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Abstract: This paper proposes a class of algorithms for analyzing event count time series, based on
state space modeling and Kalman filtering. While the dynamics of the state space model is kept
Gaussian and linear, a nonlinear observation function is chosen. In order to estimate the states, an
iterated extended Kalman filter is employed. Positive definiteness of covariance matrices is preserved
by a square-root filtering approach, based on singular value decomposition. Non-negativity of the
count data is ensured, either by an exponential observation function, or by a newly introduced
“affinely distorted hyperbolic” observation function. The resulting algorithm is applied to time series
of the daily number of seizures of drug-resistant epilepsy patients. This number may depend on
dosages of simultaneously administered anti-epileptic drugs, their superposition effects, delay effects,
and unknown factors, making the objective analysis of seizure counts time series arduous. For the
purpose of validation, a simulation study is performed. The results of the time series analysis by state
space modeling, using the dosages of the anti-epileptic drugs as external control inputs, provide a
decision on the effect of the drugs in a particular patient, with respect to reducing or increasing the
number of seizures.

Keywords: n onlinear state space model; iterated extended Kalman filter; Bayesian filtering; count
time series; singular value decomposition

1. Introduction

Temporal data sequences resulting from counting discrete events over a given time
interval represent a particular variant of time series called discrete-valued or event count
time series. These count data arise in various fields, such as physics, epidemiology, finance,
econometrics, or medicine. Much of the existing framework on time series analysis relies
on the assumptions of Gaussianity and linearity. The non-negativity and integrity con-
straints inherent in count time series have led to the development of alternative modeling
approaches that instead employ probability distributions of Poisson type. As prominent
examples we mention generalized linear models (GLMs) [1], dynamic generalized lin-
ear models [2,3], integer-valued autoregressive (INAR) models [4], and integer-valued
generalized autoregressive conditional heteroscedasticity (INGARCH) models [5–7].

However, in this paper we aim at modeling count time series within the linear Gaus-
sian regime as long as possible, while introducing non-negativity and integrity only at the
last stage of modeling, namely, at the stage of modeling the observation process. The suit-
able framework for this agenda is given by classical state space modeling [8]. In state space
modeling, the dynamical process underlying the data is explicitly separated from the obser-
vation process, such that the former can be kept Gaussian and linear, which considerably
simplifies state estimation and model identification. Further advantages of the state space
approach are given by the possibility to discriminate between dynamical noise and obser-
vation noise, and by the option of straightforward generalization to the multivariate case.
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It is also possible to include explanatory factors and external control inputs into state space
models, and to incorporate conditional heteroscedasticity [9], with little additional effort.

Since the dynamics is kept Gaussian and linear, temporal correlations in the given
data can be modeled by standard models from linear time series analysis, such as linear
autoregressive moving average (ARMA) models [10]; ARMA models can be rewritten as
(components of) linear state space models. Finally, non-negativity is modeled by employing
a nonlinear observation function, while integrity is interpreted as the effect of a suitable
additive observation noise term, which performs a kind of quantization of the non-integer
output of the nonlinear observation function.

In linear state space modeling, tasks such as prediction, filtering, and smoothing
may be performed by algorithms based on the linear Kalman filter (KF) [8,11]. However,
in the case of a nonlinear observation function, generalizations of the linear KF need to be
employed. Nowadays, a variety of algorithms is available, such as the extended KF (EKF),
the iterated extended KF (IEKF), the unscented KF (UKF), and particle filtering [11,12].

The EKF is based on applying a linear KF by forming the local derivative of the
nonlinear observation function (and the dynamical process, if it is also nonlinear) at the
current estimate of the predicted state. The IEKF extends the EKF by an additional iteration
that aims at finding consistent estimates for predicted and filtered states. It has recently
been shown that the IEKF iteration can be interpreted as an application of Gauss–Newton
optimization [12]. The UKF generalizes the EKF by propagating an ensemble of determinis-
tically chosen points, thus improving Gaussian approximation and eliminating the explicit
calculation of the Jacobian matrices. In principle, in Kalman filtering the error covariance
matrices of the state estimates should be bounded and should converge to a steady so-
lution, irrespective of the error in the initial state estimate and the corresponding initial
error covariance matrix. However, the opposite phenomenon called theoretical divergence of
classical KF is also well known. In order to keep the covariance matrix positive definite
and improve the numerical behavior of the KF, square-root variants of the linear KF and its
nonlinear generalizations have been introduced [13].

The mentioned algorithms have played a prominent role in applications in biomedical
research and adjacent fields, such as public health [14]. Examples of corresponding count
time series include epidemiological data (such as the famous U.S. poliomyelitis incidence
time series, consisting of monthly counts starting in 1970) [15], sleep stage sequences,
erythrocyte counts, infectious disease data [16], and epileptic seizure counts [17,18]. While
most epilepsies respond well to anti-epileptic treatment, modeling the effects of anti-
epileptic drugs (AEDs) on seizure frequency is essential for patients with difficult-to-treat
or treatment-resistant epilepsies [19,20].

Several quantitative approaches to the analysis of seizure count time series have been
proposed, which suffer from significant deficiencies. The mixed-effects models employed by
Tharayil et al. cannot assess the effects of the changes in AEDs [21]. The epilepsy seizure
management tool (EpiSAT) proposed by Chiang et al. does not account for observation
errors caused by missed seizures or misinterpreted non-seizure events [22]. The Bayesian
negative binomial dynamic linear model, recently proposed by Wang et al., cannot model
the interaction effect between AEDs [23].

Application of state space modeling and Kalman filtering to seizure count time se-
ries has the potential to solve these deficiencies by quantifying the effect of an AED in
the presence of other AEDs, describing delays in the effect of each AED, and modeling
interaction effects between several AEDs. Moreover, the state space approach allows for the
presence of temporal correlations in the seizure count time series that are unrelated to the
current AED medication, but may result from other unknown influences on the probability
of seizures. Furthermore, the state space approach is robust with respect to observation
errors, such as missed seizures, events misclassified as seizures, outliers, missing data,
or other observer-related errors. Therefore, the primary objective of this contribution is to
explore and develop state space modeling algorithms tailored explicitly for event count
time series, with a particular focus on the modeling of seizure count time series, as an
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illustrative example. To the best of our knowledge, apart from our previous work [24–26],
this approach is novel on its own.

