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Abstract: Entanglement distribution task encounters a problem of how the initial entangled state
should be prepared in order to remain entangled the longest possible time when subjected to local
noises. In the realm of continuous-variable states and local Gaussian channels it is tempting to assume
that the optimal initial state with the most robust entanglement is Gaussian too; however, this is not
the case. Here we prove that specific non-Gaussian two-mode states remain entangled under the
effect of deterministic local attenuation or amplification (Gaussian channels with the attenuation
factor/power gain κi and the noise parameter µi for modes i = 1, 2) whenever κ1µ2

2 + κ2µ2
1 <

1
4 (κ1 + κ2)(1 + κ1κ2), which is a strictly larger area of parameters as compared to where Gaussian
entanglement is able to tolerate noise. These results shift the “Gaussian world” paradigm in quantum
information science (within which solutions to optimization problems involving Gaussian channels
are supposed to be attained at Gaussian states).

Keywords: entanglement dynamics; Gaussian channel; attenuator; amplifier; entanglement witness;
non-Gaussian state; robust entanglement

1. Introduction

Quantum entanglement is a feature of genuinely quantum correlations that underly
many interesting physical phenomena and are a primary resource in quantum information
theory enabling advantageous protocols of information processing and transmission [1]. A
typical scenario to share this resource among distant parties is to prepare an entangled state
in a laboratory and send entangled parts of the state toward the recipients via quantum
communication lines [2]. Upon receiving the respective components of the entangled
state the recipients can utilize them in entanglement-enabled protocols such as device-
independent quantum key distribution [3–5] or further convert these entangled degrees
of freedom into other degrees of freedom at their disposal, thus creating an entanglement
among particles or modes that have never interacted before (entanglement swapping) [6].
The crucial practical challenge in this scenario is that the quantum communication lines
are far from being ideal and introduce noise that degrades entanglement. The noise is
local because the signals propagate to recipients via different communication lines whose
environments do not interact with each other. There are some known techniques on
how to locally compensate the negative effect of noise and distill some number of highly
entangled states from many poorly entangled ones [7]. However, if the noise destroys
entanglement completely so that the recipients actually receive a fully separable quantum
state, no local strategy is able to cure this state and make it entangled. Therefore, there
exists a fundamental limitation on the noise intensity exceeding which no entanglement
can survive—a manifistation of the entanglement annihilation phenomenon [8].

The maximally permissible noise level for entanglement preservation apparently
depends on the physical nature of the quantum states sent, the degrees of freedom used,
and the nature of the noise that affects those degrees of freedom. In the case of two
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recipients A and B a local noise is mathematically described by a completely positive trace
preserving map ΦA

1 ⊗ΦB
2 . The quantum channels Φ1 and Φ2 can differ in general as the

noises in the communication lines do not have to be identical due to, e.g., a different length
or a different physical environment, say, atmosphere [9], optical fiber [10,11], photonic
chip [12] or even a quantum memory cell, which can also be considered as a quantum
channel. Historically, the first fully studied case of entanglement dynamics is the case
of one-sided noise for which Φ1 = Id, the identity transformation. In this case the local
map IdA ⊗ΦB

2 degrades entanglement of any state if and only if Φ2 has a measure-and-
prepare (entanglement-breaking) structure [13–15]. For the one-sided noise, the optimal
initial state for entanglement preservation is maximally entangled. The case of a two-sided
noise ΦA

1 ⊗ΦB
2 is more complicated to study even for simple systems (such as qubits) and

relatively simple noise models (such as T1-T2 qubit decoherence) because the optimal initial
state for entanglement preservation is not known a priori. The entanglement annihilation
parameters for a local two-qubit depolarizing noise were found in Ref. [16]. Local two-qubit
unital noises were studied in Ref. [17] and then generalized with the help of the quantum
Sinkhorn theorem to the case of an arbitrary two-qubit local noise ΦA

1 ⊗ΦB
2 [18]. The case

of trace decreasing qubit maps (corresponding to the loss of particles) was analyzed in
Ref. [19]. The higher dimensional systems (qudits) were considered in Refs. [20–22], with a
full characterization of entanglement annihilation parameters being obtained in the case of
local qudit-depolarizing noises [22].

