxims, known to be true from the anecdotal experience of chess players,
are reflected in our neural network predictions. For example, pawns are observed to gain
value as they cross the fourth rank, highlighting the significance of advancing pawns
beyond this milestone. Pawns positioned on the fifth rank are particularly powerful,
contributing to central control and potential attacking opportunities. Pawns on the sixth
rank, especially when supported by a pawn on the fifth rank, become highly threatening.
Edge pawns tend to be weaker compared to central pawns, emphasizing the importance of
controlling central squares.

We uncovered several chess concepts previously not recognized as common knowl-
edge. Notably, we observed that advanced kingside pawns pose a greater threat than
their queenside counterparts. Such uncommon ideas add to the arsenal of human knowl-
edge and allow chess players to better understand and gain strategic insights into their
chess play.

Important squares for the White pawn are identified by examining the highest cen-
tipawn evaluation c(s) values in each column. The squares e4, h4, c5, and h6 are highlighted
as critical positions for White pawns. Occupying these squares provides advantages, such
as central control, support for piece development, and potential attacking opportunities.

Similarly, for Black pawns, the squares f 5, d5, c4, d3, and f 3 emerge as key positions.
Placing pawns on these squares enhances Black’s control of central areas, supports piece
coordination, and enables the counterplay against White’s position.

Understanding the significance of these key squares and applying the derived insights
allows players to make informed decisions regarding pawn placement, pawn breaks,
and strategic plans. This knowledge empowers players to optimize their pawn structures,
control critical areas of the board, and leverage their pawns to gain a competitive advantage
in the game. It also confirms much of previously anecdotal-based knowledge in a more
computational and rigorous method.

The rest of the paper is outlined as follows. Section 1 provides connections with previ-
ous literature. Section 2 goes over the methods we used. Section 3 provides an application
of the proposed methods to grandmasters and Magnus Carlsen (World Chess Champion,
2013–2023). Section 4 provides an application to pawns. Finally, Section 5 concludes.
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8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0ZNZ0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 1. Each square on the chess board can be defined by the letter of its column and the number of
its row. For example, the White knight on the highlighted square in this diagram is located at f 5.

Connections with Previous Work

In the field of chess AI, previous research has primarily focused on predicting the
probabilities of winning w(s) and centipawn evaluations c(s) for more simplified states [14].
Ref. [15] explored simpler states, where s belongs to the set of s ∈ piece, with no considera-
tion given to the position of a chess piece. In their work, they utilized logistic regression
methods to determine the value of a chess piece by creating a model that predicts the
outcome of a game based on existing piece imbalances in a given position. A recent lichess
study also attempted similar approaches [16,17].

Building upon this previous work, our research extends the scope by proposing an
augmented state representation s ∈ color × piece × square, thereby incorporating the
square (location) information as an additional component of the state. This augmentation
enables a more comprehensive understanding of the game dynamics by considering both
the piece and its position on the board. Furthermore, we employ neural networks as our
chosen methodology, allowing us to capture and model the intricate relationships between
the state s and its corresponding centipawn evaluation c(s).

One crucial distinction between our proposed approach and previous methodologies
lies in the predictive target. While prior research focused on predicting the binary outcome
of the game (win or loss), our proposed model aims to predict the centipawn evaluation c(s)
instead. By doing so, we shift the focus toward assessing the advantage or disadvantage
of a particular chess position, providing more granular information beyond a simple
win/loss prediction.

By using the augmented state representation and employing neural networks, our
proposed model offers a more comprehensive and nuanced analysis of the chess game.
This allows us to capture the intricate interplay between the color, piece type, square,
and centipawn evaluation, providing a deeper understanding of the factors influencing the
game’s outcome.

This paper extends the work of [9] and proposes novel architectures that can predict
the probabilities of winning w(s) and centipawn evaluations c(s) for all possible states
s ∈ color× piece× square. While previous work focused on specific subsets of states,
particularly those related to gambits, our approach seeks to encompass the entire chess-
board by incorporating the color, piece type, and square information into a comprehensive
state representation.

By embracing a wider scope of analysis that covers all possible states, our research aims
to provide a more comprehensive understanding of the game, surpassing the limitations
imposed by narrow subsets. To achieve this, we employ advanced techniques, such as
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neural networks, to capture the intricate relationships between the components of a state
and the corresponding probabilities of winning w(s) and centipawn evaluations c(s). This
allows us to offer valuable insights into the dynamics of chess gameplay across a vast array
of states, thereby providing a more holistic and comprehensive analysis.

Through our research, we strive to advance the field by developing robust and effective
models capable of accurately predicting the probabilities of winning and assessing the
centipawn evaluations for any given state. By considering the full spectrum of states
represented by color × piece × square, our proposed architectures pave the way for a
deeper understanding of chess strategies. They enable us to evaluate the efficacy of
these strategies and unravel the intricacies of the game, ultimately contributing to the
development of more sophisticated and intelligent chess AI systems.

2. Value of Chess Squares and Pieces

Traditional chess literature often quotes the values of pieces as follows:

( , , , , , ) = (∞, 9, 5, 3, 3, 1).

However, modifications to these conventional valuations have been proposed. For instance,
Ref. [15] adjusted these values using machine learning techniques, resulting in:

( , , , , , ) = (∞, 8.9, 4.6, 3.3, 3, 1).

Similarly, a recent study conducted on lichess [16] refined these values further to:

( , , , , , ) = (∞, 9.82, 4.93, 3.28, 3.16, 1).

Building upon these studies, our research aims to enhance the valuation system by incorpo-
rating the square position into the state vector.

