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Abstract: Few-electron states confined in quantum-dot arrays are key objects in quantum computing.
The discrimination between these states is essential for the readout of a (multi-)qubit state, and can be
achieved through a measurement of the quantum capacitance within the gate-reflectometry approach.
For a system controlled by several gates, the dependence of the measured capacitance on the direction
of the oscillations in the voltage space is captured by the quantum capacitance matrix. Herein, we
apply this tool to study a double quantum dot coupled to three gates, which enable the tuning of
both the bias and the tunneling between the two dots. Analytical solutions for the two-electron case
are derived within a Hubbard model, showing the overall dependence of the quantum capacitance
matrix on the applied gate voltages. In particular, we investigate the role of the tunneling gate and
reveal the possibility of exploiting interdot coherences in addition to charge displacements between
the dots. Our results can be directly applied to double-dot experimental setups, and pave the way for
further applications to larger arrays of quantum dots.

Keywords: quantum capacitance; quantum dots; quantum state discrimination

1. Introduction

Semiconductor quantum dots (QDs) populated by charge carriers (electron or holes)
are among the most studied systems for quantum computing [1–3]. A set of QDs, such as a
QD array [4], is coupled to a classical circuit through a set of voltage gates [5], by means of
which the experimenter can manipulate and measure the quantum state of the confined
particles. In particular, the qubit readout can be efficiently performed within the gate reflec-
tometry scheme, exploiting the capacitive coupling between the dots and the neighboring
metal gates. The readout is performed by applying small voltage oscillations to one or
more gates, and by estimating—from the reflected signal—the state-dependent change
in the impedance of the resonant circuit [6–10]. When the frequency of the oscillation is
slower than the charge carriers’ response to the varying potential (adiabatic regime), the
impedance contributed by the QD(s) has a capacitive character [11]. In order to readout
with high fidelity the state of particles in the dot, it is thus crucial to identify the regions in
parameter space where such quantum capacitance (QC) presents large and state-dependent
values. Typically, the largest values of the QC are achieved at the working points corre-
sponding to transitions between different charge-stability regions, which correspond to
voltage domains where the occupations of the QDs are relatively stable. At the boundaries
between two such regions, the interplay between quantum tunneling on the one hand and
QD potentials and Coulomb interactions on the other induces significant fluctuations in
the QD occupations [12–15]. This can and has been exploited to implement the dispersive
readout of spin qubits [16–23] and, more generally, for quantum-state discrimination [24].

In the adiabatic regime and in the presence of a single gate voltage V, the QC is related
to the second derivative with respect to V of the relevant energy eigenvalue [25–27]. When
M > 1 gates are coupled to the system, the energy depends on M distinct voltage variables.
This opens novel possibilities for the gate-reflectometry readout. The measured quantity,
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in fact, depends both on the working point in the M-dimensional voltage domain and on
the coordinated oscillation applied to the gates, which identifies a probing direction in the
same domain [5]. Specifying a probing direction amounts to fixing the relation between
the oscillating voltages applied to the M gates during the measurement. Essentially, the
QC peaks (for the given values of the applied voltages) represent suitable working points
for detecting the quantum capacitance and, through its experimental estimate, inferring
the quantum state. It is important, therefore, to have a theoretical knowledge of how the
applicable gates determine the working points where the QC peaks are located, and how
they can modulate the heights and widths of such peaks. In fact, as shown below, there are
peaks in the QC that are not related to charge displacements between the dots, but rather
to other, genuinely quantum features, such as the tunneling (interdot) coherences.

From a theoretical point of view, the multi-gate control of a nanostructure can be
described in terms of a quantum capacitance matrix (QCM), corresponding to the Hessian
matrix of an eigenenergy with respect to the gate voltages [28]. This formalism allows
one to determine—for each given working point—the largest possible QC, defined by the
largest-modulus eigenvalue. This is accessed by probing the QD array along a direction
in the voltage space, defined by the corresponding eigenvector of the QCM. In Ref. [28],
we developed a general approach to multidimensional quantum capacitance, and have
applied our theory to a quantum-dot array, where the gates only control the minima of the
QDs’ confining potentials. The purpose of the present work is to explore the scenario in
which the gate that controls the tunneling barrier between the QDs can also be involved
and contribute to the measured quantum capacitance. The physical system we refer to is
represented by a double quantum dot (DQD), populated by two electrons and coupled
to three gates: one for each electrostatically defined QD, and one modulating the interdot
barrier. We thus focus on a two-site Hubbard model, which can be solved analytically, so
as to yield the closed expressions of immediate application for the eigenenergies and for
the eigenvalues and eigenvectors of the QCM.