The continuous-variable quantum states of electromagnetic radiation (in contrast to
discrete-variable polarization states) naturally incorporate the loss of photons within their
description and encode quantum information in the field amplitude. The vacuum, coher-
ent, squeezed, and thermal states are typical examples of Gaussian continuous-variable
quantum states whose characteristic function is Gaussian [23–25]. These states are con-
ventionally sensed by means of the homodyne and heterodyne measurements, which in
turn are Gaussian quantum measurements [26]. The losses in quantum communication
lines (potentially accompanied by an admixture of extra noise) are described by a quan-
tum attenuator channel Φ(κ, µ), where κ ∈ [0, 1) is the intensity attenuation factor and
µ ≥ 1

2 (1− κ) is the noise parameter precisely defined in terms of characteristic functions
in Section 2. Similarly, a deterministic phase-insensitive amplification of optical signal is
described by a quantum linear amplifier Φ(κ, µ), where κ ∈ (1, ∞) is the power gain and
µ ≥ 1

2 (κ − 1) is the noise parameter precisely defined in terms of characteristic functions
in Section 2. For both channels the minimal noise (µQL ≡ 1

2 |κ − 1|) corresponds to the
quantum limited operation, the extra noise is a = µ− µQL. The fact that the noise parame-
ter µ > 0 is a consequence of the canonical commutation relation for the photon creation
and annihilation operators which is to be respected by the deterministic attenuation and
amplification. The channel Φ(1, 0) is the ideal channel (identity transformation), whereas
Φ(1, µ) describes an addition of classical noise. All the described channels are Gaussian
and transform any Gaussian state into another Gaussian state. So does the tensor product
ΦA(κ1, µ1)⊗ΦB(κ2, µ2) of Gaussian channels Φ(κ1, µ1) and Φ(κ2, µ2). The one-sided noise
ΦA(1, 0)⊗ΦB(κ2, µ2) destroys any entanglement between modes A and B (i.e., the channel
Φ(κ2, µ2) is entanglement breaking) if µ2 ≥ 1

2 (κ2 + 1). The region of parameters κ1, µ1, κ2,
µ2, where the two-sided noise ΦA(κ1, µ1)⊗ΦB(κ2, µ2) annihilates entanglement is not fully
characterized yet, and this is a goal of this paper to advance toward better understanding
of this general case.

Given the fact that Gaussian states, Gaussian channels, and Gaussian measurements
cover many practically relevant scenarios, it is not surprising the subfield of Gaussian
quantum information emerged [27]. The subfield is often thought of to be closed in the sense
that an optimization problem for a Gaussian channel or a Gaussian measurement should
have a solution within the class of Gaussian states or the Gaussian ensembles of Gaussian
states. This is true, e.g., with regard to the maximal reliable communication rate through a
quantum channel Φ(κ, µ) (for all κ) [28] as well as the maximal communication rate by using
a Gaussian homodyne or heterodyne measurement [29–31]. Therefore, it is very tempting to
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conjecture that the most robust entanglement with respect to Gaussian noises is exhibited by
a Gaussian state [32] (with the experiments being focused on the Gaussian states too [33,34]).
The claim of Ref. [35] is that if one adopts a bona fide measure of entanglement, which is
continuous and strongly superadditive, such as the distillable entanglement; then at time t
in the Markovian Gaussian evolution eLt (with generator L), the bipartite Gaussian state
eLt[$G

12(0)] with energy n̄(t) is the most entangled among all possible continuous-variable
states eLt[$12(0)] with the same energy, as a simple consequence of the maximum entropy
property of Gaussian states [36,37]. We believe this claim of Ref. [35] is incorrect for the
following reason. Ref. [36] correctly mentions that if only the covariance matrix of some
density operator $1 is known, then there exists a Gaussian density operator $G

1 with the
same covariance matrix (hence, the same energy) such that the entropy of $G

1 is greater than
the entropy of $1. If $1 and $G

1 are the reduced density operators of pure bipartite states $12
and $G

12, then the state $12 is indeed less entangled than the state $G
12 [37]. However, this

line of reasoning cannot be generalized to the evolution states $G
12(t) and $12(t) without

breaking the equalities $G
12(t) = eLt[$G

12(0)] and $12(t) = eLt[$12(0)]. In other words, the
maximum entropy consideration does not guarantee that the states $G

12(t) and $12(t) are
obtained from some legitimate states $G

12(0) and $12(0) in the same dynamical evolution
eLt. In fact, Proposition 1 in Ref. [36] is in accordance with our findings (that we present
in this paper) as it states that a continuous and strongly superadditive entanglement
measure E satisfies the inequality E($G

12) ≤ E($12) for every density operator $12 with
finite covariance matrix and any Gaussian state $G

12 with the same covariance matrix, i.e.,
Gaussian states give a lower bound for the entanglement E($12). Finally, the conjecture
on the superior robustness of Gaussian entanglement was shown to be false in 2011 by
Sabapathy et al. [38]. They showed that none of two-mode Gaussian states can preserve
entanglement under the Gaussian transformation Φ(κ, µ) ⊗ Φ(κ, µ) if µ ≥ 1

2 , whereas
there exits a non-Gaussian state $12(0) that remains entangled if κ > κ∗ ≈ 1

2 and µ = 1
2 .