Our work will provide values for states consisting of a combination of pieces and
squares. For example, we may wish to assess the value of a fianchettoed bishop on the
queen’s side. The proposed method measures the advantage/disadvantage for states of the
form s ∈ color× piece× square. For a bishop on b2, we denote this value by

V(B, b2)

while a White knight on an outpost such as f 5 is denoted by V(N, f 5). The valuation of
pieces plays a pivotal role in determining strategic decisions. The value attributed to a
piece, such as a knight, is intrinsically tied to the probability of winning, as assessed by a
chess engine. We can express this relationship through the identity:

V(N) = ∑
position

V(N, position),

where the summation is executed over all plausible future positions. This elucidates
that the initial valuation of the knight, often referred to as V(N) = 3, is an aggregate of
its utility across the entire game. As the game progresses and pieces are maneuvered,
these values experience marginal shifts. Our primary objective is to accurately determine
position-specific values, such as V(N, f 5).

A brief overview of the methods in this paper is as follows:

1. A comprehensive dataset D is systematically created, encompassing a diverse range
of chessboard states s. This dataset is derived from an extensive chess database,
as described in Section 2.4.

2. Utilizing the state-of-the-art chess engine, Stockfish 16 [6], an evaluation is derived for
each state s in D. This evaluation yields the true value c(s), indicative of the strategic
strength of the corresponding chessboard state.
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3. A neural network architecture is designed and implemented. This network is specif-
ically tailored to approximate the function V : s 7→ c(s), where V(s) represents the
predicted value of state s as determined by the neural network.

4. In the applications section, the constructed neural network is rigorously tested by
employing it to predict V(s) for a myriad of states s, thereby assessing its results in
relation to anecdotal chess maxims.

2.1. Centipawn Evaluation and Optimal Play

In our approach, we begin by formalizing the theoretical functions used in Q-learning.
The value function, denoted as V(s), represents the probability of winning the game given
a specific state s. This state s belongs to the set color× piece× square, and it is worth
emphasizing that V(s) is calculated with respect to the color parameter in any given state.

To assess any legal chess position, we derive a centipawn evaluation denoted as c(s).
The centipawn serves as a measurement unit for evaluating the advantage in chess, where
one centipawn is equal to 1/100 of a pawn. The win probability w(s) can be directly
obtained from c(s) by using the following equation:

w(s) = P(winning|s) = 1
1 + 10−c(s)/4

, and c(s) = 4 log10

(
w(s)

1− w(s)

)
.

For example, if White has a c(s) = 0.2 advantage, then the win probability is
w(s) = 0.526.

To address the sequential decision problem, we employ the dynamic programming
technique known as Q-learning ([18–20]). This methodology involves breaking down the
decision problem into smaller sub-problems. A key principle utilized in Q-learning is
Bellman’s principle of optimality, which states:

Bellman’s principle of optimality: An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision. (Bellman, 1957)

To solve this sequential decision problem, we employ backward induction ([21]), which
determines the most optimal action at the last node in the decision tree (i.e., the checkmate
position). Utilizing this information, we can then determine the best action for the second-
to-last decision point, and this process continues backward until we identify the optimal
action for every possible situation, effectively solving the Bellman equation.

In recent years, the field of artificial intelligence has witnessed significant advance-
ments, particularly in the realm of AI algorithms like deep learning ([22–24]), leading
to advances in other fields ([25–27]) alongside the development of remarkably powerful
computer chess engines. These technological breakthroughs have revolutionized the way
we evaluate and understand chess positions, enabling us to delve into the intricacies of the
game with unparalleled precision.

One notable achievement stemming from these advancements is the ability to ac-
curately assess chess positions. By leveraging AI algorithms, particularly deep learning
techniques, we can now analyze and comprehend chess moves and strategies in a manner
that was previously unimaginable. These algorithms have been specifically designed to
process vast amounts of data, learn from patterns, and make informed decisions, ultimately
resulting in highly accurate evaluations of chess positions.

Moreover, the advent of advanced computer chess engines, exemplified by the likes
of Stockfish 15 [6], has played a pivotal role in shaping the landscape of chess analy-
sis and study. These engines, meticulously crafted through a combination of cutting-
edge algorithms and extensive programming, have transformed the way chess is played
and understood.

The emergence of chess engines has effectively shifted the burden from human players
and theorists to these intelligent systems. By leveraging their computational power and
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algorithmic prowess, chess engines have assumed the responsibility of assessing various
lines of play, thus solving the Bellman equation.

By adhering to Bellman’s optimality condition, computer chess engines fulfill the re-
quirements of possessing complete knowledge about the chess environment and evaluating
all possible actions and their consequences. Through this rigorous analysis, they provide
insights into the optimal move in a given position.

2.2. Q-Values

For a given c(s) value, the corresponding Q-value represents the probability of win-
ning, given a move a in a given state s, by following the optimal Bellman path thereafter:

Q(s, a) = P(winning|s, a).

To address the optimal sequential decision problem, we employ Q-learning, which
calculates the Q-matrix ([28,29]), denoted as Q(s, a) for a given state s and action a. The Q-
value matrix describes the value of performing action a and then acting optimally thereafter.
The current optimal policy and value function can be expressed as follows:

V(s) = max
a

Q(s, a) = Q(s, a∗(s)) where a∗(s) = argmaxa Q(s, a).

The policy function establishes the optimal mapping from states to actions, and by
substituting the Q-values, we obtain the value function for a given state.

In Section 2.3, we introduce a neural network architecture designed specifically for
predicting the value of c(s) given the state s. By harnessing the predictive capability of
this neural network, we can subsequently determine the probability of a player winning,
denoted as w(s), based on their corresponding state s.