In order to apply this theory to a real system, we relate the control parameters (gate
voltages) to a Si/SiGe triple QD. The realistic ranges of parameters are obtained by referring
to the values measured in that device. The analytical formulas that we provide, and
which represent our main result, can, however, be applied to different devices as well.
By examining the properties of several QCM-related quantities, we show that the great
tunability of the tunneling allows one to shape the widths and heights of the QC peaks.
The positions of the absolute QC peaks in voltage space lie close to those predicted by
semiclassical considerations related to the charge movement between the QDs, in the regime
where the tunneling is much smaller than the on-site repulsive interaction. By exploiting the
exponential dependence of tunneling on the applied gate voltage, we push the parameters
to and above the limits of such a regime, and we find new features (including relative peaks)
in the QC profile that are related to tunneling coherences, rather than charge movement.
Despite the fact that the model parameters yielding the largest values of coherence-related
features lie in a domain where the Hubbard model loses its adherence to real systems, the
general principle that the tunneling gate allows one to probe the tunneling coherence holds,
and can be exploited for experimental measurements. Ultimately, the purpose of this work
is two-fold: on the one hand, we intend to illustrate, within a specific and analytically
solvable model, the potentialities of the multidimensional QC introduced in Ref. [28]; on
the other hand, we point at the existence of a different physical regime, where the strength
of interdot tunneling is comparable with other energy scales in the system and the QC has
a different physical origin with respect to the known cases.

The remainder of this article is organized as follows. In Section 2, the concept of model
quantum capacitance matrix (MQCM) is introduced; in Section 3.1, the effective model for
the DQD is formulated and solved analytically; in Section 3.2, the analytical expressions for
the MQCM are shown; in Section 3.3, the formulas for the total QC and its eigenvalues and
eigenvectors are provided; in Section 4, the formulas derived in the previous Sections are
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numerically computed, and the general trends are discussed; in Section 5, we summarize
our findings and mention possible future developments.

2. Model Quantum Capacitance Matrix

The QCM for a system in its k-th eigenstate is a matrix Ck;i,j, whose elements are
defined by the second-order derivatives of the energy eigenvalue Ek with respect to the
gate voltages Vi [28].

Any measurable QC is a linear combination of the elements of the QCM, and the
coefficients of such a combination are determined by the direction (chosen by the experi-
menter) of the voltage oscillation in the M-dimensional voltage space. In other words, the
measured QC can always be expressed as a weighted average of the eigenvalues of the
QCM. At a given working point V = (V1, . . . , VM), the QC eigenvalue with the largest
modulus represents the maximum measurable value of the QC, and the direction of the
voltage oscillation that should be applied in order to obtain such a value is given by the
corresponding QC eigenvector [28].

From a theoretical point of view, the eigenenergies Ek and the corresponding eigen-
states are expressed in terms of the parameters entering the Hamiltonian, which defines
the adopted model. This suggests the possibility of defining a model quantum capacitance
matrix (MQCM), whose elements are given by the mixed second derivatives of the relevant
energy eigenvalue with respect to the Mpar model parameters pi:

Cmod
k;i,j ≡

∂2Ek
∂pi∂pj

. (1)

The model parameters corresponding to a given physical system are controlled by
the applied gate voltages Vj. For a known functional dependence of the pi on the Vj, one
can express the QCM as a function of the model quantum capacitance matrix through
the equation

Ck;i,j =
Mpar

∑
γ,γ′=1

∂pγ

∂Vi
Cmod

k;γ,γ′
∂pγ′

∂Vj
≡

Mpar

∑
γ,γ′=1

αi,γ Cmod
k;γ,γ′αj,γ′ . (2)

The matrix α is, in general, rectangular if the number of tunable parameters Mpar does
not coincide with that of gate voltages M. The sector of α, which relates the plunger gates
to the dots’ chemical potentials is the lever-arm matrix [29]. In the following, we consider
a case where α is a square matrix, i.e., Mpar = M. Additionally, we assume for simplicity
that the matrix is diagonal, i.e., that each model parameter depends on a different gate
voltage. A similar situation is experimentally implemented by identifying the virtual gates:
these are suitable combinations of the gate voltages that modify only one model parameter,
while leaving the others unaffected [5,29]. In general, one can derive the α matrix for each
device either experimentally or by carrying out a multiscale simulation of the device [30].

