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Abstract: The nature of dependence between random variables has always been the subject of
many statistical problems for over a century. Yet today, there is a great deal of research on this
topic, especially focusing on the analysis of nonlinearity. Shannon mutual information has been
considered to be the most comprehensive measure of dependence for evaluating total dependence,
and several methods have been suggested for discerning the linear and nonlinear components of
dependence between two variables. We, in this study, propose employing the Rényi and Tsallis
mutual information measures for measuring total dependence because of their parametric nature.
We first use a residual analysis in order to remove linear dependence between the variables, and then
we compare the Rényi and Tsallis mutual information measures of the original data with that the
lacking linear component to determine the degree of nonlinearity. A comparison against the values
of the Shannon mutual information measure is also provided. Finally, we apply our method to the
environmental Kuznets curve (EKC) and demonstrate the validity of the EKC hypothesis for Eastern
Asian and Asia-Pacific countries.

Keywords: nonlinearity; Rényi mutual information; Tsallis mutual information; EKC hypothesis

1. Introduction

An analysis of the dependence between two or more random variables can be traced
back to the late 19th century, beginning with the works of mathematicians such as Gauss
and Laplace. Later, Galton created the concept of correlation, which enabled Pearson to
derive the correlation coefficient that has been extensively used in all kinds of statistical
analyses since then [1]. When the dependence is linear or approximately linear, the cor-
relation coefficient is the most effective indicator of the relationship between the random
variables. It also provides a simple interpretation for the direction of the relation, whether
positive or negative. When the dependence departs from the linearity, the linear correlation
coefficient is of no use, and various methods have been proposed for evaluating nonlinear-
ity. One of these measures is Spearman’s correlation coefficient, which is nonparametric
and uses ranked values to assess monotonic nonlinearity between two random variables [2].
Another measure for nonlinear dependence is the correlation ratio, which expresses the
relationship between random variables as a single valued function. In the case of nonlinear
relationships, the value of the correlation ratio is greater than the correlation coefficient,
and therefore, the difference between the correlation ratio and the correlation coefficient
refers to the degree of the nonlinearity of dependence [3]. Polynomial regression has also
been used for modeling nonlinear dependence in various phenomena. Although nonpara-
metric regression models have been used more often, polynomial regression is still being
deployed for modeling dependence in some areas of application, such as biomechanics [4],
cosmology [5], climatization [6], and chemistry [7]. As more and more-complex data have
been produced through technological development, the need for analyzing these data have
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given rise to a new field, called functional data analysis, which also includes functional re-
gression. Functional regression models assume functional relationships between responses
and predictors, and for polynomial models, these relationships are in polynomial form
rather than linear [8].

Shannon entropy plays a central role in information theory as a measure of information
choice and uncertainty. Conditional entropy can also be used as a measure of missing
information [9]. Conditional entropy or mutual information do not assume any underlying
distribution and reflect the stochastic relationship between random variables as a whole—
linear or nonlinear [10]. These properties have made mutual information a good choice for
analyzing dependencies. Hence, mutual information is extensively used for dependency
analysis, especially in finance [11–13] and in genetics [14–16]. Although mutual information
is an effective method for determining the dependency between random variables, it does
not provide any information on the nature of the dependence as being linear or nonlinear.
Very few attempts have been made to investigate the nature of the dependence by extracting
the linear component of Shannon mutual information, though some have, such as [1,17].

The environmental Kuznets curve (EKC) hypothesis states that there is an inverse
U-shape relationship between per capita gross domestic product (GDP) and measures
of environmental degradation [18]. Because carbon dioxide (CO2) is the major factor
for greenhouse gas emissions, it is accepted as the main reason for the environmental
degradation. Hence, the same relationship is assumed between GDP and CO2. So the
EKC is an indication of the “stages of economic growth” that economies pass through as
they make a transition from agriculturally based to industrial and then to postindustrial
service-based economies. In a way, EKC provides a visual representation of the stages of
economic growth, as seen in Figure 1 (Panayatou 1993).
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Figure 1. Environmental Kuznets curve.

There are various methods in the literature to test the EKC. Some studies have used
panel data, while others have used time series data [19]. Panayotou [20], who first sug-
gested the term EKC, used cross-sectional data and empirically tested the relation between
environmental degradation and economic development for the late 1980s. He discovered
quadratic patterns in a sample of developing and developed countries. Antle and Heide-
brink [21] found turning points for the EKC curve by using cross-sectional data. Vasilev [22]
also studied EKC with cross-sectional data.

