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Abstract: Recent work on hybrid quantum-classical machine learning systems has demonstrated
success in utilizing parameterized quantum circuits (PQCs) to solve the challenging reinforcement
learning (RL) tasks, with provable learning advantages over classical systems, e.g., deep neural
networks. While existing work demonstrates and exploits the strength of PQC-based models, the
design choices of PQC architectures and the interactions between different quantum circuits on
learning tasks are generally underexplored. In this work, we introduce a Multi-objective Evolutionary
Architecture Search framework for parameterized quantum circuits (MEAS-PQC), which uses a
multi-objective genetic algorithm with quantum-specific configurations to perform efficient searching
of optimal PQC architectures. Experimental results show that our method can find architectures
that have superior learning performance on three benchmark RL tasks, and are also optimized for
additional objectives including reductions in quantum noise and model size. Further analysis of
patterns and probability distributions of quantum operations helps identify performance-critical
design choices of hybrid quantum-classical learning systems.

Keywords: quantum computing; quantum machine learning; reinforcement learning; evolutionary
algorithms; multi-objective optimization

1. Introduction

Noisy Intermediate-Scale Quantum (NISQ) technology [1] reveals the potential of
quantum systems to have significant and reliably advantage in solving computing tasks
over classical systems. One of the most encouraging areas of quantum computing research
is hybrid quantum-classical learning systems, which utilizes parameterized quantum
operations together with classical optimization methods to solve the designed learning
tasks. In particular, a standard way to model hybrid systems is to use parameterized
quantum circuits (PQCs) [2]. Recent work has demonstrated that PQC-based systems are
able to handle a variety of supervised and unsupervised tasks such as classification [3–6]
and generative modeling [7–10]. Moreover, some recent work [11,12] further demonstrates
that PQCs can be used to construct parameterized quantum policies to solve more complex
reinforcement learning problems, and shows provable learning advantages in some specific
RL environments over classical methods such as deep neural networks (DNNs).

An essential element of PQC-based systems is the design and structural arrangement
of quantum and classical operations. Prior work [11–13] has shown significant impact
of utilizing some key components, as well as analyzed different design choices through
empirical studies. However, the development of best-performing architectures of hybrid
quantum learning systems still relies on human ingenuity. In classical learning systems,
architecture search methods that aim to automate the process of discovering and evaluating
the architecture of complex systems have been extensively explored in the past decade,
e.g., neural architecture search (NAS) [14]. In the context of quantum computing, while
recent work [15] made early attempts to apply evolutionary NAS methods [16] in searching
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for PQC architectures, their method does not fully consider the interactions between
quantum gates, which results in much complexity and computational redundancy. Overall,
automated search and optimization of architectures of hybrid quantum learning systems
have not been sufficiently explored.

In this work, we aim to explore using multi-objective genetic algorithms [17] to
automatically design the architecture of hybrid quantum-classical learning systems that can
solve complex RL problems. We start by adopting the ideas of successful approaches in NAS
and QAS using genetic algorithms [15,16], which have more flexible architecture search
spaces and require less prior knowledge than other gradient-based approaches such as RL.
We propose MEAS-PQC, a Multi-objective Evolutionary Architecture Search framework for
PQC-based quantum learning models, which uses a multi-objective genetic algorithm with
quantum-specific configurations to perform efficient searching of optimal PQC architectures.
More specifically, our method improves prior work [15] in three ways: (1) we adopt the
Uniform Mutation by Addition and Deletion (UMAD [18]) mutation operator to enable
searching for architectures with variable lengths; (2) our method specifically considers
equivalent quantum operations in the architecture and eliminates unnecessary redundancy;
(3) we further extend quantum architecture search to a more practical setting by forming
a multi-objective optimization problem, which considers specific factors in real-world
quantum computing, e.g., interactions between quantum gates and quantum noise, in
addition to learning performance.

To validate the proposed method, we implement our method on three benchmark RL
environments from OpenAI Gym [19], which has been extensively used in RL research.
The experiments consider both single- and multi-objective settings. For single-objective,
our method outperforms prior work by a significant margin on learning performance, and
we also perform qualitative analysis on the results to further interpret and discover the
essential design choices of PQC-based systems. For multi-objective, we observe that our
method is able to search for architectures that have good learning performance as well as
meet computational constraints such as quantum noise and model size.