3. Double Quantum Dot Coupled to Three Voltage Gates: Analytical Expressions
3.1. Model Hamiltonian and Its Diagonalization

The considered system is represented by a DQD occupied by N = 2 electrons and con-
trolled by three gate voltages (V1, V2, and V3), which control the shape of the confinement
potential. In a simple picture, these three gates modulate the energy levels of the two QDs
and the height of the barrier between them. More specifically, the two QDs are represented
as the sites of a Hubbard model, with interdot tunneling amplitude T (assumed to be real
for the sake of simplicity) and onsite energies ε1, ε2. The Hamiltonian is given by

Ĥ =
2

∑
i=1

(
εin̂i + Un̂i,↑n̂i,↓

)
+ T ∑

σ

(
ĉ†

1,σ ĉ2,σ + ĉ†
2,σ ĉ1,σ

)
, (3)
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where U is the onsite interaction energy, and n̂i,σ = ĉ†
i,σ ĉi,σ is the number operator corre-

sponding to the i-th dot and spin σ, while n̂i = ∑σ n̂i,σ.
With reference to the terminology introduced in Section 2, here, the tunable model

parameters are ε1, ε2, and T; equivalently, we will use ε ≡ ε2 + ε1 and δ ≡ ε2 − ε1 in
place of the couple (ε1, ε2). These parameters are modulated by the physical gates V1, V2,
and V3 applied by the experimenter; instead, we assume that U is unaffected. Therefore,
M = Mpar = 3.

The Hamiltonian (3) can be analytically diagonalized. In the case of N = 2, there are
six eigenstates comprising three singlets and a triplet. It is a simple matter to show that the
triplet energy is Etr(ε, δ, T) = ε. The derivation of the three singlet eigenvalues is doable
but more complicated, because it involves the diagonalization of a non-trivial 3× 3 matrix.
Using the resolving formula for a third-degree polynomial equation and some algebraic
manipulations, we obtain

E−J(ε, δ, T) = ε +
2
3

[
U −

√
3δ2 + 12T2 + U2 cos(θ)

]
,

EU(ε, δ, T) = ε +
2
3

[
U −

√
3δ2 + 12T2 + U2 sin

(
θ − π

6

)]
,

EU+J(ε, δ, T) = ε +
2
3

[
U +

√
3δ2 + 12T2 + U2 cos

(
θ − π

3

)]
, (4)

where

θ(δ, T) =
1
3

arccos

[
U
(
−9δ2 + 18T2 + U2)

(3δ2 + 12T2 + U2)
3/2

]
. (5)

The subscripts in Equation (4) refer to the well-known values of the corresponding
eigenvalues in the absence of on-site energies (ε = δ = 0):

E−J(0, 0, T) = −J ≡ −
√

U2 + 16T2 −U
2

, EU(0, 0, T) = U, EU+J(0, 0, T) = U + J, (6)

where J is the exchange energy. To our knowledge, the general solutions in the presence
of arbitrary on-site energies (Equation (4)) and the related quantities that we will derive
in the following are novel results that can be directly applied to any DQD which can be
represented by a Hubbard model.

At all values of the model parameters, the singlet with energy E−J is the ground
state, while the first excited multiplet is the triplet. The eigenvalues (reckoned from ε, in
units of |T|) are plotted in Figure 1a, as functions of δ/|T| and for U = 10|T|. Relevant
to the following discussion, the avoided crossings between the two lowest singlets (red
and blue curves) at δ = ±U correspond to the classical charge transitions (0, 2) → (1, 1)
and (1, 1)→ (2, 0), respectively, at δ = −U and δ = U. The particular U/|T| ratio used in
Figure 1 was chosen for visualization purposes, but it can be significantly different, even
by orders of magnitude, as discussed in the following sections. In particular, T strongly
depends on the interdot distance and on the height of the tunneling barrier, which, in the
present case, can be modulated by a gate voltage.