This paper is organized as follows. In Section 2, “Materials and Methods”, we discuss
the main algorithms for Kalman filtering and for parameter estimation; we also describe
the simulated data and the real data from a patient. In Section 3, “Results”, we show the
performance of the proposed algorithm, provide some comparison with respect to the
numerical problems arising in previous algorithms, and show results from application to
both simulated and real data. Section 4, “Discussion”, concludes the paper. Additional in-
formation on the proposed state space models and Kalman filtering algorithms is provided
in Appendices A and B.

2. Materials and Methods
2.1. Independent Components Linear State Space (IC-LSS) Models

The independent components linear state space (IC-LSS) model is a distinct category
of the linear state space (LSS) models proposed by Galka et al. [27]. Let the data vector
observed at time t be denoted by yt, where t = 1, . . . , T denotes discrete time, and let the
dimension of yt be denoted by n. The examples for analysis of actual data that are shown
below are for scalar data only, i.e., n = 1, but we choose to keep the presentation of the
methodology more general.

In linear state space (LSS) modeling, the observed data are linked to an unobserved
m-dimensional state vector, xt, as described by an observation equation

yt = Cxt + εt, εt ∼ N (0, R) (1)

where C and εt represent the observation matrix and the observation noise, respectively.
The observation noise is a white Gaussian noise with zero mean and observation noise
covariance matrix R. By including this noise, the model acknowledges the limitations and
uncertainties of real-world observations, and the information loss about the true state of
the system. Within LSS models, the temporal evolution of the state vector, xt, is described
by a discrete-time dynamical equation

xt = Axt−1 + ηt, ηt ∼ N (0, Q) (2)

where A and ηt represent the state transition matrix and the dynamical noise, respectively.
Also, the dynamical noise is a white Gaussian noise with zero mean and dynamical noise
covariance matrix Q. An additional control input term, depending on a known external
control input, ut, may be added to the dynamical equation:

xt = Axt−1 + Buut + ηt (3)

where Bu represents the control gain matrix. The respective dimensions of the matrices
and vectors are given in Table 1. The IC-LSS model is a specific subset of the LSS model
family that characterizes data as a combination of independent source processes through
a weighted sum and chooses specific structures of parameter matrices of the general
state space model. The model depends on a set of parameters matrices, collected in the
set Θ = {C, A, R, Q, Bu}. Both the state transition matrix, A, and the dynamical noise
covariance matrix, Q, are constructed as block-diagonal matrices with identical sets of block
dimensions, as described in Appendix A.

Our modeling approach assumes that the impact of each control input, i.e., each com-
ponent of the vector ut, is independent of the other components, and that the corresponding
processes can be modeled as deterministic first-order autoregressive models, to be denoted
by AR(1). These AR(1) models are made deterministic by setting the corresponding ele-
ments of Q to zero. To account for temporally correlated fluctuations in the data caused by
factors other than the control input, a stochastic process is also included. This stochastic
process is modeled by an autoregressive moving average model with orders p and p− 1,
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to be denoted as ARMA(p, p− 1). In the current implementation, we usually choose p = 2,
which represents a trade-off between the stochasticity and stability of the model. AR(1) and
ARMA(2,1) models can easily be incorporated into IC-LSS models (for technical details, see
Appendix A).

Table 1. Quantities arising in state space models.

Notation Meaning and/or Name Dimension

yt data vector n
εt observation noise vector n
xt state vector m
ηt dynamical noise vector m
ut external control vector u
C observation matrix n×m
A state transition matrix m×m
R observation noise covariance matrix n× n
Q dynamical noise covariance matrix m×m
Bu control gain matrix m× u

2.2. Nonlinear State Space (NLSS) Models

Count time series do not follow Gaussian probability distributions, therefore the class
of linear Gaussian state space models is not well suited for modeling such time series;
rather it would be beneficial to employ appropriate nonlinear state space (NLSS) models.
In this paper, we keep the dynamical equation linear, as in Equation (3), while defining a
nonlinear observation equation by

yt = f(xt) + εt, εt ∼ N (0, R) (4)

where we have assumed that the observation noise, εt, can be kept Gaussian; f( . ) represents
a nonlinear observation function. We employ two different nonlinear functions, namely

f1(x) = exp(Cx) (5)

and

f2(x) =
Cx
2

+

√
(Cx)2

4
+ k (6)

In the case of multivariate data, n > 1, these functions are to be applied component-wise.
The first of these observation functions, simply an exponential function, has been

chosen with the intention of achieving non-negativity of the observed data, as it may also be
achieved in Poisson regression. The disadvantage of this choice for the observation function
is the fact that it diverges exponentially for large positive arguments. In previous work,
we have occasionally encountered numerical breakdown of Kalman filtering algorithms
due to the resulting extremely large values [25,26]; details will be provided below in
Section 3.1. For this reason, we propose a different nonlinear observation function, to be
called the “affinely distorted hyperbolic” function, as given in Equation (6); while for
negative arguments it behaves like the exponential function, for positive arguments it
converges to the linear function, rising with a slope of C, see Figure 1.

Recently, Weiß and coworkers [7,28] have introduced a nonlinear function called the
“softplus” function, given by

f(x) = k log
(

1 + exp
(
x/k

))
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where k is a real positive parameter. This function could be employed instead of our
“affinely distorted hyperbolic” function for the purpose of constraining observations to be
non-negative, since it has similar behavior.

Figure 1. Nonlinear observation functions f1(x) (blue) and f2(x) (red), with C = 1 and k = 1; the
dashed vertical line on the right side represents the linear function f(x) = x.

2.3. Iterated Extended Kalman Filter (IEKF)

In this paper, we are dealing with a two-fold estimation problem: estimation of states
and estimation of parameters. The extended Kalman filter (EKF) has been used as a popular
tool for estimating the states in nonlinear state space models. It was first proposed by
Kalman and Bucy in 1961 [29]. The EKF results from extending the original Kalman filter
developed for linear systems to nonlinear systems by linearizing the dynamical equation
and the observation equation around the current state estimate. As an improved variant of
EKF, the iterated extended Kalman filter (IEKF) has been proposed, in order to improve
the accuracy and stability of the EKF [30]. The IEKF has been applied to various fields,
including robotics, aerospace, and control systems.