The neural network model comprises interconnected layers, including an input layer
that accepts the state s as input. Through a series of computations within the hidden
layers, the model captures complex relationships and patterns inherent in the input data.
Ultimately, the output layer produces the predicted value of c(s).

By employing this trained neural network model, we can make predictions of c(s) for
unseen states s. These predicted values can then be utilized to compute the probability
of a player winning, denoted as w(s). The specific relationship between c(s) and w(s) is
contingent upon the characteristics and dynamics of the chess game under analysis.

With the ability to predict w(s), we gain valuable insights into the probability of a
player winning based on their current state s. This information can be harnessed in various
ways, including evaluating strategic moves, assessing the overall advantages or disadvan-
tages of specific board configurations, and guiding decision-making during gameplay.

The neural network’s capacity to capture intricate patterns and relationships within
the input data significantly contributes to more accurate predictions and a deeper under-
standing of the dynamics of the chess game. By incorporating the predicted values of c(s)
and computing the corresponding probabilities of winning, we enhance our analytical
capabilities and facilitate informed decision-making in the context of chess gameplay.

2.3. Neural Network Architecture

We design a three-layer neural network aimed at determining the Q-values, by predicting
the value of a chess square and piece combination, denoted as c(s) for s ∈ color× piece×
square. This model incorporates a hyperbolic tangent (tanh) activation function as a key
component of its architecture. The use of the tanh function, with its symmetric nature around
the origin, ensures a balanced output range, making it apt for this application.

While the model can be made more sophisticated, the simplicity of this 3-layer archi-
tecture was chosen deliberately. The primary focus is on the novel method of determining
values for chess squares and pieces, rather than leveraging computational prowess. By keep-
ing the model straightforward, we ensure that results are more interpretable and that the
emphasis remains on the innovation behind our method.
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To ensure effective training of the model, we curate a meticulously crafted dataset.
This dataset consists of two essential elements: the state information, represented by s,
and the corresponding centipawn loss (CPL) recorded for each state. Centipawn loss refers
to the average difference in evaluation points between a chess engine’s top move and the
move played by a player, expressed in hundredths of a pawn. Lower centipawn loss values
indicate more accurate play, while higher values suggest greater inaccuracies or mistakes.
The state information encompasses the variables discussed earlier that define the given
chessboard position.

Through supervised learning using this dataset, the model learns to associate the
given state information with the corresponding CPL. Consequently, it acquires the ability
to predict the CPL based on the provided state information as input. This training process
involves iteratively adjusting the model’s parameters to minimize the disparity between its
predictions and the actual CPL values present in the training dataset.

The neural network processes an input vector x using a series of transformations:

f1(x) = tanh(W1x + b1)

where W1 is the weight matrix of the first layer with 64 neurons, and b1 is its bias vector.
The activation function used is the hyperbolic tangent function, tanh. The output of this
layer is a1 = f1(x).

f2(a1) = tanh(W2a1 + b2)

For the second layer, W2 represents the weight matrix of the 32 neurons, and b2 is its
bias vector. The activation function remains tanh. The output of this layer is a2 = f2(a1).

f3(a2) = W3a2 + b3

The third and final layer only has one neuron, and it directly outputs the weighted
sum without any activation function. Therefore, f3(a2) gives the network’s output for a
given input x.

Thus, the entire network can be represented by the composite function:

f (x) = f3( f2( f1(x)))

where Wi are weight matrices, bi are bias vectors for each respective layer.
We use an Adam optimizer with an MSE loss. The model processes the input through

the layers, applying the weighted sums and hyperbolic tangent activations sequentially,
to finally produce the desired output value.

2.4. Data

In order to train the neural network effectively, a training dataset is constructed,
comprising two essential components. This dataset consists of elements that contain both
the state information denoted by s, as well as the corresponding evaluation associated with
that particular state.

To gather the necessary chess game data for analysis, a vast mega database containing
millions of previously played chess games is utilized. Within this database, each game is
represented using the portable game notation (PGN) notation, which allows for standard-
ized representation and compatibility with various chess software and applications.

The process of constructing the training dataset involves parsing and evaluating
all positions p within each game. The Forsyth–Edwards notation (FEN) is employed to
determine the location of relevant chess pieces within each position p. As a result, all states
s ∈ p are extracted and added to the training dataset. To navigate through the moves of
each chess game systematically, the Python Chess library is utilized. This library provides
a comprehensive set of functions and classes specifically designed for working with chess
games and positions, enabling efficient traversal of the stored games in the database.
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For every position p within the dataset, an evaluation is obtained. To accomplish this,
the research incorporates the Stockfish engine, a widely recognized and powerful chess
engine. Stockfish employs advanced algorithms and evaluation functions to assess the
strength of positions. By leveraging the capabilities of Stockfish, the training dataset can
determine the evaluation of each position p on the chessboard accurately.

Finally, this evaluation is associated with all states s ∈ p, resulting in a comprehensive
dataset that encompasses both the state s and the evaluation associated with the position p from
which s was derived. This dataset serves as the foundation for training the neural network,
enabling it to learn and make informed decisions based on the provided state information.

3. Piece Evaluation: Knights and Bishops

In this study, our proposed model is applied to a comprehensive dataset comprising
over 2000 grandmaster games. The primary objective is to predict the probabilities of
winning w(s) and centipawn evaluations c(s) for a specific subset of states, namely those
denoted by {(c, p, sq) ∈ s : p ∈ {knight, bishop}}. Although our focus is initially on
the knight and bishop pieces, it is important to note that the model can be expanded to
encompass all pieces, offering a broader analysis of the game.