To summarize, the contributions of this work are two folds: (1) we propose MEAS-PQC,
which improves prior work [15] by adding performance-critical components including
UMAD mutation and simplification of equivalent quantum gates; (2) we form quantum
architecture search as a multi-objective optimization problem, and shows that our method
can search for PQC architectures that not only have good learning performance, but are
also more efficient and robust to potential quantum noise.

2. Preliminaries and Related Work

In this section, we introduce some basic concepts of quantum computation that are
closely related to this work, and give a detailed description of parameterized quantum
circuits and other related work.

2.1. Quantum Computation Preliminaries

A complex Hilbert space of 2n dimensions usually serves a general representation
of a multi-qubit quantum system with n qubits. The quantum state of the system is
mathematically written as a vector |ψ〉, which has unit norm 〈ψ|ψ〉 = 1. 〈ψ| is the conjugate
transpose and 〈ψ|ψ〉 represents the inner-product under the bra-ket notation. We represent
the computational basis states of a multi-qubit system as tensor-products of single-qubit

basis states. For example, a two-qubit state |01〉 = |0〉 ⊗ |1〉, where |0〉 =
[

1
0

]
and |1〉 =

[
0
1

]
are two single-qubit basis states.

A quantum gate is mathematically represented as a unitary operator U acting on
qubits. In quantum machine learning, a few common quantum gates are extensively used,
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e.g., the single-qubit rotation operators Rx, Ry, Rz. Given a rotation angle θ, the matrix
representations of rotation operators are

Rx(θ) =

[
cos θ

2 -i sin θ
2

−i sin θ
2 cos θ

2

]
, Ry(θ) =

[
cos θ

2 -sin θ
2

sin θ
2 cos θ

2

]
, Rz(θ) =

[
e−i θ

2 0
0 ei θ

2

]
. (1)

An entangled state (or entanglement) is a quantum state of a composite system that can
not be written as a tensor-product of the states of its components. An entanglement can
be created by applying appropriate 2-qubit gates. In this work, we mainly use controlled-
Pauli-Z gates to generate entanglement. The Controlled-Z gate (CZ) is a symmetric gate,

CZ = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Z (2)

A projective measurement of quantum states is described by an observable, M, which
is a Hermitian operator on the state space of the quantum system being observed. The
observable has a spectral decomposition

M = ∑
m

mPm, (3)

where Pm is the projector onto the eigenspace of M with eigenvalue m. Upon measuring
the state |ψ〉, the probability of getting result m is given by

p(m) = 〈ψ|Pm|ψ〉, (4)

and the expectation value of the measurement is

E(M) = ∑
m

m · p(m) = 〈ψ|M|ψ〉. (5)

For a more detailed introduction to quantum computation and its basic concepts, we
refer the readers to Nielsen and Chuang [20].

2.2. Parameterized Quantum Circuits

Given a fixed n-qubit system, a parameterized quantum circuit (PQC) is defined
by a unitary operation U(s, θ) that acts on the current quantum states s considering the
trainable parameters θ. In this work, we mainly consider two types of PQCs: variational
PQCs (V-PQCs) [2,21] and data-encoding PQCs (D-PQCs) [13,22], which are widely used
in quantum machine learning. The V-PQCs are composed of single-qubit rotations Rx, Ry,
Rz with the rotation angles as trainable parameters. Similar to classical learning models,
the PQC parameters can also be optimized with gradient-based algorithms. The task of
learning is mathematically expressed as the minimization of a defined objective function
L(θ) with respect to the parameter θ of a V-PQC. The gradient descent algorithm updates θ
towards the direction of descending the loss

θ ← θ − η∇θ L, (6)

where η is the learning rate and ∇θ L is the gradient vector. The gradient can be estimated
through a finite difference of partial derivatives

∂L
∂θi
≈ L(θ + ∆ei)− L(θ − ∆ei)

2∆
(7)

where ∆ is a small constant and ei is the Cartesian unit vector in the i direction.
The D-PQCs have a similar structure with rotations, but the angles are the input

data d scaled by a trainable parameter λ. The input data are usually normalized to have
similar scales. For example, in our experiments, the input data are state variables in the
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RL environments, and each of them is normalized according to its min-max values. The
structures of both PQCs are depicted in Figure 1, which we describe in detail later in
Section 3.2.

