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Abstract: Optical microcavity billiards are a paradigm of a mesoscopic model system for quantum
chaos. We demonstrate the action and origin of ray-wave correspondence in real and phase space
using far-field emission characteristics and Husimi functions. Whereas universality induced by the
invariant-measure dominated far-field emission is known to be a feature shaping the properties of
many lasing optical microcavities, the situation changes in the presence of sources that we discuss
here. We investigate the source-induced dynamics and the resulting limits of universality while we
find ray-picture results to remain a useful tool in order to understand the wave behaviour of optical
microcavities with sources. We demonstrate the source-induced dynamics in phase space from the
source ignition until a stationary regime is reached comparing results from ray, ray-with-phase, and
wave simulations and explore ray–wave correspondence.

Keywords: microcavity billiards; sources; ray–wave correspondence; phase-space dynamics; Husimi
function; quantum chaos

1. Introduction

Two-dimensional (2D) systems have inspired the field of quantum chaos for many
years [1–3]. The origins of studying the quantum mechanical pendants of classically non-
integrable systems trace back to the 1980s when universality was established as a common
property of very different chaotic systems [4,5], in particular in the energy-level statistics in
the 1980 paper of Casati et al. [4], and a variety of studies have been initiated focusing on
the statistical properties based, e.g., on Random Matrix Theory [6].

The impressive properties of this new class of mesoscopic model systems [7] for both
electrons and photons soon initiated interest in possible applications. Besides the ballistic
quantum dots [3], the optical microcavities [8–14] have received a lot of interest, and lately
also in non-euclidean [15] and Dirac Fermion optics [16]. One practical motivation was
certainly the realization of microcavity lasers with directional emission, and plenty of
solutions were found and investigated [17]. One realization involves deformed microdisk
cavities of various shapes [18], including the Limaçon cavity [19–25]. Besides the experi-
mental verification of the predicted [19] directional and universal, resonance-independent
far-field emission originating from the cavity’s invariant manifold, a remarkable ray–wave
correspondence was seen. While all results were obtained for very different wavelengths
λ—the ray modeling in the λ→ 0-limit, the wave simulation for λ larger than the exper-
imentally relevant values—the agreement between all three approaches was convincing
with slight, interference-inspired deviations between the three curves. Shinohara et al. [22]
complemented this interpretation nicely by showing that averaging over a large number
of resonances (42 in Ref. [22]) improves ray–wave correspondence by averaging out the
resonance-specific features.

The reason for the universality of the observed far-field emission properties of
whispering-gallery (WG)-type modes with high Q-factors is that the so-called natural
measure (or Fresnel-weighted unstable manifold or steady probability distribution) [26]
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determines the emission characteristics. Assuming a light ray to be initially captured by
total internal reflection, it will, in a chaotic cavity, undergo a number of reflections where
this condition remains fulfilled. However, at one point it will be violated and the angle of
incidence χ will cross the critical lines sin χc = ±1/n in phase space (n is refractive index
of the cavity and we assume n0 = 1 outside), and ray splitting occurs with the amount of
light remaining in the cavity determined by Fresnel’s reflection coefficient. The crossing
of the critical line will be ruled by the unstable manifold of the system, weighted by the
Fresnel reflection coefficient for our open optical system. Notice that this quantity describes
the expanding directions along which the light will escape the cavity (actually, in the wave
picture, by evanescent or tunneling escape from high-Q modes). This implies that the
unstable manifold, as an important and central, yet abstract quantity of nonlinear dynamics
is directly accessible and visible in experiments and the corresponding simulations. We
point out that, therefore, simulations of the passive, non-lasing cavity can successfully
describe even lasing cavities as long as mode interactions [27] do not play a role. In terms of
ray picture modeling, the initial conditions are homogeneously distributed in phase space
and the far-field characteristics are recorded when an initial transient regime is lapsed.

In this paper, we will explore another situation in optical microcavities that is in-
duced by the presence of sources (or, similarly, relevant in microlasers with non-uniform
pumping conditions [28,29]). This setting can capture situations where not all initial con-
ditions are homogeneously populated, in contrast to the microlaser case discussed above.
Source-induced phenomena can be relevant, for example, due to a specific distribution of
fluorescent particles, a local pumping scheme, or even due to the coupling of two or more
systems that effectively change the initial conditions to be non-uniform in phase space. The
base element of any source can be described as a point-like emitter.

The paper is organized as follows. We will consider point-like sources and study
their impact on the far-field emission in Section 2. We then investigate the source-initiated
dynamics in phase space and introduce a ray picture extended by the phase information in
Section 3 before we end with a conclusion and summary in Section 4.