Moreover, for such parameters the preserved entanglement of the output state $12(t) is
distillable [i.e., E

(
$12(t)

)
> 0 whereas E

(
$G

12(t)
)
= 0 for any initial Gaussian state $G

12(0)
with an arbitrary energy] because for the entanglement detection Sabapathy et al. consider
an effective two-qubit subspace (spanned by two-mode Fock states |00〉, |0n〉, |n0〉, |nn〉)
and any non-zero two-qubit entanglement is known to be distillable [39].

The result of Sabapathy et al. [38] was further strengthened in Ref. [40], where it was
shown that the one-photon non-Gausian state |ψAB

∗ 〉 = 1√
2
(|01〉 − |10〉) outperforms all

Gaussian states (with an arbitrarily high energy) and remains entangled when affected
upon by a symmetric noise Φ(κ, µ)⊗Φ(κ, µ) with µ < 1

2

√
1 + κ2 for all κ. In the case of

asymmetric local Gaussian noise ΦA(κ1, µ1)⊗ΦB(κ2, µ2), the question has remained open
so far because the state |ψAB

∗ 〉 cannot generally outperform any Gaussian state in terms
of entanglement robustness. It is not hard to see with the help of Simon’s criterion [41]
that the Gaussian channel ΦA(κ1, µ1)⊗ ΦB(κ2, µ2) may preserve a two-mode Gaussian
entanglement (i.e., entanglement of some two-mode Gaussian state) if and only if [40]

κ1µ2 + κ2µ1 <
1
2
(κ1 + κ2). (1)

The results of Ref. [40] indicate that the state ΦA(κ1, µ1) ⊗ ΦB(κ2, µ2)[|ψAB
∗ 〉 〈ψAB

∗ |] can
hardly remain entangled for all the parameters satisfying the inequality (1), thereby leaving
an open problem on whether Gaussian states may potentially be optimal for entanglement
distribution through asymmetric local Gaussian channels. Here we finally resolve this
question in negative by demonstrating a channel-dependent non-Gaussian state |ψ̃AB

cκ1,µ1,κ2,µ2
〉

that outperforms any Gaussian state and remains entangled under the transformation
ΦA(κ1, µ1)⊗ΦB(κ2, µ2) whenever

κ1µ2
2 + κ2µ2

1 <
1
4
(κ1 + κ2)(1 + κ1κ2), (2)
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which is a strictly larger region than (1). This result explicitly shows that the non-Gaussian
entanglement is indeed more resilient to local Gaussian noises as compared to Gaussian
states. Non–Gaussian entanglement can be useful not only in the entanglement distribu-
tion but also in other tasks, for example, the multi-component cat states were shown to
outperform two-mode squeezed vacuum states in phase estimation [42].

The paper is organised as follows. In Section 2, we briefly review the formalism of
characteristic functions and describe noisy attenuator and amplifier channels. In Section 3,
the entanglement witness used is presented. Section 4 justifies the main result of the
paper, the inequality (2), and presents a family of channel-dependent non-Gaussian states
|ψ̃AB

cκ1,µ1,κ2,µ2
〉. Summary of the results is given in Section 5.

2. Gaussian Attenuation and Amplification Channels

A continuous-variable quantum state can be alternatively described by a density
operator $ (positive semidefinite operator with unit trace) or any of numerous phase-
space functions, for instance, the characteristic function ϕ(z) = tr[$W(z)], where the
Weyl operator W(z) for N modes is expressed through the canonical operators qi and pi
(satisfying the canonical commutation relation [qi, pj] = iδij) through

W(z) = exp[i(q1x1 + p1y1 + . . . + qN xn + pNyN)], (3)

where (x1, y1, . . . , xN , yN)
> ≡ z are coordinates in the real symplectic space (R2N , ∆) with

the symplectic form ∆ =
N⊕

i=1

(
0 −1
1 0

)
. A Gaussian state has a Gaussian characteristic

function ϕ(z) = exp(il>z − 1
2 z>Vz), where l = (〈q1〉 , 〈p1〉 , . . . , 〈qN〉 , 〈pN〉)> is a 2N-

dimensional column of the first moments and V is the 2N × 2N covariance matrix with
elements Vkl =

1
2 (〈RkRl〉 − 〈Rk〉 〈Rl〉), Rk, Rl ∈ (q1, p1, . . . , qN , pN). This implies that the