x1(θ) x2 x3(d, λ) x0(ψ)

|0〉0 Rx(θ0,0) Ry(θ0,1) Rz(θ0,2) • • Rx(σ(λ0d0))

x1(ψ)

|0〉1 Rx(θ1,0) Ry(θ1,1) Rz(θ1,2) • • Rx(σ(λ1d1))

|0〉2 Rx(θ2,0) Ry(θ2,1) Rz(θ2,2) • • Rx(σ(λ2d2))

|0〉3 Rx(θ3,0) Ry(θ3,1) Rz(θ3,2) • • Rx(σ(λ3d3))

Figure 1. Illustration of a simple 4-qubit architecture in the MEAS-PQC search space. The architecture
(with genome encoding 1− 2− 3− 0) is composed of 4 operations: (1) Variational PQC (x1) performs
rotations on each qubits according to parameters θ; (2) Entanglement (x2) performs circular entan-
glement to all the qubits; (3) Data-encoding PQC (x3) performs rotations on each qubit according to
the input data d, scaling parameter λ, and activation function σ; (4) Measurement (x0) adds another
Variational PQC (x1) and performs measurement to obtain the observable values.

Recent work [11] proposes to use an alternating-layered architecture [13,22] to im-
plement parameterized quantum policies for RL, which basically applies an alternation
of V-PQC (followed by an entanglement) and D-PQC till the target depth, while this
architecture is simple and effective, it is obvious to see that this general design can be
easily modified and probably improved by changing the placement of its components. In
this work, we aim to optimize the design of such PQC-based systems with architecture
search methods.

2.3. Quantum Architecture Search

Early research [23] has shown the usage of genetic programming to solve specific
quantum computing problems from an evolutionary perspective. Common architecture
search approaches, such as greedy algorithms [24,25], evolutionary algorithms [26–29],
reinforcement learning [30,31], and gradient-based learning [32] have also been attempted
to solve tasks such as quantum control, variational quantum eigensolver, quantum error
mitigation, and entanglement purification. However, most of these approaches target opti-
mizing either specific pure quantum circuits or single-qubit quantum operations, instead
of more complex multi-qubit hybrid systems.

More recently, a few approaches have been proposed to optimize the architectures
involving parameterized quantum circuits. Grimsley et al. [24] proposed a method that
iteratively adds parameterized gates and re-optimizes the circuit using gradient descent.
Ostaszewski et al. [33] proposed an energy-based searching method for optimizing both
the structure and parameters for single-qubit gates and demonstrated its performance on
a variational quantum eigensolver. Ding and Spector [15] proposed EQAS-PQC, which
applies existing evolutionary NAS method to perform search on PQC architectures, while
EQAS-PQC shows promising and encouraging results, their method suffers considerable
computational redundancy in the searched architectures. In this work, we take steps
further and propose a more general multi-objective architecture search framework that is
specialized for hybrid quantum-classical systems.

3. Method

We propose MEAS-PQC, an evolutionary framework that uses multi-objective ge-
netic algorithms to perform quantum architecture search for PQC-based hybrid quantum-
classical systems. In this section, we describe the major components of MEAS-PQC in-



Entropy 2023, 25, 93 5 of 13

cluding the genetic algorithm, encoding scheme, search process, and the multi-objective
optimization framework in detail.

3.1. Genetic Algorithm for Quantum Architecture Search

Genetic algorithms (GAs) refer to a class of population-based computational paradigms,
which simulate the natural evolution process to evolve programs by using artificial genetic
operations (e.g., crossover and mutation) to optimize fitness or objective functions. It has
been successfully adopted in recent work for optimizing complex systems such as neural
networks [16,34,35]. In the perspective of GAs, we view the architectures of quantum cir-
cuits as phenotypes, and define representations as genotypes on which the genetic operations
can be easily applied. Similar to many other genetic algorithms, MEAS-PQC iteratively
generates a population of candidates (architectures) through genetic operations on the
given parents, and selects parents for the next generation based on fitness evaluation.

In this work, we adopt the Non-Dominated Sorting Genetic Algorithm II (NSGA-
II) [36] to optimize the search process. NSGA-II is an evolutionary algorithm that has
been successfully employed in various single- and multi-objective optimization problems
including NAS [16]. The algorithm has the following procedures:

1. Perform a non-dominated sorting in the population of quantum architectures and
classify them according to an ascending level of non-domination based on objectives.