To provide a visual representation of the predicted values, heat maps are generated
for both w(s) and c(s) corresponding to each valid combination within the specified subset.
These heat maps offer a comprehensive overview of the probabilities of winning and
centipawn evaluations associated with the knight and bishop pieces in different states.

To illustrate the efficacy of our model, we first employ it to predict the centipawn
evaluations c(s) specifically for states where the color c is White and the piece p is the
knight or the bishop. The resulting predictions are showcased in Figures 2 and 3, providing
valuable insights into the relative advantages or disadvantages of such states. Building
upon this, we further use c(s) to derive the corresponding probabilities of winning w(s) for
these specific states. The model-generated probabilities are visualized in Figures 4 and 5,
offering a clear representation of the likelihood of White winning the game, given the
occurrence of the specified state s.

By leveraging our proposed model, we gain a deeper understanding of the dynamics
of the game, specifically in relation to the knight and bishop pieces within the context
of the White color. This analysis not only facilitates strategic decision-making but also
provides a basis for evaluating the effectiveness of various gameplay approaches. Moreover,
the model’s expandability to encompass all pieces allows for a comprehensive examination
of the game across different states, enabling us to uncover additional insights and enhance
the overall understanding of chess strategies and pawn skeletons, as Nimzowitch surmised
in his seminal work [30].

Figure 2. Predicted CPL advantage c(s) offered by the White knight in grandmaster games.
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Figure 3. Predicted CPL advantage c(s) offered by the White bishop in grandmaster games.

Figure 4. Predicted winning chance w(s) offered by the White knight in grandmaster games.

Figure 5. Predicted winning chance w(s) offered by the White bishop in grandmaster games.

The model is then used to determine c(s) and w(s) for states {(c, p, sq) ∈ s : c =
“Black”, p = “Knight”, “Bishop”}, as can be seen in Figure 6, Figure 7, Figure 8, and
Figure 9 respectively.
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Figure 6. Predicted CPL advantage c(s) offered by the Black knight in grandmaster games.

Figure 7. Predicted CPL advantage c(s) offered by the Black bishop in grandmaster games.

Figure 8. Predicted winning chance w(s) offered by the Black knight in grandmaster games.
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Figure 9. Predicted winning chance w(s) offered by the Black bishop in grandmaster games.

Key squares for the bishops can be seen in Figure 10:

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0ZBABA0Z
5 Z0ZBZ0Z0
4 0ZBZ0a0Z
3 Z0A0aba0
2 0ZBababZ
1 Z0Z0Z0Z0

a b c d e f g h

Figure 10. Key squares and diagonals for bishops.

The applications of the model on grandmaster games provide valuable insights into the
dynamics and strategies employed by top-level chess players. By predicting the centipawn
evaluations c(s) and winning probabilities w(s) for specific subsets of states, we gain
a deeper understanding of the advantages and disadvantages associated with different
chess positions. These insights have several practical applications in chess analysis and
gameplay evaluation.

The predictions generated by the model offer a quantitative measure of the advan-
tage/disadvantage provided by the knight and bishop pieces in specific states. Heat maps
depicting the predicted centipawn evaluations c(s) and winning probabilities w(s) are
presented for both White and Black knights and bishops. These visual representations
provide a comprehensive overview of the relative strengths and weaknesses of these pieces
in various positions.

By focusing on specific subsets of states, we can analyze the effectiveness of the Knight
and bishop pieces individually, as well as their contributions to the overall gameplay
strategies employed by grandmasters. This analysis aids in strategic decision-making,
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enabling players to assess the potential advantages or disadvantages associated with
specific moves and piece configurations.

Furthermore, the expandability of the model allows for a comprehensive examination
of the game across different states. By extending the analysis to include all pieces, we
can uncover additional insights into the dynamics of the game and evaluate the effec-
tiveness of various gameplay approaches. This broader perspective enhances our overall
understanding of chess strategies and gameplay dynamics.

The predictions generated by the model can also be utilized for comparative analysis
between different players or groups of players. By analyzing the centipawn evaluations
and winning probabilities associated with specific states, we can identify patterns and
trends in the strategies employed by grandmasters. This information can be leveraged to
develop training materials and strategies for aspiring chess players, helping them improve
their gameplay and decision-making abilities.

For example, in Figure 4, where w(s) represents the evaluation of the knight-square
state, we can observe that the lowest values of w(s) are found in the white corners of the
chessboard, specifically squares a1 and h1. This observation aligns with the widely held
belief that knights are generally considered as being in their worst positions when confined
to the corners of the board.

The disadvantage of having a knight in the corner may stem from its limited mobility
and restricted scope of influence. When placed in the corners, knights have fewer potential
squares to reach and can easily become isolated from the central and more strategically
significant areas of the board.

On the other hand, as the knights move closer to the opponent’s side of the board,
their positional value tends to increase. This is most likely due to the knights’ ability to
infiltrate enemy territory, potentially attacking key squares, pieces, or pawns.

The increasing value of knight-square states as the knights advance can be attributed
to several factors. Firstly, the proximity to the opponent’s pieces and pawns provides more
targets for the knight’s maneuvers and attacks. Secondly, knights positioned closer to the
enemy’s side can exert greater control over central squares and influence the dynamics of
the game. This control can restrict the opponent’s options and potentially create weaknesses
in their position.