3.2. Model Quantum Capacitance Matrix

In terms of the model parameters (ε, δ, T), the MQCM for state k has three independent
nonzero elements, namely

Cmod
k;2,2 =

∂2Ek
∂δ2 , Cmod

k;3,3 =
∂2Ek
∂T2 , Cmod

k;2,3 = Cmod
k;3,2 =

∂2Ek
∂δ∂T

. (7)

In fact, since the eigenenergies are linear in ε, all second derivatives involving ε vanish.
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Figure 1. Relevant quantities related to the biased Hubbard model for the DQD occupied by two
particles, as functions of δ/|T| and for U = 10|T|. (a) Energy eigenvalues Ek − ε in units of |T| for
k = −J (red), k = U (blue), k = U + J (green), and k = tr (black). (b) Nonzero elements of the

MQCM for the ground-state energy, in dimensionless form given by |T| ∂2E−J
∂p1∂p2

. The plotted curves
correspond to different pairs (p1, p2): (δ, δ) (purple), (T, T) (orange), and (δ, T) (brown), under the
assumption that T > 0. If T < 0, the brown curve should be multiplied by −1, while the other curves
are unchanged.

The analytical expressions for the quantities (7) related to the ground state (k = −J)
are given by

∂2E−J

∂p1∂p2
≡ 8√

3δ2 + 12T2 + U2

[
Bp1,p2

cos(θ)
A

+ Cp1,p2

U sin(θ)√
3A3/2

]
with p1, p2 ∈ {δ, T}, (8)

where

A =
(

δ2 + 4T2
)3
− 2
(

δ4 − 10δ2T2 − 2T4
)

U2 + δ2U4, (9)
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while Bp1,p2 is a sixth-degree polynomial and Cp1,p2 is an eighth-degree polynomial in the
energies δ, T and U. Namely,

Bδ,δ = −T2
[(

δ2 + 4T2
)2

+
(

δ2 + T2
)

U2
]

,

Cδ,δ = T2
[

T2U4 − 3
(

2δ4 + δ2T2 − 10T4
)

U2 − 2
(

5δ2 − 7T2
)(

δ2 + 4T2
)2
]

,

Bδ,T = δT
[(

δ2 + 4T2
)2
−
(

δ2 − 2T2
)

U2
]

,

Cδ,T = δT

[
−
(

δ2 + 2T2
)

U4 − 6
(

δ4 + 2δ2T2 + 10T4
)

U2

+
(

7δ2 − 26T2
)(

δ2 + 4T2
)2
]

,

BT,T = −δ6 − δ4
(

8T2 − 2U2
)
− δ2

(
4T2 + U2

)2
− 4T4U2,

CT,T = 2

[
δ2
(
−2δ2 + 3T2

)
U4 + 2

(
2δ6 − 3δ4T2 + 24δ2T4 + 2T6

)
U2

− δ2
(

2δ2 − 19T2
)(

δ2 + 4T2
)2
]

. (10)

In Figure 1b, we plot the three inequivalent elements of the model quantum capacitance
matrix (for U = 10|T|). Interestingly, where the modulus of the diagonal element related to
the bias (purple curve) presents the two maxima, the modulus of the element related to
tunneling (orange curve) displays two pronounced minima. The different physical origins
of the two terms, that correspond to the quantum capacitance measured by applying
the oscillating voltage either to the bias or to the tunneling voltage, is thus reflected in
the qualitatively different behaviors. The presence of a significant off-diagonal element
(brown curve) further suggests that a maximal quantum capacitance might result from the
simultaneous oscillations of the two voltages (see below).

3.3. Quantum Capacitance Matrix and Its Diagonalization

In order to compute the QCM, we now need to fix a relation between the control and
model parameters. We assume that the physical gates were virtualized in such a way that
each of them controls only one model parameter, according to

ε1 = α1V1, ε2 = α2V2, T = T0eV3/β, (11)

where α1, α2, and β are positive. The exponential dependence of the tunneling on the
corresponding gate voltage is justified by the fact that |T| is exponentially enhanced
(suppressed) by lowering (increasing) the barrier height, which can be assumed to be linear
in the applied voltage V3. The accuracy of an exponential relation between V3 and |T| has
been experimentally demonstrated in Ref. [5]. With our convention, a large positive value
of V3 lowers the barrier and thus favors the interdot tunneling.