For a given time series of length T and given initial state estimate x0|0 and correspond-
ing covariance matrix P0|0, the forward temporal recursion begins at time t = 1 with the
predicted state estimate [25], which is computed by

xt|t−1 = Axt−1|t−1 + Buut (7)

The notation xt1|t0
is used throughout the paper to indicate that an estimate at time t1 is

obtained by using all data available at time t0. The corresponding predicted state covariance
is computed by

Pt|t−1 = APt−1|t−1AT + Q (8)

At each time point, the IEKF iteration starts, after Equations (7) and (8) have been evaluated,
with iteration index i = 1, . . . , im. First, the derivative of the chosen nonlinear function is
computed as

H
(i)
t =

∂f
∂x

∣∣∣∣
x(i−1)

t|t

(9)
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In the multivariate case, this derivative will be a matrix (Jacobian matrix). At each iteration,
the prediction errors (also known as innovations), the innovation variance, the Kalman gain,
and the filtered state estimates are computed, according to

ν
(i)
t = yt − f

(
x(i−1)

t|t
)

(10)

V
(i)
t = H

(i)
t Pt|t−1

(
H
(i)
t
)T

+ R (11)

K
(i)
t = Pt|t−1

(
H
(i)
t
)T(

V
(i)
t
)−1 (12)

x(i)t|t = xt|t−1 + K
(i)
t

(
ν
(i)
t −H

(i)
t

(
xt|t−1 − x(i−1)

t|t

))
(13)

The iteration ends when a stopping criterion is fulfilled. We use the stopping criterion of
either the norm of the relative change of x(i)t|t falling below 10−10, or the iteration index
reaching a maximal value of im = 100. After the iteration, the filtered state covariance is
computed by

Pt|t =
(
Im −K

(i)
t H

(i)
t
)
Pt|t−1 (14)

where Im denotes the m-dimensional identity matrix.
The IEKF algorithm, as presented above, is summarized in Appendix B. In an earlier

paper [25], we have presented results from actual application of the IEKF, for the case of an
exponential observation function.

2.4. Singular Value Decomposition Iterated Extended Kalman Filter (SVD-IEKF)

At each time step, the covariance matrices Pt|t−1, Vt, and Pt|t arising in the Kalman
filter recursion have to be positive definite, or at least, positive semi-definite. However, it is
well known that during the recursion due to numerical effects these covariance matrices
may lose the property of positive definiteness. As a consequence, computation of the
likelihood becomes unreliable; furthermore, the iteration of the IEKF may converge only
with delays, or it may entirely fail to converge [25].

As a remedy, one may work with matrix square roots of the covariance matrices,
instead of the covariance matrices themselves. There are, at least, two ways to define
the square root of a matrix: by Cholesky decomposition (CD) and by singular value
decomposition (SVD).

For a given real square matrix M with dimension m×m, the Cholesky decomposition
is given by

M = ST
MSM (15)

where SM denotes a (m × m)-dimensional upper triangular matrix with non-negative
diagonal elements. The Cholesky Decomposition is only possible for matrices that are
positive (semi-)definite; for semi-definiteness, the decomposition may not be unique.

For a given real matrix, M, with dimension m× n, the SVD decomposition is given by

M = UMΣMWT
M (16)

where UM and WM denote two orthogonal matrices with dimensions m×m and n× n,
respectively, and ΣM is a diagonal matrix with dimension m× n, which has non-negative
real numbers, σi, on its diagonal, called the singular values of M [31]. The singular values
are the positive square roots of the eigenvalues of MTM [13]. SVD can be applied to any
matrix, without the condition of positive (semi-)definiteness.

The SVD of a positive (semi-)definite square matrix, M, e.g., a covariance matrix, can
be formulated as

M = WMΣ2
MWT

M (17)
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such that we have UM = WM, and the definition of the matrix of singular values has been
changed to Σ2

M instead of ΣM; this is a reasonable change of definition, since the singular
values are non-negative.

Square-root variants of the Kalman filter that employ CD were proposed already in
the 1960s. However, SVD represents a matrix decomposition that offers superior numerical
properties, compared with CD. Square-root variants of the Kalman filter that employ SVD
were proposed in 1992 by Wang et al. [13], and in 2017 by Kulikova and Tsyganova [32].
In an earlier paper, we proposed a square-root variant of the IEKF that employs SVD [26],
based on the algorithm of Kulikova and Tsyganova.

In the proposed nonlinear Kalman filter algorithm, the initial covariance matrix, P0|0,
and the noise covariance matrices, Q and R, are factorized by SVD as follows:

P0|0 = W0|0Σ2
0|0WT

0|0

Q = WQΣ2
QWT

Q

R = WRΣ2
RWT

R

These factorizations are performed once outside of the forward recursion of the Kalman
filter. The recursion then begins with the same update equation for the predicted state as
before, Equation (7). However, now the corresponding predicted state covariance matrix is
updated by performing a factorization step by applying SVD to a pre-array, as follows [26]:

U1

[
ΣPt|t−1

0

]
︸ ︷︷ ︸

singular values array

WT
Pt|t−1

=

[
ΣPt−1|t−1

WT
Pt−1|t−1

AT

ΣQWT
Q

]
︸ ︷︷ ︸

pre-array

(18)

Pt|t−1 =WPt|t−1
Σ2
Pt|t−1

WT
Pt|t−1

(19)

where U1 is an orthogonal matrix that can be discarded. Also, in the SVD-IEKF algorithm,
at each time point an iteration is performed, with the equations for the Jacobi matrix and
the innovations given by Equations (9) and (10), respectively. However, Equation (11) is
replaced by an array factorization step:

U2

[
Σ(i)
Vt
0

]
︸ ︷︷ ︸

singular values array

(
W

(i)
Vt

)T
=

 ΣRWT
R

Σ(i)
Pt|t−1

(
W

(i)
Pt|t−1

)T(
H
(i)
t
)T


︸ ︷︷ ︸

pre-array

(20)

V
(i)
t = W

(i)
Vt

(
Σ(i)
Vt

)2(
W

(i)
Vt

)T (21)

where U2 is an orthogonal matrix which can be discarded. As the iteration proceeds,
the normalized innovation, the normalized gain, the optimal Kalman gain, and the filtered
state estimate are computed as follows:

ν̂
(i)
t =

(
W

(i)
Vt

)T
ν
(i)
t (22)

k
(i)
t = Pt|t−1

(
H
(i)
t
)T

W
(i)
Vt

(23)