Analyzing the values of knight-square states in different positions on the board, such
as the corners and closer to the opponent’s side, supports the claim that the placement of
knights significantly affects their effectiveness. Understanding the strengths and weak-
nesses associated with different knight positions helps players make informed decisions
about piece placement, strategic plans, and tactical considerations. Key squares for the
knight to occupy are marked in Figure 11.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0MNZ
5 Z0ZNZNZ0
4 0Z0ZNm0m
3 Z0Z0ZnZ0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 11. Key squares for knights.
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The applications of our model on grandmaster games provide valuable insights into
the dynamics and strategies employed in high-level chess. The predictions of centipawn
evaluations and winning probabilities offer a quantitative measure of the advantages and
disadvantages associated with specific chess positions, aiding in strategic decision-making
and gameplay evaluation. The expandability of the model allows for a comprehensive
analysis of the game across different states, facilitating a deeper understanding of chess
strategies and enhancing the overall gameplay experience.

Magnus Carlsen

Our proposed model can be further applied to gain insights into the playing style and
performance of specific players. In this section, we focus on the world-renowned chess
player Magnus Carlsen (World Chess Champion, 2013–2023). By applying our model to
the games played by Carlsen, we aim to uncover unique patterns and characteristics that
contribute to his success and distinguish his gameplay from other grandmasters.

Our proposed model is applied to a dataset consisting of 2000+ Carlsen games played
in the last 5 years. Similar to the previous section, we begin by predicting the centipawn
evaluations c(s) for states where Carlsen plays as the “White” color and utilizes the “Knight”
or “Bishop” piece. These predictions provide valuable insights into the relative advantages
or disadvantages of Carlsen’s chosen states, shedding light on his strategic decision-making
process. The resulting heat maps, showcased in Figures 12–15, offer a visual representation
of the predicted centipawn evaluations for Carlsen’s specific subset of states.

Building upon this analysis, we further utilize the centipawn evaluations c(s) to derive
the corresponding probabilities of winning w(s) for Carlsen’s selected states. The model-
generated winning probabilities provide a clear representation of Carlsen’s likelihood of
winning the game given the occurrence of the specified state s.

By focusing on Carlsen’s gameplay, we gain a deeper understanding of his preferred
strategies and tendencies when employing the Knight piece as the “White” color. This
analysis allows us to assess the effectiveness of Carlsen’s gameplay choices, providing
insights into his decision-making process and potential areas of strength or improvement.
Additionally, comparing Carlsen’s results to the general dataset of grandmaster games
helps us evaluate his performance against the broader chess community.

Figure 12. Predicted CPL advantage c(s) offered by the White knight in Carlsen’s games.
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Figure 13. Predicted CPL advantage c(s) offered by the White bishop in Carlsen’s games.

Figure 14. Predicted winning chance w(s) offered by the White knight in Carlsen’s games.

Figure 15. Predicted winning chance w(s) offered by the White bishop in Carlsen’s games.
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The model is then used to determine c(s) and w(s) for states (c, p, sq) ∈ s : c = “Black”,
p = “Knight”, “Bishop”, as can be seen in Figure 16, Figure 17, Figure 18, and
Figure 19, respectively.

Figure 16. Predicted CPL advantage c(s) offered by the Black knight in Carlsen’s games.

Figure 17. Predicted CPL advantage c(s) offered by the Black bishop in Carlsen’s games.

Figure 18. Predicted winning chance w(s) offered by the Black knight in Carlsen’s games.
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Figure 19. Predicted winning chance w(s) offered by the Black bishop in Carlsen’s games.

The applications of the model on Magnus Carlsen’s games provide valuable insights
into the dynamics and strategies employed by one of the world’s top chess players. By pre-
dicting the centipawn evaluations c(s) and winning probabilities w(s) for specific subsets of
states, we can gain a deeper understanding of the advantages and disadvantages associated
with different chess positions in Carlsen’s games. These insights have numerous practical
applications in chess analysis and gameplay evaluation.

The predictions generated by the model offer a quantitative measure of the advan-
tage/disadvantage provided by the knight and bishop pieces in specific states encountered
by Magnus Carlsen. Heat maps depicting the predicted centipawn evaluations c(s) and
winning probabilities w(s) are presented for both White and Black knights and bishops
in Carlsen’s games. These visual representations provide a comprehensive overview of
the relative strengths and weaknesses of these pieces in various positions as encountered
by Carlsen.

By focusing on specific subsets of states in Carlsen’s games, we can analyze the
effectiveness of the knight and bishop pieces individually, as well as their contributions
to Carlsen’s overall gameplay strategies. This analysis aids in strategic decision-making,
enabling players to assess the potential advantages or disadvantages associated with
specific moves and piece configurations based on Carlsen’s approach.

Furthermore, the expandability of the model allows for a comprehensive examination
of the game across different states in Carlsen’s games. By extending the analysis to include
all pieces, we can uncover additional insights into the dynamics of the game as played by
Carlsen and evaluate the effectiveness of various gameplay approaches employed by him.
This broader perspective enhances our overall understanding of Carlsen’s strategies and
gameplay dynamics.

The predictions generated by the model can also be utilized for comparative analysis
between Magnus Carlsen and other players. By analyzing the centipawn evaluations and
winning probabilities associated with specific states in Carlsen’s games, we can identify
patterns and trends in his strategies. This information can be leveraged to develop training
materials and strategies for aspiring chess players, helping them improve their gameplay
and decision-making abilities while considering Carlsen’s approach.

In Figure 12, we discover the solution to one of the questions raised in Section 1: the
value of the White knight on f 5. Figure 20 illustrates the distribution of c(s) for the White
knight on f 5 in Carlsen’s games. It is evident that the c(s) values for the White knight
exhibit a positive skew, indicating that this particular state s is typically associated with
favorable c(s) values. Therefore, having a White knight positioned on f 5 often confers
an advantage.
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Figure 20. Histogram of c(s) for the White knight on f 5 for Carlsen.