2. Use crowding distance, which is related to the density of solutions with similar
objective metrics, to perform Crowding-sort that makes the population less dense.

3. Generate offspring using crowded tournament selection, then apply genetic operators
such as mutation and crossover.

In the context of this work, for single-objective optimization, MEAS-PQC generates a
population of PQC architectures in the search space, and iteratively selects the ones with
good learning performance. For multi-objective, it uses an elitist principle to select the
non-dominated candidates using the above procedure. The benefit of using NSGA-II is
that it automatically selects a good set of quantum architectures while balancing different
objectives. For multi-objective optimization, one naive way is to sum all the objectives
numerically, which requires to carefully weigh different objectives to avoid dominance of
objectives that have large value scale. Instead, our method does not need to perform such
tuning, which is more efficient and robust.

3.2. Encoding Scheme and Search Space

An encoding scheme is the interface for abstracting the architectures to genomes,
where the genes are representations for different quantum operations. We follow the
general encoding scheme as proposed in Ding and Spector [15], which consists of some
basic functional quantum circuits on a single qubit or multiple qubits that has been widely
adopted in prior work [11]. An illustration of a simple PQC architecture in the search
space is depicted in Figure 1. More specifically, we define four basic operation encodings
x = {x0, x1, x2, x3}, and the corresponding genes are represented as integers {0, 1, 2, 3}.
Given a fixed n-qubit state, we define the following operations:

• x1: Variational PQC—A circuit with single-qubit rotations Rx, Ry, Rz (Equation (1))
performed on each qubit, with the rotation angles as trainable parameters. For gen-
erality, we consider qubit rotation in 3-dimensional space (i.e., applying Rx, Ry, Rz)
for all the qubits. This operator is used to change the qubit states based on the
trainable parameters.

• x2: Entanglement—A circuit that performs circular entanglement to all the qubits by
applying one or multiple controlled-Z gates (Equation (2)). In this work, we only
consider circular entanglement, which has been widely used in prior studies.

• x3: Data-encoding PQC—A circuit with single-qubit rotations Rx(θ) (Equation (1))
performed on each qubit, with the rotation angle θ being the input data d scaled by
trainable parameters λ,

θ = σ(λd) (8)
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where σ(·) is the activation function. Similar to x1, this operator is also used to change
the qubit states, but based on scaled/transformed input values, which is how the
input data takes effect.
While prior work Ding and Spector [15] uses linear activation, we propose to use
non-linear activations such as TANH to allow effective stacks of consecutive x3 circuits,
since linear activation leads to multiple consecutive rotations being equivalent to a
single rotation (Equation (11)).

• x0: Measurement—A Variational PQC (x1) with trainable parameters followed by
measurement to obtain the qubit observables. The outcome is a binary value for each
qubit with different probabilities. The outputs are computed by a linear weighting
of the observables by another set of trainable parameters for each output, with op-
tional activation functions, e.g., SOFTMAX for action probabilities. The architecture
encoding/decoding is terminated when approaching x0.

The search space of MEAS-PQC depends on the maximal length of the genomes. Since
the encoding will terminate when approaching to x0, all the genomes will have only one
x0 at the end. So the search space is the sum of possible operations (except x0) for all the
possible lengths less than the maximum length. Given a maximum length of the genomes
n, the search space of our method is

Ωx,n =
n

∑
i=1

(|x| − 1)i−1 − K (9)

where K is the number of duplicate genomes that can be decoded to equivalent architectures,
which is described in detail in the following section.