Although the determination of the exact shape of the Kuznets curve is important,
demonstrating its nonlinearity will help support the EKC hypothesis. We aim to determine
nonlinearity by deploying mutual information with an application on EKC. The Rényi and
Tsallis mutual information types are used in determining the nonlinearity of EKC, and
the results are compared with that of Shannon. By demonstrating the confirmation of the
EKC hypothesis, it can be concluded that the “grow and pollute now, clean later” strategy
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revealed by the hypothesis has enormous environmental costs, so alternative strategies
should be developed for growth.

The structure of our study is as follows: Section 2 describes the tests for nonlinearity
on the basis of mutual information. Section 3 starts with the application by conducting a
cross-sectional analysis using ordinary least squares (OLS) and then adds the application
of nonlinearity tests. Finally, Section 4 concludes.

2. Relative Entropy, Mutual Information, and Dependence
2.1. Mutual Information

Relative entropy is a special case of statistical divergence. It is a measure of the
inefficiency of assuming that the probability distribution is q when the true distribution
is p [23]. Shannon, Rényi, and Tsallis relative entropies for the discrete case are defined
as follows:

DS = (p‖q) = ∑ P(x) log
P(x)
q(x)

(1)

DR = (p‖q) = 1
α− 1

log ∑ P(x)
(

P(x)
q(x)

)α−1

(2)

DT = (p‖q) = 1
α− 1∑ P(x)

[(
P(x)
q(x)

)α−1

− 1

]
(3)

Bivariate extensions are as follows:

DS(p(x, y)‖q(x, y)) = ∑ ∑ p(x, y) log
p(x, y)
q(x, y)

(4)

DR(p(x, y)‖q(x, y)) =
1

α− 1
log ∑ ∑ p(x, y)

(
p(x, y)
q(x, y)

)α−1

(5)

DT((p(x, y)‖q(x, y)) =
1

α− 1∑ ∑ p(x, y)

[(
p(x, y)
q(x, y)

)α−1

− 1

]
(6)

To check the independence of variables, the null and alternative hypotheses can be
stated as follows:

H0 : pX,Y(x, y) = qX,Y(x, y) (7)

HA : pX,Y(x, y) 6= qX,Y(x, y) (8)

where qX,Y(x, y) = pX(x)·pY(y) for all (x, y) ∈ R2.
Mutual information can be seen as the divergence of the joint probability function

from the product of the two marginal probability distributions. In other words, mutual
information is derived as a special case of divergence or relative entropy. Three alternative
formulations of mutual information are due to Shannon, Rényi, and Tsallis. Shannon
mutual information (or Kullback—Leibler divergence) is defined as follows:

M(X, Y) = DS(pX,Y(x, y)‖pX(x)pY(y)) = ∑ ∑ p(x, y) log
p(x, y)

pX(x)pY(y)
(9)

Mutual information formulated this way is also called as cross entropy.
Rényi order-α divergence (or Rényi mutual information) of pX,Y(x, y) from pX(x)pY(y)

is given as follows:

DR(pX,Y(x, y)‖pX(x)pY(y)) =
1

α− 1
log ∑ ∑

pX,Y(x, y)α

(pX(x)pY(y))
α−1 (10)
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Tsallis order-α divergence of pX,Y(x, y) from pX(x)pY(y) (or Tsallis mutual informa-
tion) is given as follows:

DT(pX,Y(x, y)‖pX(x)pY(y)) =
1−∑ ∑

pX,Y(x,y)α

(pX(x)pY(y))
α−1

1− α
(11)

In the case of independence, the Rényi and Tsallis mutual information types are 0,
just like Shannon mutual information. As α→ 1, the Rényi and Tsallis mutual information
types approach Shannon mutual information [24]. The mutual information of two variables
reflects the reduction in the variability of one variable, by knowing the other. Mutual
information becomes 0 if and only if the random variables are independent. It should
also be emphasized that mutual information measures general dependence, whereas the
correlation coefficient measures linear dependence [15].

2.2. Testing Linearity by Using Mutual Information

The application of the Shannon mutual information measure on the problem of detect-
ing nonlinearity was suggested by Tanaka, Okamoto, and Naito [17] and by Smith [1].