By incorporating such insights into our analysis of Carlsen’s games, we gain a more
comprehensive understanding of the strengths, weaknesses, and strategic implications of
the knight and bishop pieces as employed by Magnus Carlsen.

In sum, the applications of our model on Magnus Carlsen’s games provide valu-
able insights into the dynamics and strategies employed by this world-class chess player.
The predictions of centipawn evaluations and winning probabilities offer a quantita-
tive measure of the advantages and disadvantages associated with specific chess posi-
tions encountered by Carlsen, aiding in strategic decision-making and gameplay evalu-
ation. The expandability of the model allows for a comprehensive analysis of Carlsen’s
games, facilitating a deeper understanding of his strategies and enhancing the overall
gameplay experience.

4. Pawn Valuation

No pawn exchanges, no file-opening, no attack—Aron Nimzowitsch

Our study is not complete until we apply the model to the mighty pawn. Our
proposed model is applied to a comprehensive dataset comprising over 2000 grand-
master games. The primary objective is to predict the probabilities of winning w(s)
and centipawn evaluations c(s) for a specific subset of states, namely those denoted by
{(c, p, sq) ∈ s : p ∈ {Pawn}}.

The results of the model when applied to the White pawn are shown in Figures 21 and 22.

Figure 21. Predicted CPL advantage c(s) offered by the White pawn in grandmaster games.
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Figure 22. Predicted winning chance w(s) offered by the White pawn in grandmaster games.

We note a few chess maxims that are reflected in the model predictions.

1. Pawns gain value as they cross the fourth rank: This point highlights an important
principle in chess, where advancing pawns beyond the fourth rank often leads to
increased positional strength and potential threats. As pawns move forward, they
gain control over more squares, restrict the opponent’s piece mobility, and open up
lines for their own pieces. Crossing the fourth rank is a significant milestone that can
significantly impact the dynamics of the game.

2. Pawns on the h and a files are very good on the fifth rank: This point emphasizes
the strategic importance of pawns positioned on the h and a files when they reach
the fifth rank. Pawns on these files can have a powerful influence on the game,
particularly in the endgame. Placing pawns on the fifth rank provides support for the
central pawns, helps control key central squares, and may facilitate piece activity and
potential attacks on the opponent’s position.

3. Pawns on the sixth rank are deadly, especially when supported by a pawn on the fifth
rank: This point highlights the strength of pawns on the sixth rank, which is just two
steps away from promotion. Pawns advanced to this rank become highly dangerous
as they pose a direct threat concerning promotion to a more powerful piece. When
supported by a pawn on the fifth rank, these pawns can create a formidable pawn
duo, exerting significant pressure on the opponent’s position and potentially leading
to advantageous tactical opportunities.

4. Edge pawns tend to be weaker than central pawns: This point draws attention to the
relative weakness of pawns placed on the edges of the board (such as the a and h files)
compared to pawns in central positions. Edge pawns have fewer potential squares to
advance or support other pieces, limiting their mobility and influence. In contrast,
central pawns control more critical squares, contribute to a stronger pawn structure,
and have a greater impact on the overall game dynamics.

We also found chess ideas that are not considered to be common knowledge. For ex-
ample, kingside pawns are more dangerous when advanced than queenside pawns. We
attempt to offer some anecdotal rationale for this: Advancing pawns on the kingside (g
and h files for White) can have a more immediate and aggressive impact compared to
advancing pawns on the queenside (a and b files for White). Advanced kingside pawns
can create open lines, potentially exposing the opponent’s king to attacks or weakening
their pawn structure. Understanding this distinction helps players assess the strategic
implications of pawn advances on different sides of the board.

Important squares for the White pawn can also be seen by examining the highest
centipawn evaluation c(s) values in each column. By analyzing the rows in the heatmap
corresponding to the White pawns, we can identify squares that consistently have high
centipawn evaluations, indicating their significance for White pawns.

Starting from the top row (from White’s perspective), the squares with the highest c(s)
values are e4, h4, c5, and h6. These squares represent critical positions for White pawns.
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The square e4, located in the fourth row, is a well-known central square in chess.
Occupying e4 with a White pawn can provide several advantages, such as controlling
important central squares, supporting piece development, and establishing a strong pawn
presence in the center.

Also in the fourth row, we find the square h4. Although it is on the edge of the board, it
is an important square for White pawns. Placing a pawn on h4 can serve multiple purposes,
including potentially supporting a kingside pawn storm, reinforcing control over the g5
square, or preparing to launch an attack on the opponent’s position.

In the fifth row, we encounter the square c5. Occupying c5 with a White pawn can
contribute to a solid pawn structure and provide control over central squares. It may also
support piece mobility and influence the game’s dynamics, particularly in the context of
pawn breaks or central pawn exchanges.

Finally, in the sixth row, the square h6 stands out with the highest c(s) value. Placing a
pawn on h6 can have strategic implications, such as potentially supporting kingside attacks
or acting as a defensive shield for the king.

By identifying these squares with high c(s) values, we gain valuable insights into
the strategic positioning of White pawns. These squares offer opportunities for central
control, piece activity, attacking potential, and overall pawn structure. Understanding
the significance of these squares helps players make informed decisions regarding pawn
placement, pawn breaks, and strategic plans to maximize their advantage in the game.

We next apply this model to the Black pawns. The results are shown in Figures 23 and 24.

Figure 23. Predicted CPL advantage c(s) offered by the Black pawn in grandmaster games.