3.3. Evolutionary Quantum Architecture Search

MEAS-PQC is proposed to generate diverse sequential combinations of quantum op-
erators and iteratively search for good candidates with respect to the objectives. The search
process is an evolutionary algorithm, and we elaborate on the following key components:

Mutation. To efficiently scan the search space for better genomes, we use Uniform
Mutation by Addition and Deletion (UMAD [18]). UMAD is a mutation method that
performs addition and deletion of genes separately. It has shown superior performance in
many evolutionary computing applications such as program synthesis. For each mutation
operation, UMAD deletes/adds genes to the genome controlled by addition/deletion rate r.
Given genome of length l, there are l positions for deletion and l + 1 positions for addition
(including start and end). We perform size-neutral UMAD with

rdel = 1/l, radd = 1/(l + 1) (10)

so that the expected number of added/deleted genes is 1 after each mutation.
Comparing to traditional mutation operators, such as polynomial mutation that has

been used in prior QAS work [15], UMAD has two major advantages. First, the traditional
mutation operator replaces a randomly chosen gene with a new, randomly generated gene,
and thus the length of genome does not change. In our case, we expect the algorithm to
search for architectures with different lengths based on the parent, which can be achieved
by UMAD. Secondly, since UMAD dissociates the additions from the deletions, it can thus
provide more paths through the search space from a parent to a descendant, especially
when specific genes are essential to the performance [18].

Equivalence of Quantum Operators. It is worth noting that some architectures in the
search space are computationally equivalent, as some quantum operations can be linearly
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combined. More specifically, given two rotation operators on the same axis Rx(θ1), Rx(θ2)
(x-axis for instance), from Equation (1), we can derive that

Rx(θ1) · Rx(θ2) =

[
cos θ1

2 cos θ2
2 − sin θ1

2 sin θ1
2 -i cos θ1

2 sin θ2
2 − i cos θ2

2 sin θ1
2

−i cos θ1
2 sin θ2

2 − i cos θ2
2 sin θ1

2 cos θ1
2 cos θ2

2 − sin θ1
2 sin θ1

2

]
. (11)

Let θ3 = θ1 + θ2, we have Rx(θ3) = Rx(θ1) · Rx(θ2). In other words, two consecutive
rotations can be equivalently replaced by one rotation. As a result, if the genome has two
or more consecutive x1, we can reduce the genome by keeping only one x1.

Similarly, given Equation (2), we have

CZ · CZ =

[
I 0
0 I

]
, (12)

which means two consecutive x2 becomes actually identity, which can be safely removed
from the genome. We perform duplicate elimination at each generation based on these
equivalence of quantum operators to avoid the redundancy in the population.

3.4. Multi-objective Optimization for Quantum-Classical Systems

In this work, we consider three objectives for PQC-based learning systems: learning
performance, quantum noise, and model size. First, the main objective is the learning
performance. For each generation, we decode the population to different architectures, and
use the architectures to construct PQC policies for the RL agents. The learning performance
is computed as the average episode reward in the target RL environment to represent the
area under the learning curve.

We also consider two other objectives that are essential to real-world applications
of quantum systems: quantum noise and model size. Quantum noise usually refers
to unexpected (and typically unwanted) random variation due to the discrete nature of
photons [37]. The effect of quantum noise that occurs throughout a computation process can
be quite complex, as there are many potential causes, e.g., thermal fluctuations, mechanical
vibrations. While some recent work [38] reported the system-wide Pauli and measurement
errors on specific quantum hardware regarding different numbers of qubits, the errors of
different quantum gates and operations have not been found in past empirical studies. As a
result, given no knowledge of the actual quantum hardware, we propose a rough measure
of the theoretical quantum noise in PQC based systems.

Given a system with n qubits in the MEAS-PQC search space with operations xi,
i ∈ 0, 1, 2, 3, we define the system-level noise

∆ = n · (3 ∑
i=0,1

α1 · #xi + 2α2 · #x2 + α3 · #x3). (13)

In other words, we assume that the total quantum noise is proportion to the total
number of quantum gates operating on any qubit. For this work, we take an artificial
setting of αi = 1, i ∈ 1, 2, 3, meaning different gates are considered to have the same level of
quantum noise. Notably, this setting can be further refined for specific quantum hardware.

For any parameterized learning models, model size, or number of parameters, is
always an important factor that is closely related to computation cost, memory, storage,
and other computation-related requirements. For our method, we also calculate the total
number of parameters as

N = n · (3 · ∑
i=0,1

#xi + #x3). (14)

Note that since the search space increases exponentially to the maximum length of the
architecture (Equation (9)), it is important to add penalty to the model size when searching
for PQC architectures.
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4. Experiments

In this section, we describe the implementation details and experimental results of
MEAS-PQC on the benchmark RL environments regarding both single- and multi-objective
optimization. We also compare our method to prior work to demonstrate the advan-
tage of it against commonly-used alternating-layer PQC architectures (SOFTMAX-PQC by
Jerbi et al. [11]) and classic genetic algorithms (EQAS-PQC by Ding and Spector [15]).