This method utilizes the residuals obtained by the ordinary linear regression model.
Note that a linear regression model that fits data well is a good indicator of linear relation
between variables so that the residuals obtained from a linear model are considered to
include no linear dependence on independent variables:

ξi = Yi − b0 −
p

∑
j=1

bjXj (12)

Next, the mutual information between residuals and observed values of the indepen-
dent variable is calculated. The mutual information between independent and dependent
variables M(X,Y) can be computed, as can the mutual information between independent
variable and the residuals obtained from linear regression M(X,ξ). Note that the later
statistic reflects the nonlinear dependence between the original variables. If the mutual
information between the independent variable and residuals does not differ much from the
mutual information between the dependent and independent variables, then the relation is
nonlinear. By comparing M(X,ξ) with M(X,Y), we can evaluate the degree of nonlinearity
in the dependence [1,17].

We suggest that nonlinearity can be detected better by the Rényi and Tsallis mutual
information measures because of their parametric nature.

Especially becauase the Tsallis mutual information measure is calculated on the basis
of the power of α, the larger the α value, the larger the Tsallis mutual information was
becoming, so the difference between these two common mutual information measures
cannot be interpreted. Therefore, we suggest a new measure that still leads to the same
result, as seen in Equation (13):

λS,R,T =

∣∣∣∣1− M(X, ξ)

M(X, Y)

∣∣∣∣ (13)

The letters S, R, and T in the index indicate the Shannon, Rényi, and Tsallis mu-
tual information measures, respectively. As M(X,ξ) and M(X,Y) become closer to each
other, λ converges to zero, implying nonlinearity. This hypothesis is tested by using
two simulated data sets, one of which represents a linear relationship and the other one
reflects curvilinearity. The number of simulated pairs of X and Y values is 1000. The
simulated data representing the linear and the curvilinear relationships are modeled by
Equations (14) and (15):

Y = a + bX + e (14)

Y = a + bX + cX2 + e (15)
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Various α values between 0 and 5 are selected randomly from a uniform distribution for
assessing the effect of α on nonlinearity measures. Table 1 provides 50 randomly generated
observations from a uniform distribution for different values of α and the corresponding λ
values for the Rényi and Tsallis measures.

Table 1. λ values for linear and curvilinear relationships, based on simulations.

Linear
Relationship

Curvilinear
Relationship

α λR λT λR λT

0.07 0.9956 0.9906 0.0489 0.0308

0.13 0.9917 0.983 0.0457 0.0263

0.17 0.9894 0.9788 0.0447 0.0247

0.18 0.9888 0.9778 0.0445 0.0244

0.35 0.9808 0.9664 0.0433 0.0228

0.41 0.9785 0.964 0.0431 0.0232

0.48 0.976 0.9619 0.0429 0.024

0.56 0.9734 0.9604 0.0429 0.0254

0.67 0.9702 0.9595 0.0435 0.0281

0.69 0.9696 0.9595 0.0437 0.0287

0.74 0.9684 0.9596 0.0444 0.0304

0.82 0.9668 0.9605 0.0464 0.0339

0.87 0.9663 0.9618 0.0483 0.0369

1.36 0.9473 0.964 0.0087 0.0099

1.46 0.9446 0.9662 0.003 0.0037

1.86 0.9323 0.9749 0.0129 0.0214

2.11 0.9236 0.9797 0.0138 0.0271

2.18 0.9209 0.981 0.0139 0.0285

2.44 0.9102 0.9851 0.0139 0.0334

2.54 0.9056 0.9865 0.0138 0.0352

2.73 0.8962 0.9888 0.0136 0.0386

2.78 0.8935 0.9893 0.0136 0.0395

2.8 0.8924 0.9895 0.0136 0.0398

2.83 0.8908 0.9898 0.0135 0.0403

2.84 0.8902 0.9899 0.0135 0.0405

2.92 0.8856 0.9907 0.0134 0.0419

3.01 0.8801 0.9914 0.0133 0.0436

3.02 0.8795 0.9915 0.0133 0.0437

3.04 0.8782 0.9917 0.0133 0.0441

3.09 0.8749 0.9921 0.0132 0.045

3.23 0.8652 0.9931 0.0131 0.0476

3.29 0.8608 0.9934 0.0131 0.0487
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Table 1. Cont.