Under these assumptions, and for identical values of the two lever arms (α1 = α2 ≡ α),
one obtains the following QCM:

Ck ≡

 Xk −Xk Yk
−Xk Xk −Yk
Yk −Yk Zk

, (12)

where the matrix elements are given by
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Xk ≡ α2 ∂2Ek
∂δ2 , Yk ≡ −

αT
β

∂2Ek
∂δ∂T

, Zk ≡
T2

β2
∂2Ek
∂T2 . (13)

The matrix Ck has a null eigenvalue, corresponding to the eigenvector (1, 1, 0)/
√

2
and related to the symmetric fluctuation of the on-site energies, assumed to linearly depend
on the voltages V1 and V2. The remaining eigenvalues are:

Ck;± = Xk +
Zk
2
±

√(
Xk −

Zk
2

)2
+ 2Y2

k . (14)

From the above expressions, it follows that Ck;− ≤ Ck;+. Moreover, for the system
ground state, X−J < 0 and Z−J < 0 (see Figure 1b). Therefore, one always has that
C−J;− ≤ C−J;+ ≤ 0 and that the QC eigenvalue with the largest modulus is C−J;−. At
the working points where the mixed partial derivative vanishes (Yk = 0), the QCM is
block-diagonal, and the non-zero QC eigenvalues become

Ck;−
∣∣
Yk=0 = min(2Xk, Zk), Ck;+

∣∣
Yk=0 = max(2Xk, Zk). (15)

The normalized eigenvectors of Ck corresponding to the non-zero eigenvalues can be
written as

vk;− =



sign(Yk)√
(Ck;−−Zk)

2
+2Y2

k

(
Ck;−−Zk√

2
, −Ck;−−Zk√

2
,
√

2Yk

)
, for Yk 6= 0

1√
2
(1,−1, 0), for Yk = 0 and 2Xk < Zk

(0, 0, 1), for Yk = 0 and Zk < 2Xk

, (16)

and

vk;+ =



sign(Yk)√
(Ck;+−Zk)

2
+2Y2

k

(
Ck;+−Zk√

2
, −Ck;+−Zk√

2
,
√

2Yk

)
, for Yk 6= 0

(0, 0, 1), for Yk = 0 and 2Xk < Zk

1√
2
(1,−1, 0), for Yk = 0 and Zk < 2Xk

. (17)

3.4. Singlet-Triplet Discrimination

The theoretical knowledge of the QC allows to discriminate between quantum states
characterized by different QC matrices. A particular case of interest is the discrimination
between ground states with different total spins. In the case at hand, as discussed above,
the spin triplet has energy Etr(ε, δ, T) = ε and, therefore, its QCM is a null matrix. It follows
that any QC measurement, at any working point, yields zero if the state of the system is a
spin triplet. This is not altered by the inclusion of a magnetic field, which can only induce
the energy splitting of triplet states, but no mixing between the triplet and the singlets.

Conversely, QC measurements on a singlet state reveal a very different scenario, as we
will show in Section 4. The ground-state QCM is strongly dependent on both the working
point and the direction of oscillation of the applied potential. The marked difference
between the singlet and triplet QC matrices allows to experimentally discriminate between
the two cases.

4. Numerical Results

We now derive from the above equations the main features of the three-gate QCM
for the two-electron ground state in the DQD. In order to make our analysis as general as
possible, it is convenient to refer to dimensionless quantities. In this system, the natural
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units of energy, voltages and QCs are |T0|, |T0|/α, and α2/|T0|, respectively. In the following,
the dimensionless counterpart of a quantity Q is denoted as Q̃. Thus, for example,

Ṽi ≡
Vi
|T0|/α

, β̃ ≡ β

|T0|/α
, δ̃ ≡ (V2 −V1)

|T0|/α
=

(ε2 − ε1)

|T0|
,

|̃T| ≡ eV3/β = eṼ3/β̃, Ũ ≡ U
|T0|

, C̃k ≡
|T0|
α2 Ck. (18)

4.1. Typical Ranges of Parameters

In Ref. [5], Mills and coworkers investigate Si/SiGe QDs separated by gated barriers;
the tunneling amplitude between neighbor dots is demonstrated to be in an exponential
relation with the barrier voltage. We refer to that work to deduce the appropriate orders of
magnitude for the parameters of our model. Although the functional form that we adopt
here for the dependence of T on V3 is slightly different, it reproduces reasonably well the
measured range of |T| in Ref. [5] with |T0| ≈ 6µeV, β ≈ 46 mV, and V3 ranging from 0 to
several tens of mV, corresponding to β̃ ≈ 103 and Ṽ3 up to some 103.