Figure 24. Predicted winning chance w(s) offered by the Black pawn in grandmaster games.

Similar conclusions can be drawn for Black pawns. By analyzing the highest centipawn
evaluation c(s) values in each column for the Black pawns, we can identify the key squares
that consistently have high evaluations, signifying their significance for Black pawns.

Just like for the White pawns, the rows in the heatmap corresponding to the Black
pawns reveal important squares. The squares with the highest c(s) values for Black pawns
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are f 5, d5, c4, d3, and f 3. These squares play a crucial role in determining the strength and
strategic positioning of the Black pawns.

The square f 5, located in the fifth row, emerges as one of the critical squares for Black
pawns. Placing a pawn on f 5 can provide Black with control over central squares, potential
support for piece development, and opportunities for counterplay.

The square d5 stands out with a high c(s) value. Occupying d5 with a Black pawn
contributes to central control, potentially restricts White’s pawn breaks, and provides a
solid foundation for Black’s pawn structure.

In the fourth row, the square c4 is identified as an important square for Black pawns.
Occupying c4 can offer Black strategic advantages, such as central control, potential support
for piece activity, and the creation of tactical opportunities.

Furthermore, the square d3 in the third row holds significance for Black pawns. Placing
a pawn on d3 strengthens Black’s central presence, potentially restricts White’s pawn
advancements, and helps solidify Black’s position in the center.

Lastly, the square f 3 in the third row also demonstrates a high c(s) value. Occupying
f 3 with a Black pawn can support kingside counterplay, potentially restrict White’s piece
mobility, and offer opportunities for tactical operations.

Analyzing these key squares for Black pawns, namely f 5, d5, c4, d3, and f 3, provides
valuable insights into the strategic considerations and potential strengths of the Black
pawn structure. Occupying and controlling these squares strategically enhances Black’s
control of central areas, supports piece coordination, and enables counterplay against
White’s position.

By understanding the significance of these squares, players can make informed de-
cisions regarding pawn placement, pawn breaks, and strategic plans to maximize their
potential advantage and navigate the complexities of the game from the Black perspective.

5. Conclusions

In this paper, we presented a comprehensive methodology for evaluating chess posi-
tions and predicting the probabilities of winning w(s) and centipawn evaluations c(s). Our
approach utilized a combination of centipawn evaluation, Q-learning, and neural networks
to capture the complex dynamics of the game and facilitate informed decision-making.

We began by formalizing the theoretical functions used in Q-learning, such as the
value function V(s) and centipawn evaluation c(s). The value function represented the
probability of winning the game given a specific state s, while the centipawn evaluation
measured the advantage in chess. We derived the win probability w(s) from the centipawn
evaluation using a mathematical equation.

To address the sequential decision problem, we employed the dynamic programming
technique of Q-learning, which involved breaking down the problem into smaller sub-
problems and solving the Bellman equation. The Q-value matrix represented the probability
of winning given a policy/move in a specific state, and we determined the optimal policy
and value function using the Q-values.

To predict centipawn evaluations c(s), we designed a neural network architecture
specifically tailored for chess positions. This model incorporated the tanh activation
function to capture intricate patterns and relationships within the input data. By training
the neural network on a meticulously crafted dataset, we could make accurate predictions
of centipawn evaluations for unseen states.

Our methodology expanded upon previous work by considering a comprehensive
state representation that encompassed color, piece type, and square information. This
allowed for a more nuanced analysis of the game dynamics and a deeper understanding
of the factors influencing the outcome. We also showcased the applications of our model,
focusing on specific subsets of states, such as the knight and bishop pieces, and visualizing
the predicted probabilities of winning and centipawn evaluations through heat maps.

Further research in this area could explore the dynamic nature of square values, taking
into account positional changes and the interaction between different pieces. By refining
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and expanding our methodology, we can continue to deepen our understanding of the
intricate dynamics of chess positions and contribute to advancements in the field of chess AI.

In conclusion, our methodology provides a robust framework for evaluating chess
positions and making informed decisions during gameplay. By combining centipawn
evaluation, Q-learning, and neural networks, we achieved a comprehensive analysis of
the game dynamics and enhanced our ability to assess strategic moves and guide decision-
making. Our research contributes to the development of more sophisticated and intelligent
chess AI systems, paving the way for deeper insights into the intricacies of the game.

With our methodology, we strive to unravel the logical relations of chess and provide
a comprehensive understanding of the game, empowering players and researchers alike to
unlock new levels of strategic thinking and mastery.

Author Contributions: Conceptualization, A.G., N.P., V.S. and S.M.; methodology, A.G., N.P., V.S.
and S.M.; software, A.G.; validation, A.G., N.P., V.S. and S.M.; formal analysis, A.G.; investigation,
A.G.; resources, A.G.; data curation, A.G.; writing—original draft preparation, A.G.; writing—review
and editing, A.G., N.P., V.S. and S.M.; visualization, A.G.; supervision, N.P. and V.S.; project adminis-
tration, N.P.; funding acquisition, N.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the University of Chicago

Institutional Review Board Statement: Not applicable

Data Availability Statement: The data used in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Turing, A.M. Proposed Electronic Calculator (1945). In Alan Turing’s Automatic Computing Engine: The Master Codebreaker’s Struggle

to Build the Modern Computer; Oxford University Press: Oxford, UK, 2005. [CrossRef]
2. Shannon, C.E. XXII. Programming a computer For Playing Chess. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1950, 41, 256–275.