Gaussian state is fully determined by the first and second moments of the canonical operators.
The Gaussian channel is a completely positive and trace preserving map that maps

any Gaussian state into a Gaussian one and acts as follows in terms of input and output
characteristic functions ϕin(z) and ϕout(z) [26]:

ϕout(z) = ϕin(Kz) exp
(

im>z− 1
2

z>Mz
)

, (4)

where the real scaling matrix K and the real noise-quantifying symmetric matrix M must
satisfy the inequality M ≥ i

2 (∆−K>∆K) for the map to be completely positive. The full
characterization of one-mode Gaussian channels is given in Ref. [43]. We focus on the most
important (from the viewpoint of physical applications) deterministic Gaussian channels:
phase-insensitive attenuators and amplifiers. These two types of Gaussian channels can

be both described within unified formulas: K =
√

κ

(
1 0
0 1

)
, m = 0, M = µ

(
1 0
0 1

)
,

where 0 ≤ κ < 1 for the attenuator, κ > 1 for the amplifier, and the noise parameter
µ ≥ 1

2 |1− κ| ≡ µQL in both cases. We will denote such one-mode Gaussian channels by
Φ(κ, µ). The minimal noise µQL corresponds to the quantum-limited operation in which
the admixed noise originates from vacuum fluctuations of the environment [44]; however,
in some physically relevant systems the noise µ can be much higher that µQL due to a high-
temperature environment [45], for instance, in microwave quantum experiments [46–48].

The channel Φ(κ, µ) is known to be entanglement-breaking (so that the one-sided noise
Φ(1, 0)⊗Φ(κ, µ) destroys any two-mode entanglement) if and only if the noise parameter
µ exceed the threshold value, µ ≥ 1

2 (κ + 1) [49]. This value is depicted in Figure 1.
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Figure 1. The power attenuation/amplification factor κ and the noise parameter µ for a legitimate one-
mode quantum channel Φ(κ, µ). Φ(1, 0) is the identity transformation. The channel is entanglement
breaking (so that the one-sided noise Φ(1, 0)⊗Φ(κ, µ) destroys any two-mode entanglement) above
the blue line. Arrows indicate how the parameters κ and µ change in time in the semigroup dynamics.

Clearly, the quantum channel Φ(κ, µ) with fixed parameters κ and µ represents a
snapshot of the dynamical map at a particular time moment t, which may correspond
to a finite propagation time through a communication line. In a true time evolution the
parameters κ and µ become functions of time t, κ(t) and µ(t). For instance, in the semigroup
attenuation or amplification dynamics Φ = eLt with the generator L ([50], Section 3.4.6) we
obtain the following dependencies:

κ(t) = e±Γt, µ(t) = ±
(

e±Γt − 1
)(

n̄ +
1
2

)
, (5)

where the sign + (−) describes amplification (attenuation), Γ ≥ 0 is the process rate, and
n̄ is the average number of thermal photons in the environment. For such a semigroup
dynamics the one-parameter family of maps Φ

(
κ(t), µ(t)

)
is associated with a straight line

in the parameter space (κ, µ), see Figure 1.
The diagonal sum representation for the channel Φ(κ, µ) is found in Ref. [51] in terms

of the Fock states {|n〉}∞
n=0 and in Ref. [40] in terms of the coherent states {|α〉}α∈C. We use

the latter one as it sheds more light on the phase space picture [52,53]. The integral form of
the diagonal sum representation reads

Φ(κ, µ)[$] =
1

π2

∫∫
Aαβ(κ, µ)$A†

αβ(κ, µ)d2αd2β, (6)

where the Kraus operators Aαβ(κ, µ) rather nontrivially depend on parameters κ and µ
through auxiliary expressions

τ = max(1, κ) + µ− 1
2
|κ − 1|, η =

κ

τ
, (7)

Aαβ(κ, µ) =
∫ d2γ

π
√

τ
exp

[
− |α|

2 + |β|2 + |γ|2
2

+
√

1− η αγ +
1

2τ

∣∣∣√τ − 1 β +
√

η γ
∣∣∣2]

×
∣∣∣∣
√

τ − 1
τ

β +

√
η

τ
γ

〉
〈γ| . (8)

The peculiar form of the presented Kraus operators originates from the concatenation
formula Φ(κ, µ) = ΦQLτ ◦ΦQLη that shows the channel Φ(κ, µ) can always be thought of
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as a sequential application of the quantum limited attenuator ΦQLη (with the attenuation
factor η) and the quantum limited amplifier ΦQLτ (with the power gain τ). Using the
diagonal sum representation above it is not hard to see the effect of the channel Φ(κ, µ) on
the outer product of coherent states, namely,