The value of U cannot be estimated from Ref. [5], since that work considers transitions
between single-particle states. Typical values, derived from previous calculations on Si and
Ge DQDs [31], are of the order of some tens of meV. In particular, for an interdot distance
of 16 nm, we find that U ≈ 24 meV, corresponding to Ũ ≈ 4000. In the following, this is
the value adopted for the onsite repulsion, while (V2 −V1) is varied in a range that allows
to capture the U-dependent charge transitions at δ = ±U.

4.2. Directly Measurable QCs: The Diagonal Terms of the QCM

As discussed in Ref. [28], all the elements of the QCM can be directly or indirectly
experimentally estimated by suitable procedures. In particular, each diagonal element of
the matrix, C−J;i,i, is measured by applying an oscillation voltage only to gate i. Before
discussing the QC eigenvalues, we show the dependence of such elements, and specifically
C−J;1,1 = C−J;2,2 and C−J;3,3, on δ̃ and Ṽ3.

We start by investigating C−J;1,1. We first observe that this quantity has a clear phys-
ical interpretation, which can be derived by the application of the Hellmann–Feynman
theorem [28], namely,

C−J;1,1 = α
∂〈n̂1〉−J

∂V1
= α

∂〈n̂2〉−J

∂V2
= C−J;2,2, (19)

i.e., it quantifies the variation of the occupation of dot j under small variations of the
applied (virtual) gate potential Vj, which tunes the dot’s chemical potential. The behavior
of C−J;1,1 is reported in Figure 2. The contour lines corresponding to the highest absolute
values of the QC are two drop-shaped domains which occur at δ̃ ≈ ±Ũ for a certain range
of values of Ṽ3—approximately Ṽ3 < 8000 for the considered values of the parameters β̃
and Ũ. When Ṽ3 becomes large enough (Ṽ3 > 8000 in this case), the contour lines of the
two drop-shaped domains merge into a single one. A further increase in Ṽ3 results in a
significant drop in the absolute value of the QC.

This is qualitatively explained in terms of the semiclassical picture developed in
Ref. [28]: the QC peaks occur in regions of the parameters domain where the classical
charge transitions [in this case, (0, 2)→ (1, 1)→ (2, 0)] take place, and small variations in
Vj lead to large variations in the population of dot j. In these regions, the energies of the
ground state and of the first excited singlet undergo an avoided crossing. The peaks’ height
and width are related to the parameters describing such an avoided crossing, in particular
to the ratio |T|/U. When Ṽ3 is increased from the reference value 0 to higher values (i.e.,
the working point moves vertically from the bottom to the top of Figure 2), the amplitude
of the avoided crossing gap, which is proportional to |T|, increases. Correspondingly, the
height of the QC peak decreases, because the charge transition becomes smoother, i.e., the
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region in the parameter space where the occupation numbers of the two QDs are not well
defined becomes larger. It should be noted that, for the parameters used in Figure 2, the
value of Ṽ3 ≈ 8000, where the drop-shaped contour lines merge, corresponds to

∣∣∣T̃∣∣∣ ≈ e8:
the tunneling amplitude has thus been increased by a factor ≈3000 with respect to its
value at Ṽ3 = 0, and has reached a value that is comparable to the onsite repulsion Ũ.
Physically, this corresponds to a regime where the validity of the physical assumptions
underlying the Hubbard model—the description of the double QDs in terms of weakly
coupled site-localized states—becomes questionable.
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Figure 2. Contour plots of the diagonal element C̃−J;1,1, as a function of δ̃ and Ṽ3, for β̃ = 1000 and
Ũ = 4000. Darker colors correspond to more negative values of C̃−J;1,1.