Linear
Relationship

Curvilinear
Relationship

α λR λT λR λT

3.34 0.857 0.9937 0.013 0.0497

3.38 0.8538 0.994 0.013 0.0504

3.4 0.8522 0.9941 0.013 0.0508

3.5 0.844 0.9946 0.0129 0.0528

3.57 0.8379 0.9949 0.0128 0.0542

3.71 0.8249 0.9954 0.0128 0.057

3.74 0.822 0.9956 0.0128 0.0576

3.77 0.8191 0.9957 0.0127 0.0583

3.88 0.808 0.996 0.0127 0.0607

3.97 0.7985 0.9963 0.0127 0.0627

4.04 0.7908 0.9964 0.0127 0.0643

4.17 0.7762 0.9967 0.0127 0.0673

4.54 0.7318 0.9974 0.0128 0.0769

4.62 0.7219 0.9975 0.0128 0.0792

4.71 0.7108 0.9976 0.0129 0.0818

4.76 0.7046 0.9976 0.0129 0.0833

4.85 0.6934 0.9977 0.013 0.0861

4.94 0.6822 0.9978 0.0131 0.089

λS 0.9589 0.0121

Mean 0.8783 0.9848 0.0211 0.0443

Std. Dev. 0.0869 0.0134 0.0143 0.0199

Because λ values close to 1 indicate a linear relationship, λT , λS, and λR support
the linearity hypothesis. It can be observed that λT detects linearity more strongly than
does λR for α > 1; conversely, λR captures linearity better for α < 1. The mean and the
standard deviation for each mutual information measure are also presented in Table 1 for
checking the variability of each measure against various α values. The standard deviation
values for λT are lower than those for λR, pointing out the consistency of Tsallis in the case
of linearity.

On the other hand, nonlinearity is captured by λT better than by λR for α < 1 and
vice versa for α > 1. When the standard deviations are considered, λR is more stable in
determining nonlinearity.

Changing the scale parameter α of mutual information measures naturally changes
the sensitivity of this measure, and by plotting λ values against the scale parameter α, the
change in sensitivity can be graphically displayed. In order to visually interpret the results,
the λR and λT values, according to the different α values, are as seen in the graphs:

As can be seen from Figure 2, for α > 1, λT is more succesful and stable than λR for a
linear relationship. In addition, the λT measure consistently takes values close to 1, whereas
λR gets smaller as α values increase.
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Figure 2. λ values versus α in the case of linearity.

As seen in Figure 3, in the curvilinear relationship, λT started to grow after alpha 1.4;
λR takes values close to zero in all values of alpha. However, λT also takes a maximum
value of 0.09101. Both common information measures can be used as criteria in nonlinearity.
However, λR more consistently indicates nonlinearity. Because there is no logarithmic
function in the Tsallis mutual information formula, when α takes a value greater than
1, Tsallis mutual information makes deviations from linearity less important than Rényi
mutual information does. Therefore, λT will make it less sensitive to nonlinearity than λR
and therefore more unresponsive to nonlinearity than λS and λT . For the same reason, λT
will represent linearity better than Rényi will in linear relationship.
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An important general property of Rényi entropy is that for a given probability distri-
bution, Rényi entropy is a monotonically decreasing function of α, where α is an arbitrary
real number other than 1. Therefore, as can be seen in Figure 2, increasing α values will not
provide additional information, so α values are limited to 5.

2.3. Method for Bin-Size Selection

Mutual information depends mainly on both the bin size and the sample size; thus,
a natural question arises about the optimal choice of one parameter given the value of
another. Here, we use the Freedman–Diaconis rule for finding the optimal number of bins.
According to this rule, the optimal number of bins can be calculated on the basis of the
interquartile range (IQR = Q3 − Q1) and the number of data points n. Freedman and
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Diaconis use the IQR of the data instead of the standard deviation; therefore, this method
is described as more robust than some of the other methods.

∆bin = 2× IQR(X)
3
√

n
(16)

The Freedman–Diaconis rule takes into account the asymmetry of the data and sets
the bin size to be proportional to the IQR [25].

3. Checking the EKC Hypothesis for East Asian and Asia-Pacific Countries (1971–2016)
3.1. Model

To test the EKC hypothesis, a simple linear regression model is applied. Using the or-
dinary least squares procedure, we find a quadratic relationship (“inverted U-hypothesis”)
between CO2 emissions (metric tons per capita) and GDP per capita (current USD) in a
time series of East Asia and Asia-Pacific countries (excluding high-income countries) over
a 46-year period.