K
(i)
t = k

(i)
t
(
Σ(i)
Vt

)−2(
W

(i)
Vt

)T (24)

x(i+1)
t|t = xt|t−1 + k

(i)
t
(
Σ(i)
Vt

)−2
(

ν̂
(i)
t −

(
W

(i)
Vt

)T
H
(i)
t (xt|t−1 − x(i)t|t )

)
. (25)
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After reaching the stopping criterion of the iteration, the filtered state covariance matrix,
Pt|t, is computed by a third array factorization step:

U3

[
ΣPt|t

0

]
︸ ︷︷ ︸

singular values array

WT
Pt|t

=

ΣPt|t−1
WT

Pt|t−1

(
Im −K

(i)
t H

(i)
t
)T

ΣRWT
R

(
K
(i)
t
)T


︸ ︷︷ ︸

pre-array

(26)

Pt|t = WPt|t Σ
2
Pt|t

WT
Pt|t

(27)

where U3 denotes another orthogonal matrix that can be discarded, and i denotes the
index at which the iteration had stopped. The SVD-IEKF algorithm, as presented above, is
summarized in Appendix B.

2.5. Non-Dynamic Regression Model: Gaussian Case

For the purpose of comparison, we also employ two types of non-dynamic regression
models. The first of these models represents the classical linear Gaussian case; it is defined
as follows:

yt = B̃uut + nt (28)

where B̃u denotes a matrix of regression coefficients, and nt denotes a time series of regres-
sion residuals, assumed to have a Gaussian distribution with zero mean and covariance
matrix Σn. B̃u can be estimated by ordinary least squares; the covariance matrix, Σn, can
then be computed as

Σn =
1
T

T

∑
t=1

(yt − B̃uut)(yt − B̃uut)
T (29)

Note that the regression model of Equation (28) implicitly assumes that the effects of the
different components of the control vector, ut, are uncorrelated.

From the regression model of Equation (28), a logarithmic likelihood can be computed by

log L
(
B̃u
)
= −T

2
(log |Σn|+ n log 2π + n) (30)

2.6. Non-Dynamic Regression Model: Poisson Case

The second non-dynamic regression model is an example of a generalized linear
model, representing the Poisson case; it is defined as follows:

log yt = B̃uut + nt (31)

where B̃u denotes another matrix of regression coefficients, and nt denotes another time
series of regression residuals; in this case, yt is assumed to have a Poisson distribution.
Note that, for simplicity, we formulate this model only for the case of scalar data.

From the regression model of Equation (31), a logarithmic likelihood can be computed by

log L
(
B̃u
)
=

T

∑
t=1

(
ytB̃uut − exp(B̃uut)− log(yt!)

)
. (32)

2.7. Parameter Estimation and Ensembles of Models

As mentioned earlier, when fitting a state space model to given data we have to solve
a two-fold estimation problem: estimation of states and estimation of parameters. In this
paper, estimation of the model parameters, denoted by Θ in Section 2.1, is performed by
numerical maximization of the logarithmic innovation likelihood, denoted by log L(Θ),
employing the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton and Nelder–
Mead simplex algorithms [33]. Apart from filtered state estimates, the forward recursion
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of the Kalman filter also provides the corresponding contributions to the logarithmic
innovation likelihood, which may then be summed up:

log L(Θ) = −1
2

T

∑
t=1

(
log |Vt|+ νT

t V−1
t νt

)
− nT

2
log 2π (33)

In this expression, the effect of the initial state has been ignored. If the innovations, νt,
have been obtained by the IEKF or SVD-IEKF algorithms, their values correspond to the
final values resulting from the iteration performed at time t, until the stopping criterion
is fulfilled.

In order to avoid parameter redundancy with respect to the control gain matrix, Bu,
the observation matrix, C, has not been included in the set of parameters to be estimated
by optimization; instead constant values of 1.0 are employed, except for the ARMA(2,1)
component, for which the control gain parameters are fixed at zero.

For given data, comparison of the performance of state space models, as discussed
above in Sections 2.2–2.4, with the performance of non-dynamic regression models, as dis-
cussed above in Sections 2.5 and 2.6, can be performed by comparison of the corresponding
values of an information criterion, such as the (corrected) Akaike information criterion
(AICc) [27]. The AICc can be computed from the logarithmic likelihood according to

AICc = −2 log L(Θ) +
2NparT

T − Npar − 1
(34)

where Npar denotes the number of data-adaptive parameters of the corresponding model;
in the case of state space models, this would be the total number of parameters in Θ; if the
nonlinear observation function, f(.), according to Equation (6), is chosen, also the parameter
k becomes part of Θ.

The second term in Equation (34) represents a penalty term for the complexity of the
model; through this term, the values of AICc for different models can be directly compared,
while the corresponding values of the logarithmic likelihood cannot, since they would be
biased in favor of the more complex model. The task of parameter estimation is then given
by finding parameters that minimize the AICc. Due to the complicated dependence of the
AICc on Θ, including the possible existence of numerous local minima, this task can only be
approached by numerical optimization. The chosen algorithm for numerical optimization
may converge to one of these local minima, instead of the global minimum, or to other
minima with smaller AICc values.

This issue can be resolved by employing an ensemble of models. Each model in the
ensemble is initialized with randomly selected initial parameter values and optimized
using the same minimum AICc approach until convergence. Finally, the model with the
smallest AICc value is retained. However, although the probability of actually finding the
global minimum will be improved by this ensemble approach, no assurance of finding the
global minimum is provided.

2.8. Simulated Data

To validate the performance and effectiveness of our proposed NLSS modeling ap-
proach, we conduct simulations, before applying it to the patient data. These simulations
serve to demonstrate the algorithm’s capability in accurately capturing the dynamics of
event count time series. We assume that three anti-epileptic drugs are given, named
AED1, AED2 and AED3, and that, for the particular simulated “patient”, AED1 and AED3
reduce the daily number of seizures, while AED2 increases it. The (arbitrarily chosen)
time-dependent dosages of the drugs during a time interval of 500 days are shown in the
upper panel of Figure 2a, while the resulting time series of the daily numbers of seizures is
shown in the lower panel of the figure.