4.1. RL Environments

In this work, we consider three classical RL benchmark environments from the OpenAI
Gym [19]: CartPole, MountainCar, and Acrobot, which have been widely used in RL
research, including prior work on quantum RL [11,12,15]. The CartPole task is to prevent
the pole from falling over by controlling the cart. For MountainCar, the goal is to drive
up the mountain by driving back and forth to build up momentum. Acrobot refers to
a swing-up task, in which the system must use the elbow (or waist) torque to move the
system into a vertical configuration then balance. Detailed description can be found in
Brockman et al. [19].

The specifications for RL environments are presented in Table 1, where the reward is
the step reward and γ is the discount factor for future rewards. We follow prior work to
use a single qubit to represent each state variable, while it is hard to interpret the meaning
of qubit states, the D-PQC rotates the qubit based on the value of the state variable. In the
scope of this work, we do not further optimize the number of qubits as a hyperparameter,
but it can certainly be done with the proposed method, by including the size of qubits as a
variable in the search space.

Table 1. RL environment specifications and hyperpameters. (*: The reward function of MountainCar-
v0 has been modified from the standard version in OpenAI Gym, following the practices in
Jerbi et al. [11], Duan et al. [39]).

Environment # States/Qubits # Actions Reward γ Horizon Episodes

CartPole-v1 4 2 +1 1.0 500 600
MountainCar-v0 2 3 −1 + height ∗ 1.0 200 1200

Acrobot-v1 6 3 −1 1.0 500 1200

Environment Learning Rates (αθ, αw, αλ) Observables Value-Function Baselines

CartPole-v1 0.01, 0.1, 0.1 [Z0Z1Z2Z3] None
MountainCar-v0 0.01, 0.1, 0.01 [Z0, Z0Z1, Z1] Linear baseline [39]

Acrobot-v1 0.01, 0.1, 0.01 [Z0, · · · , Z5] Linear baseline [39]

4.2. Implementation Details

For all the experiments, we perform quantum computation via noiseless simulation.
The quantum circuits are implemented using Cirq [40] and TensorFlow Quantum [41]. The
main search process is implemented using the pymoo [42] framework. Other specifications
and hyper-parameters for architecture search and RL training are described as follows.

Architecture Search. MEAS-PQC uses NSGA-II with a population size of 30 and
runs for 50 generations. The maximum length of architectures is set to 20, i.e., the largest
architecture will have 20 consecutive operations varying from x1 to x3, followed by mea-
surement x0. For each generation, we evaluate the learning performance of the population
by running 5 trials in the RL environments with a reduced number of episodes to a factor
of 0.5, which improves the efficiency of evolution. We also compute the estimation of
quantum noise and computational cost as described in Section 3.4. For the final results, we
evaluate the architectures produced by our method as well as prior work for 20 trials in
order to reduce the variance caused by inevitable failure cases due to bad initialization of
parameters and environment states.

RL training during search. We set the hyperparameters such as learning rates and
observables following the general practice in Jerbi et al. [11], Ding and Spector [15], which
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are also summarized in Table 1. All the agents are trained using REINFORCE [43], which is
a basic Monte Carlo policy gradient algorithm. We apply the value-function baseline [44]
in MountainCar to stabilize the Monte Carlo process, which has been commonly used in
recent RL methods [39].

Time Complexity Analysis. Since the search runs for 50 generations with a population
size of 30, and we reduced the number of episodes to a factor of 0.5, the theoretical time
complexity upper bound of the search process is 750× the runtime of training one single
PQC model. In practice, we find our method takes only around 200× the cost of training an
alternating-layer PQC, due to the following factors: (1) a reduced number of episodes does
not affect the evaluation for selection in GAs but can significantly reduce the training time,
because later episodes are usually close to the optimal solution, meaning the RL agents will
likely keep running for a longer period; (2) some of the architectures in the search space are
either too small or not effective, taking much less time to train and evaluate.