East Asia and Asia-Pacific countries were classified initially as low income (LIC) in
the 1990s, then as lower middle income (LMC) in 2010. In fact, the highest growth rate
of CO2 emissions (5.6% (1990–2008)) was observed in the East Asia and the Asia-Pacific
region, where the highest GDP growth rates (7.2% (1990–2000) and 9.4% (2000–2010)) were
achieved.

We first examine the residual diagrams from a linear regression model to determine
whether there are serious deviations from assumptions. In Figure 4a, nonlinearity is
apparent, whereas in Figure 4b, the deviation from normality assumption can be seen:
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Figure 4. Residual plots listed as (a) fitted values to residuals and (b) normal Q-Q plot of standardized
residuals.

According to a quick visual check of the residuals in Figure 4a, a quadratic model
seems to be more appropriate. In Table 2, the results of quadratic models are given. The
scatter diagram of CO2 and GDP variables is shown in Figure 5.

Table 2. Summary of the model.

a b c F R2

Parameter Estimates 1.0121 0.0016 1.4 × 10−7

1581.224 0.986Standard Error 0.04599 5.9 × 10−5 9.35 × 10−9

p-Value 4.99 × 10−25 4.39 × 10−29 5.08 × 10−19

Model CO2 = 1.021 + 0.0016GDP−
(
1.4× 10−7)GDP2

a: constant; b and c: coefficients of model; F: F test; R2: coefficient of determination.
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Figure 5. Quadratic regression model estimation.

To test the appropriateness of a simple linear regression function, the null and alterna-
tive hypotheses are given as follows:

H0 : E(Y) = β0 + β1X (17)

Ha : E(Y) 6= β0 + β1X (18)

The general linear test statistic for simple regression model is as follows:

F∗ =
SSLF
c− 2

÷ SSPE
n− c

=
1.641
0.107

= 15.209

When we look at the results, shown in Table 3, F∗ > F(0.05; 3.41) = 2.833, so we
reject null hypothesis H0. This means that the linear regression function does not provide a
good fit for the data. The dependence measures are r2 = 0.91 and η2

XY = 0.96. A nonzero
value of η2

YX − r2 is associated with a departure from linearity. The calculated value of this
difference is η2

YX − r2 = 0.05. To test the significance of this difference, the alternatives are
given as follows:

H0: The relationship between X and Y is linear.
Ha: The relationship between X and Y is not linear.

Table 3. Related ANOVA table.

Source of Variation Df Sum of Squares Mean Squares

Explained variation by
linear regression 1 SSR = 98.658 98.658

Explained variation by
nonlinear regression 3 SSLF = 4.925 1.641

Unexplained variation 41 SSPE = 4.425 0.107

Total 45 SST = 108.01
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The test statistic is as follows:

F∗ =
n− c
c− 2

·
η2

XY − r2

1− η2
XY

=
41
3
∗ 0.05

0.04
= 17.083

This value of F also indicates a significant departure from linearity.

3.2. Testing Linearity on the Basis of Shannon, Rényi, and Tsallis Mutual Information Measures

The Tanaka, Okamoto, and Naito [17] and Smith [1] method is based on comparing
the Shannon mutual information between the original data series with that between the
new ones obtained by removing linear dependence from the original ones.

Entropy and mutual information calculations are based on a contingency table. A
possible reason for the EKC hypothesis may lie in the fact that in poor countries, most
of the output is produced in the agricultural sector. So CO2 emissions are lower in these
countries than in other countries. In middle-income countries, pollution begins to increase.
As the country grows, it tends to switch to cleaner technologies.

Here, on the basis of the Freedman–Diaconis rule, the optimal number of bins is
calculated and presented in Table 4:

Table 4. Optimal number of bins.

Variables nbins

CO2 7
GDP 14

Residuals 9

To detect nonlinearity by using the Shannon, Rényi and Tsallis mutual information
measures, the following table for different values of alpha may help. To evaluate the
degree of nonlinearity included in the dependence, the two mutual information measures
were compared. When M(X, ξ) = M(X, Y), the dependence is interpreted to be based
on nonlinearity, so the proposed λS, λR, and λT measures are considered as criteria of
nonlinearity.