The simulated time series is generated by employing Equations (1) and (3), utilizing
the affinely distorted hyperbolic function f2(xt), as discussed in Equation (6). In addition
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to the contributions of the three anti-epileptic drugs, a stochastic ARMA(2,1) process is
added. The resulting time series is rounded to integer values, representing the simulated
daily seizure counts. The daily seizure counts assume values from 0 to 6, which is a realistic
interval. The MATLAB code for recreating the simulated data is provided in Appendix C.
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Figure 2. Time-dependent dosages of anti-epileptic drugs (upper panels) and corresponding count
time series of daily epileptic seizures (lower panels) for a simulation (a) and for a real patient (b); in
the upper panels, the anti-epileptic drugs are discriminated by colors (see legends below the panels,
which also give the names of the drugs).

2.9. Patient Data

We demonstrate the practical application of NLSS modeling through the analysis of a
real-world data set obtained from a patient suffering from symptomatic epilepsy. The data
set utilized in this study was collected from an electronic seizure diary called EPI-Vista
(http://www.epivista.de, accessed on 20 September 2023), which has been in routine use
at the North German Epilepsy Center for Children and Adolescents in Schwentinental-
Raisdorf, Germany, since 2007. EPI-Vista is a freely available therapy management tool
that records information about dosages of administered anti-epileptic drugs and about
seizure events.

The time-dependent dosages of the drugs during the chosen time interval of 618 days
are shown in the upper panel of Figure 2b, while the recorded time series of the daily
numbers of seizures is shown in the lower panel of the figure. During the chosen time
interval, five different anti-epileptic drugs were administered: oxcarbazepine, lamotrigine,
rufinamide, clobazam, and valproate.

3. Results
3.1. Convergence Behavior of Iteration

We will briefly comment on the convergence behavior of the iteration of the SVD-IEKF.
Within the recursion of the SVD-IEKF through the data, the iteration takes place at each
time point. We may plot the norm of the relative change of the state estimate as a function of
the iteration index, obtaining a set of curves; examples are shown in Figures 3 and 4. These
examples refer to the analysis of the simulated data, as described in Section 2.8. In Figure 3a,
it can be seen that for all 500 time points the iteration converges according to a power law
within, at most, 35 iterations, thereby confirming that the SVD-IEKF works properly.

However, within an ensemble of models, cases may also occur that show less favorable
behavior. An example is shown in Figure 3b. In this case, we see convergence only for the
first time point; the iteration loop stops after 500 iterations. State estimates obtained from
this iteration were extremely large (in the order of e100), and therefore the Kalman filter
recursion was not continued, and no further iterations were performed. This problem can
be resolved by replacing the exponential function with the affinely distorted hyperbolic
function in the observation equation, Equation (1).

http://www.epivista.de
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Figure 3. Norm of relative change of state estimate vs. iteration index for the application of the
SVD-IEKF to a simulated count time series, using a model initialized with two different sets of
random model parameters; in (a) iterations for all 500 time points are shown, while in (b) only
the first iteration is shown, since the recursion of the Kalman filter was aborted afterwards due to
numerical failure.

In Figure 4, we illustrate the effects of loss of positive definiteness of covariance
matrices on the convergence behavior. Also, this example refers to the analysis of the
simulated data. The standard IEKF was used, as described above in Section 2.3, and the
affinely distorted hyperbolic function was employed.

In Figure 4a, it can be seen that for most time points the iteration completely fails to
converge, instead norms of relative state changes stay approximately constant or oscillate;
note the extremely large, or small, values on the vertical axis. In Figure 4b, the effect of
switching from the IEKF to the SVD-IEKF is illustrated, for the same simulated data and the
same set of model parameters: now, for almost all time points, good convergence within
60 iterations is obtained. For a single time point, convergence is slower and seems not to
follow a power law.

Within an ensemble of 1000 random initial models, we find that for 18 models the
IEKF encounters numerical problems resulting from covariance matrices losing positive
definiteness or becoming singular, and another 11 models exhibit poor convergence behav-
ior. For the SVD-IEKF, all models of the ensemble display good or satisfactory convergence
behavior, without any numerical instability of the Kalman filter.

0 20 40 60 80 100 120

IEKF iterations

10
-50

10
0

10
50

ch
a

n
g

e 
o

f 
st

a
te

 e
st

im
a

te
s

(a)

0 20 40 60 80 100 120

SVD-IEKF iterations

10
-15

10
-10

10
-5

10
0

10
4

ch
a

n
g

e 
o

f 
st

a
te

 e
st

im
a

te
s

(b)
Figure 4. Norm of relative change of state estimate vs. iteration index for the application of the
IEKF (a) or SVD-IEKF (b) to a simulated count time series, using a model initialized with a set of
random model parameters; iterations for all 500 time points are shown.

3.2. Results of Ensemble Approach: Simulated Data

Following earlier work [24], we plot the control gain parameters, i.e., the diagonal
elements of the control gain matrix, Bu, as defined in Equation (3), against the corresponding
values of the AICc for all models of the ensemble; for each diagonal element, i.e., for each
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anti-epileptic drug, a separate plot is created. For the simulated data, the resulting plots are
shown in Figure 5; blue dots represent the results from the 1000 models of the ensemble.
The model with the lowest AICc value is highlighted in green. In addition, the results
obtained by the two non-dynamic regression models are also shown, and are represented
by red (Gaussian) and deep purple (Poisson); error bars are also shown, although they are
mostly very small.

From Figure 5 it can be seen that most of the models of the ensemble achieve a lower
AICc, compared with the non-dynamic regression models. For AED1 and AED2, the
clouds of blue dots scatter over both positive and negative values of the control gain
parameter; however, the model with the smallest control gain parameter is negative for
AED1, and positive for AED2. For AED3, literally all models yield negative control
gain parameters.

Since the simulation was designed such that AED1 and AED3 reduce the daily number
of seizures, while AED2 increases it, the ensemble approach has succeeded in retrieving the
correct result. As can be seen from Figure 5, in this case also the non-dynamic regression
models reproduce the correct result.

In Table 2, the correct values of the observation parameters, which were used for
creating the simulated data, and the estimated values of these parameters, obtained for
the model with the lowest AICc value, are shown. The table also lists estimated errors for
the estimated parameters; these errors can be estimated by computing the Hessian of the
local likelihood at the optimal point. However, it is obvious that, at least for AED1 and
AED3, these estimated errors are much too small to describe the actual deviation of the
estimated values from the correct values; the probable reason for this is that in nonlinear
filtering algorithms with an iteration at each time point, such as the IEKF and SVD-IEKF,
the local likelihood often has a complicated shape with discontinuous behavior, such that
numerically computed Hessians do not provide reliable estimates of the estimation errors.
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Figure 5. Estimated control gain parameters vs. AICc for simulated data, using an ensemble of
1000 randomly initialized models. The blue dots represent the results for the ensemble, with the
model with the lowest AICc highlighted in green. The red (Gaussian case) and deep purple (Poisson
case) dots represent the results obtained by the non-dynamic regression models. For the green, red,
and deep purple dots, error bars are added, but they are mostly very small. The three panels refer to
the three anti-epileptic drugs that were used in the simulation.
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Table 2. Correct and estimated values of the observation parameters for the simulation study;
the third row gives estimated errors for the estimated values, obtained from the Hessian of the
local likelihood.