2. Optical Microcavity Billiards with Sources

We start our investigation for a Limaçon cavity [19] with the shape given in polar co-
ordinates (r, φ) as r(φ) = R0(1 + ε cos φ) where we set R0 = 1 and choose the deformation
parameter ε = 0.43, such that the phase space of the cavity is known to be almost fully
chaotic. We use Birkhoff coordinates, i.e., the arclength s along the boundary starting at
its intersection with the positive x axis, and the sine of the angle of incidence χ of light
traveling inside the cavity to specify the position in phase space. The far-field angle ϕ f f
is measured to be mathematically positive with respect to the positive x axis. We will
consider TM polarized light (electric field transverse to the resonator plane, i.e. along
the z axis, ~E = Ez~ez), a refractive index n = 3.3, and vary the position xs of the source
along the x axis. We use simulations with the open-source software package meep [30] and
so-called meep units with the velocity of light set to 1, such that frequency f and (vacuum)
wavelength λ are reciprocal to each other, as is the period T = 1/ f . We use the built-in
continuous source function of meep to describe a point-like coherent source that oscillates
as exp (−2πi f t). Such a point-like source can be considered the basic module of any other
source distribution.

Variation of the source position. For a mode at resonance frequency f = 1.2 (correspond-
ing to nkR ≈ 25), the far-field emission depends critically on the source position xs as
is visible in Figure 1. In general, more central source positions relate to more isotropic
emissions, and the far-field emission characteristics of the uniformly pumped cavity can be
completely lost. Similar results were found in a study of graphene and optical billiards in
Ref. [16], where the importance of lensing effects in particular for single-layer graphene
cavities was discussed.
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Figure 1. (a) Amplitude distribution Ez in real space for a mode at resonant frequency f = 1.2 and
source position xs = 0.1 (marked by arrow), and corresponding far-field emission as polar plot ϕ f f .
(b) Same for xs = 1.3. (c) Far-field emission |Ez|2 for source positions xs varied along the x-axis,
revealing a high sensitivity on xs. The black line on the left marks the far-field emission “without
source”, i.e., the initial conditions uniformly distributed in phase space, and far-field data are taken
when a stationary regime with exponential total internal intensity decay was reached, i.e., omitting
the contribution of short rays.

Despite this deviation from the universality seen in the uniform pumping case, ray–
wave correspondence still holds as illustrated in Figure 2 for xs = 1.3. The far-field wave
intensity I = |Ez|2 and the ray-simulated intensities agree reasonably well. In particular,
we find the wave intensity I to be reproduced by the short rays with trajectory lengths l < 3
corresponding to typically very few reflections at the system boundary. In other words,
in the presence of sources, the far field is mainly determined by refractive escape of rays
leaving the source and dwelling of very few reflections in the cavity. This indicates the
relevance of lensing effects when the cavity acts similar to a thick lens. However, longer
rays are needed to establish a semiquantitative agreement with the wave result for all
far-field angles ϕ f f . These long trajectories carry the information of the cavity geometry as
a whole, namely in terms of the unstable manifold.

Variation of the source frequency. It is worthwhile to characterize the far-field sensitivity
against variations in the source frequency, cf. Figure 3. In Figure 3a,b, mode patterns
(amplitude Ez) are shown for two different frequencies f : resonant ( f = 1.2) in Figure 3a
and off-resonant ( f = 1.6) in Figure 3b. The source position is fixed again on the x axis, here
at xs =−0.42 (marked by arrows). While the intra-cavity patterns deviate a lot—as expected
upon a change in wavelength—the emission characteristics are less affected, cf. Figure 3c.
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Figure 2. Far-field emission for source position xs = 1.3. Wave intensity I = |Ez|2 for the resonance
at frequency f = 1.2 (full green line) and for ray-simulated intensities J including the far-field
contribution of short rays only (full blue line) and of all rays (dashed line). Evidently, short rays with
a trajectory length l < 3 contribute significantly to the far-field emission.

Figure 3. Far field emission depending on the source frequency f, while the source position is fixed
at xs = −0.42 (marked by arrow). (a) At the resonance frequency f = 1.2, the real space amplitude
Ez and the far-field emission (polar plot) are shown. (b) An off-resonant frequency f = 1.6 yields a
different mode pattern and a far field that differs in the details, but preserves the generic emission
characteristics towards ϕ f f = 0 and π. (c) Comparison of different source frequencies f confirms
that the details are frequency-dependent, while the overall far-field emission is rather robust and
dominated by the position of the source.
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This result may seem surprising at first glance. However, it can be straightforwardly
interpreted on the basis of ray-wave correspondence. Our starting point is the ray–wave
correspondence for resonant frequencies, as illustrated in Figure 2 and confirmed in nu-
merous other situations. As the naive ray picture does not know about frequencies or
wavelengths, this would suggest no frequency dependence of the far-field emission at all.
Of course, this cannot be correct as we know that the details of the far-field emission will
be resonance-, or more generally, frequency-dependent [22]. This is precisely what can
be seen in Figure 3c. This interpretation is also consistent with the fact that the far-field
patterns are determined by short ray trajectories, i.e., before the formation of resonances
can be expected.