As seen in the Table 5, λS, λR, and λT are close to zero, so the relationship is nonlinear.
As can be checked from the simulation data in Table 1, α < 1 λT and α > 1 λR more
successfully reveal the curvature. Therefore, the results obtained from the EKC data
also support this situation. As a result, the λS, λR, and λT values nearly zero indicate a
curvilinear relationship, which supports the EKC hypothesis.

Table 5. λ values for EKC data.

α λR λT α λR λT

0.07 0.3892 0.3655 3.01 0.0649 0.1460

0.13 0.3809 0.3444 3.02 0.0646 0.1459

0.17 0.3741 0.3323 3.04 0.0640 0.1458

0.18 0.3722 0.3295 3.09 0.0625 0.1455

0.35 0.3355 0.2902 3.23 0.0587 0.1453

0.41 0.3221 0.2797 3.29 0.0573 0.1455

0.48 0.3071 0.2690 3.34 0.0562 0.1457

0.56 0.2910 0.2586 3.38 0.0553 0.1460

0.67 0.2708 0.2466 3.4 0.0549 0.1461

0.69 0.2673 0.2447 3.5 0.0530 0.1471



Entropy 2023, 25, 79 11 of 13

Table 5. Cont.

α λR λT α λR λT

0.74 0.2590 0.2402 3.57 0.0518 0.1481

0.82 0.2468 0.2339 3.71 0.0497 0.1505

0.87 0.2400 0.2307 3.74 0.0493 0.1511

1.36 0.1735 0.1961 3.77 0.0489 0.1518

1.46 0.1631 0.1913 3.88 0.0476 0.1545

1.86 0.1271 0.1743 3.97 0.0467 0.1570

2.11 0.1087 0.1653 4.04 0.0461 0.1591

2.18 0.1040 0.1630 4.17 0.0451 0.1635

2.44 0.0888 0.1556 4.54 0.0430 0.1782

2.54 0.0837 0.1532 4.62 0.0427 0.1817

2.73 0.0751 0.1494 4.71 0.0423 0.1858

2.78 0.0731 0.1486 4.76 0.0421 0.1881

2.8 0.0723 0.1483 4.85 0.0418 0.1923

2.83 0.0711 0.1479 4.94 0.0415 0.1965

2.84 0.0708 0.1477 λS 0.2181 0.2181

2.92 0.0679 0.1468 Mean 0.1313 0.1914

St. Dev. 0.1147 0.0607

The relationship between λ and α can be seen in Figure 6:
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4. Conclusions

The environmental Kuznets curve (EKC) hypothesizes that the relationship between
environmental quality and real output has an inverted U-shaped quality. Using the ordinary
least squares estimation procedure, we have found a quadratic relationship between CO2
emission and GDP in a time series of East Asia and Asia-Pasific countries (excluding high-
income countries) over a period of 46 years. One technique to check the EKC hypothesis
utilizes an F test, by which we have concluded that the linear model does not provide a
good fit for the data. As a second technique, comparing the linear determination coefficient
with the correlation ratio may be useful. Again, for the EKC data, the difference between
these two association measures was found to be significant, addressing curvilinearity.
Alternatively, the difference between two dependence measures on the basis of mutual
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information can be used. Although Shannon mutual information has been used more often
in the literature, we suggested that the Rényi and Tsallis mutual information measures catch
the nature of the relation between the variables better because of their parametric flexibility.

In this study, the mutual information between dependent and independent variables
(M(X,Y)) was found first. Secondly, by using a simple linear regression model, the residuals
(ξ) were calculated. Then, the mutual information between the independent variable and
the residuals (M(X,ξ)) was obtained. Finally, by comparing these two mutual information
measures, the degree of nonlinearity included in the dependence was determined. We
also proposed a measure of nonlinearity, λ, and demonstrated that the Rényi and Tsallis
mutual information measures determined nonlinearity better for certain ranges of α values
compared with the Shannon mutual information measure.

Applications of all these measures on CO2 emissions and GDP data underlined curvi-
linearity, and hence, the presumed pattern by the EKC hypothesis was realistic. The
result concludes that the “growth and pollute now, clean later” strategy is wasting a lot
of resources and has enormous environmental costs. Therefore, countries should seek
alternative growth strategies.
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