Anti-Epileptic Drug AED1 AED2 AED3

correct values −0.40 0.95 −0.70
estimated values (best model) −0.43 0.79 −0.96
estimated errors (best model) ±1.86× 10−7 ±4.57× 10−2 ±4.33× 10−8

3.3. Result of Ensemble Approach: Patient Data

For the patient data, an ensemble of 700 randomly initialized models was employed.
When using the SVD-IEKF and the affinely distorted hyperbolic function, optimization of
all models proceeded without cases of numerical problems. The resulting plots of estimated
control gain parameters against the corresponding values of the AICc for all models of the
ensemble are shown in Figure 6; again, blue dots represent the results from the models of
the ensemble, the model with the lowest AICc value is highlighted in green, and the results
obtained by the two non-dynamic regression models are represented by red (Gaussian) and
deep purple (Poisson).

From Figure 6 it can be seen that, again, most of the models of the ensemble achieve
a lower AICc, compared with the non-dynamic regression models. The error bars of the
red dots are somewhat larger now than in the case of the simulated data; for clobazam, the
error interval includes the value of zero for the control gain parameter, such that it would
become impossible to decide whether the effect of this anti-epileptic drug on the seizure
count would be increasing, decreasing, or zero. Furthermore, based on the non-dynamic
regression models, we would conclude that oxcarbazepine and lamotrigine would decrease
the seizure count, while rufinamide and valproate would increase it.
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Figure 6. Estimated control gain parameters vs. AICc for patient data, using an ensemble of
700 randomly initialized models. The blue dots represent the results for the ensemble, with the
model with the lowest AICc highlighted in green. The red (Gaussian case) and deep purple (Poisson
case) dots represent the results obtained by the non-dynamic regression models. For the green, red,
and deep purple dots, error bars are added. The five panels refer to the five anti-epileptic drugs that
were administered during the chosen time interval of 618 days.
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On the other hand, according to the results of the analysis by the SVD-IEKF, we would
conclude that all anti-epileptic drugs, except for valproate, would decrease the seizure
count; consequently, for two anti-epileptic drugs, the conclusions would differ from the
conclusions based on the non-dynamic regression models.

We add a comment on the results of the ensemble approach, both for simulated and
patient data, as shown in Figures 5 and 6. In this paper, we are dealing with time series of
fairly short length, at most a few hundred values, since this is the typical situation for time
series of a daily number of certain events, such as epileptic seizures. As a consequence of
this scarcity of data, relative to the dimension of the space of model parameters, the AICc
(i.e., the negative likelihood), as a function of these parameters, will display many local
minima, and the task of finding the global minimum may not be well defined. For this
reason, we consider it necessary to choose an ensemble approach. In the figures showing
the results of the ensemble approach, the clouds of results that have a higher value of the
AICc than the best model also contain some useful information.

As an example, consider again Figure 6. For each of the five anti-epileptic drugs
displayed, it can be seen that the majority of the blue dots correspond to the same sign of
the control gain parameter as the best model (i.e., the dot highlighted in green), thereby
lending additional credibility to the resulting conclusions on the effects of these drugs.
If, in such a case, the blue dots were distributed about equally over positive and negative
values of the control gain parameter, we would be less inclined to regard the sign of this
parameter for the best model as significant.

The underlying problem with respect to estimating model parameters from small
data sets is unrelated to the particular choice of a state space model with linear dynamics
and nonlinear observation; it has been observed quite similarly in an earlier study based
on purely linear modeling [24]. The task to be addressed here is to draw the optimal
conclusion, based on the scarce available data.

3.4. Innovation Whiteness Test

The aim of modeling a given time series by a parametric model, such as a state space
model, is given by extracting temporal correlations as much as possible, such that the
remaining prediction errors, i.e., the innovations, do not contain any residual correlations;
this is equivalent to the innovations being white noise. In order to demonstrate that our
modeling of the given data has been successful, with respect to this whiteness criterion,
we will now show the autocorrelation function of the innovations of the best state space
models from the ensembles.

In Figure 7, the autocorrelation functions for the innovations of the simulated data
(left panel) and the patient data (right panel) are shown (green curves); for comparison,
the autocorrelation functions of the raw data are also shown (blue curves). The red dashed
lines correspond to one standard deviation. Note that, at lag zero, autocorrelation functions
always assume a value of 1.0. By comparison of the blue and the green curves it can be seen
that, both for simulated data and for patient data, very good whitening has been achieved,
with only a few outliers exceeding one standard deviation. This result confirms the validity,
in a statistical sense, of the chosen approach of modeling the data by a state space model
with a nonlinear observation function.
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Figure 7. Autocorrelation functions of raw data (blue curves) and innovations after state space
modeling (green curves) for simulated data (a) and patient data (b), for the best models of the
respective ensembles. The red dashed lines correspond to one standard deviation of the innovations.

4. Discussion

In this paper, we propose an algorithm for analyzing event count time series by
state space modeling and Kalman filtering. Within the larger field of time series analysis,
the analysis of event count time series represents a special case, which is characterized by
the need to model data that are both non-negative and integer, i.e., data given by natural
numbers. The classical linear Gaussian state space model seems less suited for such data,
since count data are described by Poisson distributions, rather than Gaussian distributions.

However, as we demonstrate, it is possible to keep the dynamics of the state space
model Gaussian and linear, while introducing nonlinearity only at the last stage of modeling,
namely, at the stage of modeling the observation process, thereby enforcing non-negativity
and integrity of the observed data. The step from the non-integer output of the observation
function to the integer data can then be roughly interpreted as addition of “quantization
noise”. By this device, Poisson distributions need not be employed explicitly. Nevertheless,
due to the choice of a nonlinear observation function, it is necessary to employ nonlinear
Kalman filters.