Φ(κ, µ)[|γ〉 〈δ|] =
∫ d2σ

πτ
fγδ(σ)

∣∣∣∣√η

τ
γ +

√
τ − 1

τ
σ

〉〈√
η

τ
δ +

√
τ − 1

τ
σ

∣∣∣∣, (9)

fγδ(σ) = exp

[(η

τ
− 1
) |γ|2 + |δ|2

2
+ (1− η)γδ∗ +

√
η(τ − 1)

τ
Re[σ∗(γ + δ)]− |σ|

2

τ

]
. (10)

Since any density operator $ can be decomposed as $ = π−2
∫∫

d2γd2δ 〈γ| $ |δ〉 |γ〉 〈δ|,
Equations (9) and (10) define the effect of the Gaussian channel Φ(κ, µ) on any state
(including non-Gaussian ones).

3. Entanglement Witness

A bipartite state $AB is called entangled if it cannot be represented by a convex sum
of density operators $A

k and $B
k for individual subsystems A and B. Otherwise the state

is separable. In our case each subsystem is a mode of electromagnetic radiation, so we
analyze a two-mode entanglement. Although simple and physically clear entanglement
criterions are known for Gaussian two-mode systems [41,54], they are still missing for
non-Gaussian states. For this reason we resort to an entanglement witness formalism that
enables us to detect entanglement within non-Gaussian states too [40].

Consider a Hermitian operator

Wλ =
1

π2

∫∫
d2α d2β eλ(|α|2+|β|2) |α〉 〈β| ⊗ |β〉 〈α| , (11)

which reduces to a swapping operator if λ = 0. The important feature of this operator with
λ ∈ R is that its average value is nonnegative in any separable state because

〈φA| ⊗ 〈χB|Wλ |φA〉 ⊗ |χB〉 =
∣∣∣∣ 1
π

∫∫
d2α eλ|α|2 〈φA|α〉 〈α|χB〉

∣∣∣∣2 ≥ 0 (12)

for all vectors |φA〉 and |χB〉. Therefore, Wλ is an entanglement witness in the sense that
the negativity in the average value tr[$ABWλ] can only arise from the entangled state $AB,
so tr[$ABWλ] < 0 unambiguously indicates the entanglement between subsystems A and
B. If λ > 0, then Wλ is an unbounded operator; however, the average value tr[$ABWλ] may
still be finite.

Suppose the local Gaussian channel ΦA(κ1, µ1)⊗ΦB(κ2, µ2) acts on some two-mode
pure state |ψAB〉 〈ψAB|, then the output state $AB = ΦA(κ1, µ1)⊗ΦB(κ2, µ2)[|ψAB〉 〈ψAB|]
is verified to be entangled if tr[$ABWλ] < 0 for some λ ∈ R. One can actually adjust the
input state |ψAB〉 〈ψAB| to be dependent on the channel parameters κ1, µ1, κ2, µ2 in order
to find a robust entangled state for a given channel.

4. Robust Non-Gaussian Entanglement

Here we present a non-Gaussian state |ψAB
c 〉 〈ψAB

c |, which exhibits high resilience to
the local Gaussian noise ΦA(κ1, µ1)⊗ΦB(κ2, µ2). A real scaling coefficient c ∈ R describes
asymmetry in the skewed two-mode “cat state”

|ψAB
c 〉 =

|γ〉 ⊗ |0〉 − |0〉 ⊗ |cγ〉√
2
[
1− exp

(
−(1 + c2) |γ|

2

2

)] , (13)

where |γ〉 and |cγ〉 are coherent states and |0〉 is a vacuum state. At the end of this section
we will make the coefficient c dependent on parameters κ1, µ1, κ2, µ2 so as to present the
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noise-specific resilient entangled state; however, for now we treat it as an independent
parameter. If c = 1, then we get a symmetric state whose entanglement is robuster
against symmetric Gaussian noise ΦA(κ, µ)⊗ΦB(κ, µ) than that of any Gaussian state [40].
When we deal with asymmetric noise ΦA(κ1, µ1)⊗ΦB(κ2, µ2), the robustest input state
is expected to be asymmetric too and this is the physical reason to consider the skewed
state (13).