[CrossRef]
3. Bronowski, J.; Bragg, M.; Gower, N. The Ascent of Man; The Folio Society: London, UK, 2012.
4. Botvinnik, M.M. Computers, Chess and Long-Range Planning; Springer: New York, NY, USA, 1970.
5. Good, J. A Five Year Plan for Automatic Chess (excerpts). In Computer Chess Compendium; Springer: New York, NY, USA, 1988;

pp. 118–121.
6. Romstad, T. Stockfish-Open Source Chess Engine. 2011. Available online: http://www.stock.shchess.com/ (accessed on

15 June 2023).
7. Dalgaard, M.; Motzoi, F.; Sørensen, J.J.; Sherson, J. Global Optimization of Quantum Dynamics with AlphaZero Deep Exploration.

NPJ Quantum Inf. 2020, 6, 6. [CrossRef]
8. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

9. Maharaj, S.; Polson, N.; Turk, A. Chess AI: Competing paradigms for machine intelligence. Entropy 2022, 24, 550. [CrossRef]
10. Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Ranzato, M.; Senior, A.; Tucker, P.; Yang, K.; et al. Large scale

distributed deep networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1–9.
11. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.

Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef] [PubMed]
12. Kapicioglu, B.; Iqbal, R.; Koc, T.; Andre, L.N.; Volz, K.S. Chess2vec: Learning vector representations for chess. arXiv 2020,

arXiv:2011.01014.
13. Maharaj, S.; Polson, N. Karpov’s Queen Sacrifices and AI. arXiv 2021, arXiv:2109.08149.
14. Maesumi, A. Playing Chess With Limited Look Ahead. arXiv 2020, arXiv:2007.02130.
15. Gupta, A.; Grattoni, C.; Gupta, A. Determining Chess Piece Values Using Machine Learning. J. Stud. Res. 2023, 12, 1–20.

[CrossRef]
16. Ubdip. Finding the Value of Pieces. Lichess Blog. 2022. Available online: https://lichess.org/@/ubdip/blog/finding-the-value-

of-pieces/PByOBlNB (accessed on 1 June 2023)
17. Ubdip. Comments on Piece Values. Lichess Blog. 2022. Available online: https://lichess.org/@/ubdip/blog/comments-on-

piece-values/Ps9kghhO (accessed on 1 June 2023)
18. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]

http://doi.org/10.1093/acprof:oso/9780198565932.003.0021
http://dx.doi.org/10.1080/14786445008521796
http://www. stock. shchess. com/
http://dx.doi.org/10.1038/s41534-019-0241-0
http://dx.doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.3390/e24040550
http://dx.doi.org/10.1038/nature24270
http://www.ncbi.nlm.nih.gov/pubmed/29052630
http://dx.doi.org/10.47611/jsrhs.v12i1.4356
https://lichess.org/@/ubdip/blog/finding-the-value-of-pieces/PByOBlNB
https://lichess.org/@/ubdip/blog/finding-the-value-of-pieces/PByOBlNB
https://lichess.org/@/ubdip/blog/comments-on-piece-values/Ps9kghhO
https://lichess.org/@/ubdip/blog/comments-on-piece-values/Ps9kghhO
http://dx.doi.org/10.1007/BF00992698


Entropy 2023, 25, 1374 22 of 22

19. O’Donoghue, B.; Osband, I.; Munos, R.; Mnih, V. The Uncertainty Bellman Equation and Exploration. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 3836–3845.

20. Clifton, J.; Laber, E. Q-learning: Theory and Applications. Annu. Rev. Stat. Its Appl. 2020, 7, 279–301. [CrossRef]
21. Priest, G. The logic of backwards inductions. Econ. Philos. 2000, 16, 267–285. [CrossRef]
22. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
23. Saadat, M.N.; Shuaib, M. Advancements in Deep Learning Theory and Applications: Perspective in 2020 and Beyond. Adv. Appl.

Deep Learn. 2020, 3, 3–22.
24. Vargas, R.; Mosavi, A.; Ruiz, R. Deep Learning: A Review; Queensland University of Technology: Brisbane, Australia, 2017.
25. Gupta, A.; Sharma, B.; Chingtham, P. Forecast of Earthquake Magnitude for North-West (NW) Indian Region Using Machine

Learning Techniques. EarthArxiv 2023. [CrossRef]
26. Gupta, A.; Tayal, V.K. Analysis of Twitter Sentiment to Predict Financial Trends. In Proceedings of the 2023 International

Conference on Artificial Intelligence and Smart Communication (AISC), Greater Noida, India, 27–29 January 2023; pp. 1027–1031.
27. Gupta, A.; Tayal, V.K. Using Monte Carlo Methods for Retirement Simulations. arXiv 2023, arXiv:2306.16563.
28. Korsos, L.; Polson, N.G. Analyzing Risky Choices: Q-learning for Deal-No-Deal. Appl. Stoch. Model. Bus. Ind. 2014, 30, 258–270.

[CrossRef]
29. Polson, N.; Witte, J.H. A Bellman View of Jesse Livermore. Chance 2015, 28, 27–31. [CrossRef]
30. Nimzowitsch, A. My System; Open Road Media: New York, NY, USA, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1146/annurev-statistics-031219-041220
http://dx.doi.org/10.1017/S0266267100000250
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.31223/X5MD51
http://dx.doi.org/10.1002/asmb.1971
http://dx.doi.org/10.1080/09332480.2015.1016846

	Introduction
	Value of Chess Squares and Pieces
	Centipawn Evaluation and Optimal Play
	Q-Values
	Neural Network Architecture
	Data

	Piece Evaluation: Knights and Bishops
	Pawn Valuation
	Conclusions
	References