3. Source-Induced Dynamics: Ray–Wave Correspondence in Phase Space

So far, we have discussed the implications of the presence of sources inside billiards for
light, mainly in real space and in terms of far fields, and for the stationary situation. We will
now complement the discussion in phase space, discussing both the Husimi function [31]
and the ray signature of the source-induced dynamics. To this end, we will discuss the
dynamics initiated when a source is turned on and follow it until a stationary state (with
the source constantly emitting) is reached.

We will consider a Limaçon-shaped cavity with an intermediate deformation parame-
ter ε = 0.25 where a rich, mixed-phase space is present [32,33] (see the gray structure in
Figure 4a). We will compare two source positions on the x axis, namely a rather central
position xs = 0.6 and an outer position xs = 1.0, thereby manipulating the excitability of
WG-type modes and trajectories. We choose a source frequency of f = 0.64 and use meep
units as before, such that the period of the oscillation T = 1/ f ≈ 1.56. We will consider
80 time steps per period T and use the time frame number t as our variable of time. The
time to travel across the cavity, i.e., to travel the optical distance 2nR0, is found to be 6.6
in meep units, so it will take about 4.23 T or approximately t = 338 frames (time steps) to
travel the cavity’s diameter.

Initial dynamics. What is the signature of the light emitted from the source? We start our
study in the wave picture and excite a source placed at xs = 0.6 with a (resonant) frequency
of f = 0.64, cf. Figure 5. The real space evolution of the electromagnetic field amplitude Ez
is shown in Figure 5a for t = 186, just before emitted light from the source reaches the far
cavity interface. The corresponding phase–space representation is shown in Figure 5b, and
we use the incoming Husimi function H1

in inside the cavity [31] to characterize its signature
at the interface boundary where we will also take the Poincaré surface of the section. We
see that H1

in contains the signature of light that has reached the cavity boundary at and
around s ≈ 0.

The snapshots in Figure 5c,d are taken about one period T later when all light emitted
from the cavity at t = 0 has reached the boundary. There is a distinct extra signature that
must characterize light emitted from the source at its first reflection at the cavity interface
where the Husimi function H1

in is recorded (see also the yellow line in Figure 4a and the
discussion there).

This signature is discussed in more detail in Figure 6 for two different source positions
and in the wave- and phase-information extended ray picture, respectively. In addition
to the naive ray model considered before, we now include the ray’s phase φp. This phase
changes along the trajectory path according to φp = 2πl/λ, with l denoting the optical
trajectory length traveled. Upon the reflection at the boundary, an additional phase shift
would have to be taken into account; however, we will limit our study to just the time before
the first reflection. Note that the wavelength enters the ray picture via the phase, and thus
resonance-specific properties can, in principle, become accessible within the ray model.

The Husimi functions shown in Figure 6a,b show comparable signatures and reach
higher | sin χ| for the outer source position xs = 1.0 in (c) as a direct geometrical conse-
quence of xs being placed closer to the boundary. Notice that from frame to frame t, the
location of the intensity maxima varies somewhat (not shown), indicating the importance
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of interference effects. This is straightforwardly confirmed qualitatively in Figure 6c,d
where the phase-modulated ray intensity is shown at the first reflection point (in agreement
with the time frames chosen for the Husimi plots) and clearly seen to possess a rather
similar structure.

Figure 4. Dynamics induced by the source represented in phase space for two different source
positions xs = 0.6 in (a,c,e,g) and xs = 1 in (b,d,f,h). In the ray simulation results (a–d), the
Poincaré surface of section for a Limaçon cavity with ε = 0.25 is indicated as gray background.
(a,b) Characteristiics of a homogeneously emitting source at the first boundary reflection. Shown
is the Fresnel-weighted intensity inside the cavity. (c,d) Same as (a,b) but after 30 reflections when
stationarity is reached. In (e–h), the wave-simulation results are visualized in phase space in terms of
the Husimi function H1

in when a stationary regime was reached. The Husimi patterns are evolving
periodically with period approximately T/2, and typical patterns are shown at time frames (e) t = 16,
(f) t = 9, (g) t = 37, and (h) t = 30.
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Figure 5. Initial temporal evolution of an electromagnetic wave emitted from a source with f = 0.64
at xs = 0.6 (marked by arrow in (a)), ε = 0.25. (a) Real-space Ez and (b) phase–space portrait in terms
of the Husimi function H1

in at time frame t = 186, and similarly one period later at t = 272 in (c,d).
Note the extra signature in the center of (d) that can be attributed to the source signature after the
first reflection at the boundary.