The present paper summarizes and extends earlier work, according to a sequence of
steps that can be described as follows:

• In an initial study, we had proposed to analyze event count time series by purely linear
Gaussian state space modeling, using the standard linear Kalman filter [24].

• Then, as a generalization, we employed nonlinear state space modeling, such that a
linear dynamical equation was combined with a nonlinear observation function; the
exponential function was chosen. State space modeling was performed by the iterated
extended Kalman filter (IEKF) [25].

• As a further step of improvement, the standard IEKF was replaced by the numerically
superior singular value decomposition variant of the IEKF [26].

• In the present paper, we replaced the exponential function with the “affinely distorted
hyperbolic” function; alternatively, the “softplus function” of Weiß and coworkers
could also have been employed. We have not yet systematically compared both
functions, but expect that they would display similar performance.

The classical linear Kalman filter consists of a recursion in the forward direction through
time, which represents the optimal state estimator for linear Gaussian state space models [8].
As soon as nonlinearities are introduced into the dynamical equation or the observation
equation, no closed-form optimal recursion exists, such that approximations and additional
iterations have to be employed. The iterated extended Kalman filter (IEKF) represents a
well-established example of such approximative nonlinear state estimators.

It is well known that, in the practical application of both the classical linear Kalman
filter and its nonlinear generalizations, numerical problems may arise, which result from



Entropy 2023, 25, 1372 16 of 21

covariance matrices losing the property of positive definiteness. The usual remedy for such
problems is given by expressing the recursion, not directly for the covariance matrices,
but for square roots of these matrices, which is known as square root filtering. Matrix
square roots may be defined either by Cholesky decomposition, or by singular value
decomposition (SVD). Since the latter decomposition represents the more general and
numerically more robust decomposition [34], we have chosen to employ it for our state
estimation algorithm. The resulting algorithm is, to the best our knowledge, the first SVD
variant of the IEKF that has been proposed [26].

When defining a state space model with a linear dynamical equation, the use of an
exponential observation function represents a natural choice, in order to keep the data
non-negative. However, the disadvantage of the exponential function is its exponential
divergence for positive arguments, which may lead to numerical failure of the SVD-IEKF
algorithm. For this reason, we propose a new nonlinear observation function that converges
to zero for negative arguments, just like the exponential function, while converging to a
linear function for positive arguments. This function can be derived by affinely distorting a
(negative) hyperbolic function, such that the vertical axis becomes the desired linear func-
tion for positive arguments. As we have demonstrated in the present paper by analyzing
both simulated and real data, employing the affinely distorted hyperbolic function within
the SVD-IEKF algorithm finally removes the risk of numerical failure.

We emphasize that the proposed algorithm can be applied to any event count time
series that one may wish to analyze under a non-negativity constraint; here, as an example,
we have applied the algorithm to the analysis of time series of the daily number of seizures
of drug-resistant epilepsy patients undergoing treatment with several, simultaneously
administered anti-epileptic drugs. The time-dependent dosages of these drugs are inserted
into the state space model as an external control input. The simultaneous presence of several
drugs, their potential superposition effects, delay effects, and further unknown factors
influencing the daily number of seizures make the objective analysis of seizure count time
series arduous. As we have demonstrated, both in a simulation study and in the analysis of
data from a real patient, state space modeling provides a powerful and flexible framework
for analyzing the effects of anti-epileptic drugs in epilepsy patients. By comparison of
an information criterion, such as the AICc, it can be proven that state space modeling
provides a modeling of the data that is superior to modeling by conventional non-dynamic
regression models.

There exist other model classes that take temporal correlations into account, such as
the dynamic GLM, INAR, and INGARCH model classes. Our approach to modeling event
count time series, as proposed in the present paper, represents an alternative to these model
classes, but we do not intend to replace these classes, but rather provide an additional tool
for the analysis of event count time series. According to a well-known proverb, “all models
are wrong, but some models are useful”. Then, the justification of introducing a new class of
models can come only from their usefulness in practical work, which needs to be explored
by application to real data. Within the likelihood framework, the comparison of different
model classes should be performed by quantifying their performance in predicting the data,
preferably by using an information criterion, such as the AICc. It would be very interesting
to perform a systematic study of the performance of our approach to modeling event
count time series, in comparison with the already available model classes; this, however, is
beyond the scope of the present paper and remains a task for future work.

With respect to the chosen field of application, namely, the analysis of time series of the
daily number of seizures of drug-resistant epilepsy patients, in the future we intend to apply
the presented algorithm to data from larger cohorts of patients. By discriminating between
different types of seizures in the same patient, it is also intended to generalize the analysis
to the case of vector data. Furthermore, the analysis should be generalized such that not
only the effects of individual anti-epileptic drugs are modeled, but also the interaction
effects between pairs, or groups, of drugs. Finally, in order to reduce the computational time
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consumption, work should be devoted to developing more efficient algorithms for fitting
ensembles of nonlinear state space models by numerical maximum-likelihood procedures.
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Abbreviations
The following abbreviations are used in this paper:

AED Anti-epileptic drug
IC-LSS Independent components linear state space
NLSS Nonlinear state space
AR Autoregressive
ARMA Autoregressive moving average
IEKF Iterated extended Kalman filter
SVD Singular value decomposition
CD Cholesky decomposition
BFGS Broyden–Fletcher–Goldfarb–Shanno
AICc corrected Akaike information criterion

Appendix A. Block Diagonal Structure of A and Q

The IC-LSS model discussed in Section 2.1 is based on a block-diagonal structure [35] of
the state transition matrix, A, and the dynamical noise covariance matrix, Q, as follows [27]:

A =


A1 0 0 . . . 0
0 A2 0 . . . 0
...

...
...

. . . 0
0 0 0 . . . AJ

, Q =


Q1 0 0 . . . 0
0 Q2 0 . . . 0
...

...
...

. . . 0
0 0 0 . . . QJ

 (A1)

where J denotes the number of independent components and also represents the number
of blocks. If we assume that the jth block represents an autoregressive moving average
(ARMA) model with model orders (p, p− 1), consisting of an autoregressive part with pa-
rameters a(j)

τ , τ = 1, . . . , p, and a moving average part with parameters b(j)
τ , τ = 0, . . . , p− 1,

the block matrix, Aj, has left companion form, given by [27]
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Aj =



a(j)
1 1 0 . . . 0

a(j)
2 0 1 . . . 0
...

...
...