The output state ΦA(κ1, µ1)⊗ΦB(κ2, µ2)[|ψAB
c 〉 〈ψAB

c |] is a linear combination of four
operators

Φ(κ1, µ1)[|γ〉 〈γ|]⊗Φ(κ2, µ2)[|0〉 〈0|], (14)

Φ(κ1, µ1)[|γ〉 〈0|]⊗Φ(κ2, µ2)[|0〉 〈cγ|], (15)

Φ(κ1, µ1)[|0〉 〈γ|]⊗Φ(κ2, µ2)[|cγ〉 〈0|], (16)

Φ(κ1, µ1)[|0〉 〈0|]⊗Φ(κ2, µ2)[|cγ〉 〈cγ|]. (17)

Each of the operators (14)–(17) is readily calculated via Equation (9) and then used to
calculate the Hilbert-Schmidt scalar product with the entanglement witness Wλ:

tr{Wλ Φ(κ1, µ1)[|γ〉 〈γ|]⊗Φ(κ2, µ2)[|0〉 〈0|]}, (18)

tr{WλΦ(κ1, µ1)[|γ〉 〈0|]⊗Φ(κ2, µ2)[|0〉 〈cγ|]}, (19)

tr{WλΦ(κ1, µ1)[|0〉 〈γ|]⊗Φ(κ2, µ2)[|cγ〉 〈0|]}, (20)

tr{WλΦ(κ1, µ1)[|0〉 〈0|]⊗Φ(κ2, µ2)[|cγ〉 〈cγ|]}. (21)

The straightforward integral calculations show that all four expressions are finite if

λ < 1−

√
(τ1 − 1)(τ2 − 1)

τ1τ2
. (22)

Suppose γ→ 0, then it is not hard to see via the Taylor series that the condition

tr
{

Wλ ΦA(κ1, µ1)⊗ΦB(κ2, µ2)[|ψAB
c 〉 〈ψAB

c |]
}
< 0 (23)

is fulfilled if the following inequality is met for the leading term (proportional to |γ|2):

b1λ2 − 2b2λ + b3 < 0, (24)

b1 = 1− η1 + c2(1− η2), (25)

b2 = b1 − c
√

η1η2

τ1τ2
, (26)

b3 =
[τ1(1− η1) + τ2 − 1]− 2c

√
η1τ1η2τ2 + c2[τ1 + τ2(1− η2)− 1]
τ1τ2

, (27)

where τi, ηi are expressed through κi, µi via Equation (7), i = 1, 2. Some elementary algebra
yields that the inequality (24) is fulfilled for some λ satisfying (22) if

τ1 <
1 + c2(1− η2)

1− η1 + c2(1− η2)
and τ2 <

1− η1 + c2

1− η1 + c2(1− η2)
. (28)

Since the limit γ → 0 has been used in the derivation above, we actually get the
one-photon continuous-variable state

|ψ̃AB
c 〉 =

|1〉 ⊗ |0〉 − c |0〉 ⊗ |1〉√
1 + c2

, (29)

where |1〉 is a single-photon Fock state. Inequalities (28) give sufficient conditions under
which the output state ΦA(κ1, µ1)⊗ΦB(κ2, µ2)[|ψ̃AB

c 〉 〈ψ̃AB
c |] is entangled. These inequal-
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ities can be rewritten in terms of the additional noise on top of the quantum-limited
operation, ai = µi − 1

2 |κi − 1| ≥ 0, i = 1, 2, as the following result.

Proposition 1. The output state ΦA(κ1, µ1)⊗ΦB(κ2, µ2)[|ψ̃AB
c 〉 〈ψ̃AB

c |] is entangled if

• both ΦA(κ1, µ1) and ΦB(κ2, µ2) are attenuators (κ1,2 ≤ 1) and

a1 <
κ1(1 + a2)

(c2 + 1)(1 + a2)− c2κ2
, a2 <

c2κ2(1 + a1)

(c2 + 1)(1 + a1)− κ1
; (30)

• ΦA(κ1, µ1) is an attenuator (κ1 ≤ 1) and ΦB(κ2, µ2) is an amplifier (κ2 ≥ 1) and

a1 <
κ1(κ2 + a2)

κ2 + (c2 + 1)a2
, a2 < 1− κ2(1 + a1 − κ1)

(c2 + 1)(1 + a1)− κ1
; (31)

• both ΦA(κ1, µ1) and ΦB(κ2, µ2) are amplifiers (κ1,2 ≥ 1) and

a1 < 1− c2κ1a2

κ2 + (c2 + 1)a2
, a2 < 1− κ2a1

c2κ1 + (c2 + 1)a1
, (32)

where ai = µi − 1
2 |κi − 1| ≥ 0, i = 1, 2.