We also use parallelization in the search process, which further reduces the clock time
to around 40× training a single alternating-layer PQC, i.e., around 2 days on a 64-core
machine. More specifically, for each generation, all the candidate architectures are trained
and evaluated simultaneously. All the experiments were run on a computing cluster with
up to 64 cores per job. The total estimated compute time of all the experiments in this work
is 30,000 CPU hours.

4.3. Single-Objective Results

First, we evaluate the learning performance of the proposed MEAS-PQC by training
with a single objective of average rewards. The purpose of this experiment is to show the
effectiveness of variable-length genome representation in MEAS-PQC by using UMAD.
We compute and visualize the average learning performance over 20 trials of the best-
performing architectures searched by MEAS-PQC and compare to recent work (EQAS-
PQC [15] and SOFTMAX-PQC [11]). To ensure a fair comparison, for SOFTMAX-PQC, we
use the depth of 5, resulting in an architecture with length 16, which is greater than the
resulting architectures searched by MEAS-PQC for all the environments. The learning
performance is represented as the area under the learning curve, which is identical to the
average collected reward. As shown in Figure 2, we can see that our method is able to find
PQC architectures that outperform both EQAS-PQC and the standard alternating-layer
PQC by a significant margin. While the final rewards may converge to optimum for all
the methods (especially for easy RL environments like CartPole), the PQC architectures
searched by our method is able to learn much quicker in early episodes.

Figure 2. Learning performance on benchmark RL environments. We plot the learning curves
(smoothed by a temporal window of 10 episodes) averaged over 20 trials of the resulting MEAS-PQC
architecture compared against EQAS-PQC [15] and SOFTMAX-PQC [11] on three benchmark RL
environments. The shaded areas represent the standard deviation of the average collected reward.



Entropy 2023, 25, 93 10 of 13

4.4. Multi-Objective Results

In Section 3.4, we propose three objectives: learning performance, quantum noise, and
model size. Given the objective functions, we test the proposed method under different
multi-objective settings. More specifically, 1-obj is optimizing using only the learning
performance (average reward); 2-obj is optimizing both learning performance and quantum
noise; 3-obj is optimizing all three objectives. The results are shown in Table 2.

Table 2. Multi-objective Evaluation. For each method, we evaluate the performance based on the three
objectives: learning performance, quantum noise, and computation cost, as described in Section 3.4.
The results show that, with multi-objective optimization, MEAS can produce architectures with less
quantum noise and computation cost, while still maintaining superior learning performance.

Environment Objectives SOFTMAX-PQC [11] EQAS-PQC [15]
MEAS-PQC (Ours)

1-obj 2-obj 3-obj

CartPole
Avg. Reward 271.0 ± 78.8 317.6 ± 67.7 349.8 ± 71.3 351.6 ± 64.8 342.3 ± 76.2

Quantum noise 30 20 25 17 15
Model size 20 12 19 13 13

MountainCar
Avg. Reward −126.6 ± 33.4 −119.5 ± 32.8 −108.2 ± 25.8 −110.7 ± 21.4 −111.3 ± 25.2

Quantum noise 30 21 20 14 17
Model size 20 13 14 8 11

Acrobot
Avg. Reward −353.0 ± 93.7 −328.5 ± 74.6 −280.7 ± 79.3 −283.4 ± 78.6 −289.3 ± 75.5

Quantum noise 30 17 22 19 15
Model size 20 13 16 11 11

We can observe that first, the proposed MEAS-PQC (1-obj) outperforms other meth-
ods by a significant margin with architectures that have less or comparable quantum
noise and model size. For different multi-objective settings, we can observe that both
MEAS-PQC (2-obj) and MEAS-PQC (3-obj) have reduced quantum noise and model size
comparing to MEAS-PQC (1-obj), while maintaining similar performance. By using multi-
objective optimization, the proposed method is able to search for architectures not only
have good learning performance, but also optimized for real-world computation needs
such as quantum-noise tolerance and model size.

4.5. Pattern Analysis in Quantum Architectures

To further interpret the results and discover the performance-critical design choices of
PQCs as opposed to the commonly-used alternating-layer architecture, we perform quali-
tative analysis on the top-performing architectures searched by MEAS-PQC. We perform
pattern mining on the architectures and calculate the frequency of patterns with different
lengths of 2, 3, 4, and 5. The results are shown in Table 3, and we can observe that consecu-
tive x3 and alternating x1, x2 are the most common patterns, which indicates that there may
exist essential substructures of quantum circuits that lead to good learning performance.