The effect of tuning the tunneling parameter manifests itself in the energy spectrum,
as shown in Figure 3. The increase in V3 leads to an exponential increase in |T|, which
stretches the avoided-crossing gap between the ground state and the first-excited singlet
from being negligible for V3 = 0 (because of the large ratio U/|T| = 4000) to being
sizeable at Ṽ3 = 7000 (corresponding to U/|T| ≈ 3.65) and Ṽ3 = 8000 (corresponding to
U/|T| ≈ 1.34). When V3 is further increased, the three singlet energies tend to flatten, and
the bias-induced charge transitions associated with the DQD structure are lost.

In order to visualize the charge configuration of the two dots, we compute the ground-
state occupation numbers 〈ni〉−J using the Hellmann–Feynman theorem, which yields [28]

〈ni〉k =
∂Ek
∂εi

= 1 + (−1)i ∂Ek
∂δ

, (20)

where the last equality is valid for the DQD. In Figure 4, we plot the occupation of dot 1 for
the ground state, as a function of the bias δ̃, for selected values of Ṽ3. It can be seen that,
for low values of Ṽ3 (resulting in T ≈ T0 � U), the occupation number changes abruptly
with δ̃, as expected within a semiclassical picture with U � |T|. Instead, for values of Ṽ3
yielding |T| ≈ U, the system undergoes a transition from a double QD to an effective single
QD, as reflected in the plot of 〈ni〉−J by the disappearance of the sharp charge transitions
at δ̃ = ±Ũ, and by the flattening of the curve at the value 1, corresponding to the charge
being evenly distributed between the two QDs.
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Figure 3. Singlet eigenenergies E−J (red), EU (blue), and EU+J (green), as functions of δ̃, for β̃ = 1000,
Ũ = 4000. The curves are computed for selected values of Ṽ3, namely: Ṽ3 = 0 (corresponding to∣∣∣T̃∣∣∣ = 1, solid curves), Ṽ3 = 7000 (

∣∣∣T̃∣∣∣ ≈ 1097, dashed), and Ṽ3 = 8000 (
∣∣∣T̃∣∣∣ ≈ 2981, dotted).
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Figure 4. Average dot occupation 〈n1〉−J as a function of δ̃, for β̃ = 1000 and Ũ = 4000. Different
colors correspond to the following values of Ṽ3: 11,000 (cyan), 10,000 (blue), 7500 (black), 6000
(orange), 0 (red).

Figure 5 shows the contour plot of the other diagonal element of the QCM, namely
C−J;3,3, for the same set of parameters considered in Figure 2. We notice a strikingly
different behavior compared to C−J;1,1, due to the fact that C−J;3,3 does not probe the charge
transitions between the two QDs, as C−J;1,1 does instead (see Equation (19)). In fact, from
the Hellmann–Feynman theorem [28], it follows that

Ck;3,3 =
1
β2 T

〈ĥT

〉
k
+ T

∂
〈

ĥT

〉
k

∂T

, (21)

where

ĥT = ∑
σ

(
ĉ†

1,σ ĉ2,σ + ĉ†
2,σ ĉ1,σ

)
(22)

is the hopping operator in the Hubbard model. Therefore, just like the an oscillating
bias voltage probes the dot occupations (Equation (19)), this QC measurement probes



Entropy 2023, 25, 82 11 of 15

a combination of the tunneling coherence
〈

ĥT

〉
k

and of its derivative with respect to T.
In the case considered herein, the highest peaks of Ck;3,3 occur at values of V3 for which
the description of the double dot in terms of the Hubbard model becomes questionable.
Nevertheless, these features are interesting, since they indicate the possibility of obtaining
peaks in the quantum capacitance that are qualitatively different from the ones related to
the bias, and that have a physically different origin.
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Figure 5. Contour plots of the diagonal element C̃−J;3,3 as a function of δ̃ and Ṽ3, for β̃ = 1000 and
Ũ = 4000. Darker colors correspond to more negative values of C̃−J;3,3.