If c = 1 and we deal with a symmetric state |ψ̃1〉 = 1√
2
(|1〉 |0〉 − |0〉 |1〉), then Proposi-

tion 1 reproduces the known results from Ref. [40]; however, if c 6= 1, then Proposition 1
gives a valuable generalization. In Figure 2, we depict typical noise levels tolerated by
the state |ψ̃c〉 without losing entanglement. If we choose specific values of κ1, κ2, and c,
then the shaded region in Figure 2 shows the extra noises a1, a2, which do not destroy
entanglement of |ψ̃c〉. One can clearly see that the non-Gaussian state |ψ̃c〉 outperforms
all Gaussian ones (dashed line) if we deal with a two-side (asymmetric or symmetric)
amplification (Figure 2c); however, a single state |ψ̃c〉 with some fixed value of c cannot
outperform all Gaussian states (dashed line) in the case of asymmetric attenuation (κ1,2 < 1,
κ1 > κ2, Figure 2d) or in the case of amplification-attenuation channel (κ1 > 1 > κ2,
Figure 2b). If a2 tends to zero, then ΦB(κ2, µ2) approaches the quantum limited attenuation
and the high-energy Gaussian entanglement tolerates this noise. Dashed line in Figure 2
corresponds to the infinite-energy two-mode squeezed state [40]. Nonetheless, varying the
parameter c, we cover the area in the extra noise space (a1, a2) which is strictly larger than
the area for the Gaussian states (dashed line, Equation (1)) and fully comprises the latter.
Some elementary algebra shows that the envelope curve for the former area (the arc of an
ellipsoid in Figure 2) is exactly given by the equation κ1µ2

2 + κ2µ2
1 = 1

4 (κ1 + κ2)(1 + κ1κ2).
Therefore, if the inequality (2) is fulfilled, then there exists some c = cκ1µ1κ2µ2 such that the
state ΦA(κ1, µ1)⊗ΦB(κ2, µ2)[|ψ̃AB

c 〉 〈ψ̃AB
c | is entangled.

Example 1. Consider the Gaussian local attenuation dynamics eL1t ⊗ eL2t with the time-dependent
parameters (5), where the rates Γ1 = Γ2 = Γ and n̄1 = 0.5, n̄2 = 1.5. Then

κ1(t) = κ2(t) = e−Γt, µ1(t) = 1− e−Γt, µ2(t) = 2(1− e−Γt).

In such dynamics, the fundamental threshold (1) implies that no Gaussian entanglement can survive
if Γt ≥ − ln 2

3 ≈ 0.405. On the other hand, the inequality (2) implies that the non-Gaussian

entanglement of states (13) may be preserved up to the threshold Γt = − ln 10−
√

19
9 ≈ 0.467.

In Figure 3, we show both thresholds as well as the dynamics of entanglement for Gaussian and
non-Gaussian states. Non–Gaussian entanglement is characterized by the introduced entanglement
witness, namely, the quantity −tr[Wλ$(t)] with λ = 0.74. As initial states we use the non-
Gaussian state (13) with γ = 1 and c = 2, which has the energy 2.7 photons, and the single-photon
non-Gaussian state (29) with c = 2. Figure 3 suggests that these non-Gaussian states remain
entangled after passing the Gaussian threshold, with the single-photon state exhibiting stronger
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resilience for the entanglement measure used. The latter fact is in agreement with the earlier
observations on the low-energy entanglement robustness [37]. (Non-monotonic behavior of our
entanglement measure for the higher-energy state should not be surprising as the witness operator
Wλ assigns higher values to coherent states with higher amplitude. As the noise increases, the
overlap with high-amplitude states increases too. In this sense, our entanglement measure is not an
entanglement monotone but it is rather a very sensitive entanglement detector for slightly entangled
states.) As examples of Gaussian states we consider two-mode squeezed vacuum states with the
same initial energy (2.7 photons and 1 photon). Unfortunately, our entanglement measure diverges
for these states so we resort to the Simon criterion (necessary and sufficient condition for two-mode
Gaussian entanglement [41]), namely, the entanglement measure is the minimal eigenvalue of
the matrix V(p2 → −p2) − i

2 ∆, where V is the covariance matrix and V(p2 → −p2) is its
modified version obtained via inversion of the momentum operator for the second mode. Figure 3
illustrates that the entanglement of such Gaussian states vanishes before the Gaussian threshold.
The entanglement death time approaches the Gaussian threshold if the energy of the two-mode
squeezed state tends to infinity. Whatever low the non-Gaussian entanglement can be after passing
the Gaussian threshold, Ref. [38] suggests that this entanglement is distillable in general, so it
can be converted into a useful form. In principle, there may exist non-Gaussian states that remain
entangled even after the established non-Gaussian threshold, because this threshold was derived for a
specific family of non-Gaussian states {|ψAB

c 〉} and a specific entanglement measure −tr[Wλ$(t)].