In addition, we also calculate and visualize the probability distribution of each quan-
tum operation over the positions in the architecture, as shown in Figure 3. We can observe
that the V-PQC has a similar frequency as entanglement, which aligns with the alternating-
layer design. However, the frequency of D-PQC has an obvious decreasing trend, indicating
that it is better to have more Data-encoding PQCs at the beginning of the architecture.
This finding further indicates that more classical computation is likely to be needed in the
shallow part of the hybrid quantum learning models.
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Table 3. Pattern frequency in top-performing PQC architectures. We select 30 top-performing
architectures searched by MEAS-PQC (10 for each RL environment), and calculate the frequency of
patterns with different lengths. We can observe that consecutive x3 and alternating x1, x2 are the most
common patterns.

len-2 len-3 len-4 len-5

Pattern Freq. Pattern Freq. Pattern Freq. Pattern Freq.

(3, 3) 0.282 (3, 3, 3) 0.213 (3, 3, 3, 3) 0.122 (1, 2, 1, 2, 1) 0.087
(2, 1) 0.245 (1, 2, 1) 0.184 (2, 1, 2, 1) 0.122 (1, 3, 3, 3, 3) 0.075
(1, 2) 0.205 (2, 1, 2) 0.142 (1, 2, 1, 2) 0.102 (2, 1, 2, 1, 2) 0.069
(1, 3) 0.099 (2, 1, 3) 0.067 (1, 3, 3, 3) 0.068 (3, 3, 3, 3, 2) 0.064
(3, 2) 0.066 (3, 2, 1) 0.059 (3, 3, 3, 1) 0.063 (3, 3, 3, 3, 1) 0.064

Figure 3. Probability distribution of quantum operations over positions in top-performing PQC
architectures. We select 30 top-performing architectures searched by MEAS-PQC (10 for each RL
environment), and visualize the probability distributions of each operation over its positions.

5. Discussion of Limitations and Broader Impacts

There are several limitations to our work. First, due to framework constraints, all
the experiments are conducted using a simulation backend, and the quantum noise and
computation cost are evaluated based on the proposed theoretical metrics. Second, for gen-
erality, this work considers genome abstractions for more structural quantum operations,
e.g., qubit rotation in 3-dimensional space and circular entanglement. It is easy to extend
our work to have a much larger search space by using single-dimensional rotations and
partial entanglement, and we look forward to exploring these extensions in future work.
The primary goal of this work is to show that the proposed method can automate and
improve the macro architecture design of PQC-based hybrid quantum-classical learning
systems, with a fair comparison to prior work.

In general, we expect our work to have positive societal impacts. While prototyped in
a simulated environment, the proposed method could be beneficial to near-term quantum
computing applications, especially quantum RL. Since modern RL tasks usually require
huge amounts of computation, our method may provide significant computational advan-
tages regarding both time and energy consumption. Our work further considers constraints
such as quantum noise and model size, which could make the proposed method more
pragmatic for real-world applications.

On the other hand, like other recent work in RL and machine learning research in
general, our work could have negative societal impacts. Concerns such as whether RL
applications will have positive impact on the society are naturally inherited by our work.
More specifically for quantum RL, while we made an effort to explain the results, the
overall interpretability of quantum systems is still not as good as that of many classical
systems, which may lead to negative consequences. Moreover, the requirement for quantum
computing hardware to obtain computational benefits may increase inequality because of
unequal access to quantum computing resources.
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6. Conclusions

In this work, we propose MEAS-PQC, a multi-objective evolutionary quantum ar-
chitecture search framework for hybrid quantum learning systems. MEAS-PQC uses a
population-based genetic algorithm with UMAD and quantum-specific configurations to
evolve PQC architectures by exploring the search space of quantum operations. Experi-
mental results show that our method can significantly improve the learning performance of
PQC-based systems in solving benchmark reinforcement learning problems. The results on
multi-objective optimization further show that our method can search for architectures that
have good learning performance and are also optimized for reduction in quantum noise
and model size. We also perform analysis to extract and interpret the performance-critical
architecture design choices. In future work, we expect to apply our method on real quan-
tum hardware and use hardware-specific metrics for objectives to show the performance in
a more pragmatic setting.
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