4.3. Directly Measurable QCs: The Largest Eigenvalue of the QCM

If the oscillating voltage is applied along the direction in the voltage space defined
by the eigenvectors of the QCM, then the measured QC is given by the corresponding
eigenvalue. The most relevant outcome of the multidimensional quantum capacitance
is represented by the eigenvalue with the largest modulus, corresponding to the largest
measurable QC. This is obtained for the optimal direction in the voltage space, along which
the signal should be applied. As above, we refer to the QC related to the Hamiltonian
ground state, C−J;−. In Figure 6, C−J;− is plotted as a function of δ̃ and Ṽ3, for β̃ = 1000 and
Ũ = 4000 (the same values considered for the diagonal elements of the QCM). In Figure 7,
we show the cross-sections of the contour plot of C−J;− at selected values of Ṽ3.

From the comparison between the eigenvalue and the diagonal elements (Figures 2 and 5),
it is apparent that the peaks of |C−J;−| occur very closely to the peaks of |C−J;1,1| and
|C−J;3,3|. This suggests that, in the regions where the peaks of |C−J,i,i| are located, the i-th
component of the QC eigenvector v−J,− dominates over the other two components. In
other words, the main features that show up in the plot of the QC eigenvalue do not seem
to result from significant mixing between the bias and tunneling voltages, but rather from
the sum of the two diagonal contributions.
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Figure 6. Contour plot of C̃−J;− as a function of δ̃ and Ṽ3 for β̃ = 1000 and Ũ = 4000. Darker colors
correspond to more negative values of C̃−J;−.
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Figure 7. Eigenvalue C−J;− of the QCM as a function of δ̃ for β̃ = 1000 and Ũ = 4000. Different colors
correspond to different values of Ṽ3, and specifically to: 11,000 (cyan), 10,000 (blue), 7500 (black),
6000 (orange), 0 (red).

In order to quantitatively verify the above picture, we report the components of the
QC eigenvector v−J,− as functions of δ̃ and for selected values of Ṽ3 (Figure 8). As already
shown (Equation (17)), the components 1 and 2 are always opposites. Additionally, the
peaks of their absolute values are located close to the charge transition points, δ̃ = ±Ũ.
There, in the parameter range corresponding to weak interdot coupling, the dominant
components in the eigenvector are those related to the bias (1 and 2). The eigenvector is
instead dominated by the tunneling-related component (3) away from the charge transitions
due to the exponential relation between the virtual and real tunneling gates. When the
hopping is sufficiently large that the two QDs merge into a single one (e.g., Figure 8c,d),
then component 3 dominates at all values of δ̃, indicating that there are no charge transitions
between the QDs. This is consistent with the scenario described by Figure 4.
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Figure 8. Components 1 (cyan), 2 (blue), and 3 (purple) of the eigenvector correspond to the lowest
(most negative) eigenvalue of the QC matrix. Different colors distinguish the different components
of the eigenvector. Different panels correspond to different values of Ṽ3, as follows: (a) Ṽ3 = 0;
(b) Ṽ3 = 7200; (c) Ṽ3 = 7500; (d) Ṽ3 = 10,000.

5. Discussion and Conclusions

In conclusion, we applied the recently developed theory of multidimensional quantum
capacitance to the case of a double QD, controlled by two bias gates and one tunneling
gate. In particular, the use of the latter gate is shown to control the height and width of the
peaks of the QC related to the change in charge configuration induced by the bias voltage.
Besides, the tunneling voltage is responsible for the presence of additional peaks, with a
qualitatively different physical origin. These peaks show up both in the relevant diagonal
element of the QCM, and in its eigenvalue with largest modulus.

The analysis was performed within a biased Hubbard model, which allows the deriva-
tion of analytical solutions for all the relevant quantities, including the eigenvalues and
eigenvectors of the QCM. On the other hand, the considered range of physical parameters
partially exceeds the one where the Hubbard model represents an accurate description
of the double-dot system. For these cases, more quantitative estimates will require the
combination of the general approach for the derivation of the QCM with more accurate
descriptions of the electron (or hole) eigenstates in the double quantum dot.

The procedure involves the determination of an effective Hamiltonian based on model
parameters which enter the MQCM. The connection between the MQCM and the QCM also
requires additional, device-specific information, determining the dependence of the model
parameters on the real gates. This information might result from realistic multiscale device
simulations, which quantitatively account for the coupling between the gate voltages on
the one hand, and the tunneling and bias voltages on the other. In all cases, the possibility
to quantitatively determine the optimal working points and directions of oscillation in the
M-dimensional voltage space is expected to provide experimenters with more customizable
tools for the manipulation and readout of quantum states.
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