Figure 2. Region of the extra noise ai in the Gaussian attenuator/amplifier with the attenuation
factor/power gain κi, i = 1, 2, within which the non-Gaussian state |ψ̃AB

c 〉 remains entangled. Dashed
line corresponds to the boundary attainable with Gaussian states.
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Figure 3. Entanglement dynamics for Gaussian and non-Gaussian states in Example 1 vs. dimension-
less time. Inequalities (1) and (2) establish thresholds for general Gaussian and specific non-Gaussian
entanglement death time, respectively.

To make the analysis complete and more applicable to practice we specify how the
advantageous parameter cκ1µ1κ2µ2 should be chosen for given channel parameters κ1, µ1, κ2,
µ2. Suppose the channel parameters κ1, µ1, κ2, µ2 satisfy the inequality (2), then we fix the
amplification/attenuation parameters κ1,2 and find the maximally permissible noise levels
µ̃1,2 by projecting the point (µ1, µ2) onto the boundary of the ellipsoid (see Figure 4), namely,

µ̃i = µi

√
1
4 (κ1 + κ2)(1 + κ1κ2)√

κ1µ2
2 + κ2µ2

1

, i = 1, 2. (33)

Then the advantageous parameter cκ1µ1κ2µ2 is chosen in such a way that a corner point for
the noise-toleration figure coincides with the point (ã1, ã2) in Figure 4, ãi = µ̃i − 1

2 |κi − 1|.
The algebraic expression reads

cκ1µ1κ2µ2 =

√
τ̃2 − τ̃1 + κ1

τ̃1 − τ̃2 + κ2
, τ̃i = max(1, κi) + µ̃i −

1
2
|κi − 1|, i = 1, 2. (34)

The obtained advantageous state |ψ̃AB
cκ1µ1κ2µ2

〉 has an interesting feature regarding the

distribution of energy between the modes ( 1
1+c2 quanta in the first mode, c2

1+c2 quanta in the
second mode). In Figure 2b we observe that in the case when the first mode is amplified
and the second one is attenuated, sometimes it is beneficial to put more energy in the
first (amplified) mode to protect entanglement. Another especially counterintuitive result
takes place if both modes are asymmetrically amplified (κ1,2 ≥ 1) and κ2 > κ1 + 2: then
cκ1µ1κ2µ2 > 1 irrespective to the noise admixed, i.e., it is always beneficial to put more
energy in the second mode with a higher power gain to preserve entanglement.
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Figure 4. Example on how to find the advantageous state |ψ̃AB
cκ1µ1κ2µ2

〉, whose entanglement is resilient
against a given extra noise (a1, a2) (green dot) in the two-mode Gaussian attenuator/amplifier with
the attenuation factor/power gain κ1, κ2 in the corresponding mode. Straight solid line passes through
the ellipsoid center and the green dot, thus intersecting the ellipsoid (2) in the point (ã1, ã2) that
determines cκ1µ1κ2µ2 via Formula (34).

5. Conclusions

The current study shows that the entanglement of specific low-energy non-Gaussian
states has stronger resilience against local Gaussian noises as compared to that of arbitrary-
energy Gaussian ones. A similar observation was made earlier in the case of symmetric
Gaussian noise ΦA(κ, µ)⊗ΦB(κ, µ); however, there was a loophole in the case of asymmet-
ric Gaussian noises ΦA(κ1, µ1)⊗ΦB(κ2, µ2). In this study, we have completely closed this
loophole by a rigorous proof on the existence of an entangled non-Gaussian state whose en-
tanglement can tolerate as high noises µ1 and µ2 as meet the requitement (2). The Guassian
states do lose entanglement beyond the region (1), which is a subset of (2). Moreover, we
have explicitly characterized the advantageous non-Gaussian single-photon skewed state
|ψ̃cκ1µ1κ2µ2

〉 that exhibits resilient entanglement and discussed peculiarities of the energy dis-
tribution among the modes in this state. Our results imply that the optimization problem of
maximizing time t during which the state ΦA(κ1(t), µ1(t))⊗ΦB(κ2(t), µ2(t))[|ψAB〉 〈ψAB|]
remains entangled definitely has a solution |ψAB〉 beyond the set of Gaussian states. Con-
ceptually, these results stimulate further research beyond the “Gaussian world” paradigm
in quantum information science (within which solutions to optimization problems involv-
ing Gaussian channels and Gaussian measurements are supposed to be attained at Gaussian
states and Gaussian ensembles).
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