Figure 6. Phase–space representation of light emitted from a source in (a,b) wave and (c,d) ray
simulations where the ray picture is extended by the phase information. (a) Husimi function H1

in for
xs = 0.6 and t = 253. (b) H1

in for xs = 1.0 and t = 314. (c) Ray-with-phase simulation of the intensity
at the first reflection point, 20 sources were randomly placed in a square with side length 0.05 around
xs = 0.6 and 2500 rays were started isotropically from each source. (d) Same as (c) for xs = 1.0.

Stationary dynamics. After having discussed the initial source dynamics, we will now
consider the stationary state reached after the transient regime. The results are presented
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in Figure 4, again for the source positions xs = 0.6 (left column) and for xs = 1.0 (right
column). We start our considerations in the naive ray picture (without phase information)
for which we revisit the initial source dynamics in Figure 4a,b. To this end, 10,000 rays
are started uniformly from the point-like source and traced to the first reflection with the
boundary, yielding the yellow curves. We point out that the time needed for the first
reflection point will depend on the starting direction of the ray, especially for non-central xs.
Although the reflection-number based Poincaré map representation will thus differ from
the time frame t-based study used in the wave simulations, it still provides a useful tool
that can be directly superimposed on the Poincaré surface of section (PSOS). The mixed
structure of the PSOS is indicated as the gray background in Figure 4a–d.

In Figure 4c,d, the source has been followed over several reflections at the boundary
until stationarity (i.e., intensity saturation) was reached. The phase–space distribution
of the Fresnel-weighted intensity emitted by the source is indicated in color scale. The
area between the critical lines sin χ = ±1/n carries a lower intensity due to refractive
escape. It is evident that the spread in the phase space depends on the source position—the
closer to the boundary xs is, the larger | sin χ| can be reached. In addition, we see that
with the source positions chosen here, the three-island orbits cannot be excited within a
ray simulation.

The results of wave simulations in the stationary regime (after 50 T) are displayed in
Figure 4e–h. For both xs, we find the pattern of the Husimi function H1

in to periodically
(with about T/2) vary. For each of the evolutions, we pick two characteristic patterns. For
xs = 0.6, we find a typical pattern that represents the source characteristics, cf. Figure 4e.
Another one, cf. Figure 4g, displays intensity structured by the three-island chains. Al-
though these islands cannot be populated in the ray-based counterpart model, it may
well be possible within wave simulations due to a finite wavelength and when taking
semiclassical corrections to the ray picture into account [34–41].

In particular, semiclassical arguments can explain why the intensity maxima in the
Husimi function H1

in seem to be placed at somewhat larger | sin χ| in comparison to the
ray model expectation. In the wave description, the evanescent wave associated with a
WG-type mode will penetrate a distance of the order λ into the outer space. The corrected
ray picture analogue deploys the Goos–Hänchen shift that causes the reflection to take place
at an effective interface [42,43] such that the cavity appears effectively larger. However,
then, the Husimi function is determined at a radius R0 that is too small, thereby making
the associated angle of incidence (somewhat) too large, as illustrated in Ref. [36], and thus
explaining the deviation.

Eventually, for the other source position xs = 1, we illustrate two typical Husimi
patterns in Figure 4f,h. It is evident that now the H1

in reaches larger values | sin χ|, in
agreement with the ray-model expectation. One may speculate about the population of the
four-island orbit in Figure 4f or a mode beating interaction induced by the source. We will
investigate this in further studies.

4. Conclusions

We have investigated optical microcavities in the presence of sources and discussed
and explained source-related (non-)universalities in the ray and wave pictures, and on the
grounds of ray–wave correspondence. We showed that the position of a localized source
crucially influences the properties of the optical microcavity in comparison to the source-
free or uniform situation. These findings can be useful in the context of non-uniformly
pumped microlasers or when light is coupled into an optical microcavity at certain positions,
for example along the boundary.

We found a good agreement between the ray and wave picture results in terms of far
fields and phase–space representations, and identified the signatures of the source in the ray
and wave dynamics. We illustrated that a ray picture extended by the phase information
can improve the agreement by capturing interference effects and introducing a wavelength
into the ray picture. The phase information can also be used to distinguish regular and
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chaotic orbits as presented in Figure 7: a chaotic trajectory can be associated with an
unpredictable phase value at the reflection points, whereas the phase evolves regularly
for a periodic orbit. However, possible source-induced mode (interaction) dynamics [27]
that might be suggested by Figure 4 in the stationary regime is beyond the scope of ray–
wave correspondence.

Figure 7. Phase evolution in a ray picture with phase information taken into account for (a) a regular
orbit (ε = 0.25) and (b) a chaotic trajectory (ε = 0.43).
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