. . . 0
a(j)

p−1 0 0 . . . 1

a(j)
p 0 0 . . . 0


(A2)

and the block matrix, Qj, has outer product form, given by [27]

Qj =



(b(j)
0 )2 b(j)

0 b(j)
1 . . . b(j)

0 b(j)
q

b(j)
1 b(j)

0 (b(j)
1 )2 . . . b(j)

1 b(j)
q

...
...

...
. . .

b(j)
p−2b(j)

0 b(j)
p−2b(j)

1 . . . b(j)
p−2b(j)

q

b(j)
p−1b(j)

0 b(j)
p−1b(j)

1 . . . (b(j)
p−1)

2


(A3)

We usually employ the scaling convention b(j)
0 = 1 for all blocks.

Appendix B. Iterated Extended Kalman Filter (IEKF) Algorithms

Algorithm A1 Iterated Extended Kalman Filter (IEKF)

Require: Initial state estimate: x0|0
Require: Initial covariance matrix: P0|0

1: for t = 1 to T do

2: Prediction Step:

3: Compute the predicted state estimate: xt|t−1 = Axt−1|t−1 + Buut

4: Compute the predicted state covariance matrix: Pt|t−1 = APt−1|t−1AT + Q

5: Update Step:

6: Initialize iteration: i = 1 , x(0)t|t = xt|t−1

7: repeat

8: Compute the Jacobian matrix of the observation function: H
(i)
t = ∂f

∂x

∣∣∣∣
x(i−1)

t|t

9: Compute the innovation: ν
(i)
t = yt − f

(
x(i−1)

t|t
)

10: Compute the innovation covariance matrix: V
(i)
t = H

(i)
t Pt|t−1

(
H
(i)
t
)T

+ R

11: Compute the Kalman gain: K
(i)
t = Pt|t−1

(
H
(i)
t
)T(

V
(i)
t
)−1

12: Update the state estimate: x(i)t|t = xt|t−1 + K
(i)
t

(
ν
(i)
t −H

(i)
t

(
xt|t−1 − x(i−1)

t|t

))
13: Increment iteration: i = i + 1

14: until Stopping criterion met or maximum number of iterations (im) reached

15: Compute the filtered state covariance matrix: Pt|t =
(
Im −K

(i)
t H

(i)
t
)
Pt|t−1

16: end for
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Algorithm A2 Singular Value Decomposition Iterated Extended Kalman Filter (SVD-IEKF)

Require: Initial state estimate: x0|0
Require: Initial covariance matrix: P0|0 = W0|0Σ2

0|0WT
0|0

Require: Factorized dynamic noise covariance matrix: Q = WQΣ2
QWT

Q

Require: Factorized observation noise covariance matrix: R = WRΣ2
RWT

R

1: for t = 1 to T do

2: Prediction Step:

3: Compute the predicted state estimate: xt|t−1 = Axt−1|t−1 + Buut

4: Compute the predicted state covariance matrix:

U1

[
ΣPt|t−1

0

]
WT

Pt|t−1
=

ΣPt−1|t−1
WT

Pt−1|t−1
AT

ΣQWT
Q


Pt|t−1 = WPt|t−1

Σ2
Pt|t−1

WT
Pt|t−1

5: Update Step:

6: Initialize iteration: i = 1 , x(0)t|t = xt|t−1

7: repeat

8: Compute the Jacobian matrix of the observation function: H
(i)
t = ∂f

∂x

∣∣∣∣
x(i−1)

t|t

9: Compute the innovation: ν
(i)
t = yt − f

(
x(i−1)

t|t
)

10: Compute the innovation covariance matrix:

U2

[
Σ(i)
Vt

0

](
W

(i)
Vt

)T
=

 ΣRWT
R

Σ(i)
Pt|t−1

(
W

(i)
Pt|t−1

)T(
H
(i)
t
)T


V
(i)
t = W

(i)
Vt

(
Σ(i)
Vt

)2(
W

(i)
Vt

)T

11: Compute normalized innovation: ν̂
(i)
t =

(
W

(i)
Vt

)T
ν
(i)
t

12: Compute normalized gain: k
(i)
t = Pt|t−1

(
H
(i)
t
)T

W
(i)
Vt

13: Compute the optimal Kalman gain: K
(i)
t = k

(i)
t
(
Σ(i)
Vt

)−2(
W

(i)
Vt

)T

14: Update the state estimate:

x(i+1)
t|t = xt|t−1 + k

(i)
t
(
Σ(i)
Vt

)−2
(

ν̂
(i)
t −

(
W

(i)
Vt

)T
H
(i)
t (xt|t−1 − x(i)t|t )

15: Increment iteration: i = i + 1

16: until Stopping criterion met or maximum number of iterations (im) reached

17: Compute the filtered state covariance matrix:

U3

[
ΣPt|t

0

]
WT

Pt|t
=

ΣPt|t−1
WT

Pt|t−1

(
Im −K

(i)
t H

(i)
t
)T

ΣRWT
R

(
K
(i)
t
)T


Pt|t = WPt|t Σ

2
Pt|t

WT
Pt|t

18: end for
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Appendix C. Matlab Code for Generating Simulated Data

Listing A1. MATLAB code for generating simulated data

x = zeros(m, n); % state vector according to Equation (3).
x_initial = zeros(m, 1); % initializing sate vector with zero.
k = 1; % parameter defined in Equation (6).
C = [-0.40, 0.95, -0.70, 0.75, 0];
A = [0.5, 0, 0, 0, 0;

0, 0.25, 0, 0, 0;
0, 0, 0.25, 0, 0;
0, 0, 0, 0.9, 1;
0, 0, 0, -0.5, 0];

ε = [zeros(1, u), randn (1), zeros(1, 1)]; % observation noise from
Equation (6).

for(time = 1: T) % Begin Kalman forward loop

external_input = [u_t(:, time:-1:T, 1)' , zeros(1, (m - u))]; %
external input defined in Equation (4)

if t == 1
x(:, t) = A * x_initial + external_input' + ε';

else
x(:, t) = A * x(:, t - 1) + external_input' + ε';

end

for seizure_type = 1:n % for multi -dimensional data
srexpr = sqrt (((C(seizure_type , :) * x(:, t))^2) / 4 + k); %

intermediate variable
y(seizure_type , t) = round ((C(seizure_type , :) * x(:, t)) /

2 + srexpr);
end

end % End Kalman forward loop
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