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Abstract: Dempster–Shafer evidence theory is an effective way to solve multi-sensor data fusion
problems. After developing many improved combination rules, Dempster–Shafer evidence theory
can also yield excellent results when fusing highly conflicting evidence. However, these approaches
still have deficiencies if the conflicting evidence is due to sensor malfunction. This work presents a
combination method by integrating information interaction graph and Dempster–Shafer evidence
theory; thus, the multiple evidence fusion process is expressed as a network. In particular, the
credibility of each piece of evidence is obtained by measuring the distance between the evidence first.
After that, the credibility of the evidence is evaluated, keeping the unreliable evidence out of the
information interaction network. With the fusion of connected evidence, the accuracy of the fusion
result is improved. Finally, application results show that the presented method is effective.

Keywords: data fusion; Dempster–Shafer theory; evidential conflict; sensor malfunction; evidence
interaction

1. Introduction

With the advancement of science and technology in recent years, information analysis
has gained popularity as a research topic. Applying multi-sensor data fusion techniques
will enable the creation of the consolidated view within this process. Therefore, by utilizing
multi-sensor data fusion technology in various decision-making applications, such as
risk analysis [1,2], fault diagnosis [3,4], health prognosis [5], image processing [6], target
tracking [7] and so on, the performance of the system is significantly improved. Meanwhile,
researchers have long been troubled by the imprecision and uncertainty brought on by
poor weather, old sensors, and lack of energy supply. Therefore, a fusion mechanism must
be created in order to reduce this kind of ambiguity and imprecision.

Numerous theories have been put forth up to this point in order to model and
handle uncertain and imprecise information, such as rough sets theory [8,9], fuzzy sets
theory [10–12], evidence theory [13–15], Z numbers theory [16,17] and D numbers the-
ory [18,19]. These methods, which have been widely used in a variety of fields depending
on their needs, concentrate on various aspects. In particular, because Dempster–Shafer
evidence theory (DST) can accept incomplete data and assign evidence to multiple hypothe-
ses, there is less of a need for prior probabilities. Once the fusion result is obtained, the
mass of belief can be transferred onto single hypotheses by pignistic transformation [20]
or DSmP [21]. It has thus been favored for its adaptability and effectiveness in modeling
uncertainty and imprecision.

DST undoubtedly has some drawbacks. Different degrees of conflicts are generated by
the sensors due to different types, tasks, and precision. However, it is usually less likely to
produce utterly different evidence if the sensor works normally. In most cases, the evidence
obtained is relevant to a certain extent and contains complementary information. However,
when strongly conflicting information due to malfunction is combined, the results might
be unexpected [22]. There are primarily two ways to approach this problem after extensive
research over many years. The first kind is to modify Dempster’s combination rule,
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for example, Yager’s combination rule [23], Dubois and Prade’s disjunctive combination
rule [24], Smets’ unnormalized combination rule [25] and Martin and Osswald’s PCR6
rule [26,27]. Numerous studies are inclined to pretreat the body of evidence to handle
the conflict evidence fusion problem because it is possible for some strong properties to
be destroyed by modifying the combination rule. Specifically, Murphy’s simple average
approach of the bodies of evidence [28], Deng et al.’s weighted average of the mass functions
based on the evidence distance [29], Yuan et al.’s entropy-based method [30], Yang et al.’s
open Deng entropy based method [31], Xiao’s prospect-theory-based method [32] and belief
divergence measure based method [33] all focus on the second way. All this research has
presented effective solutions for fusing conflicting evidence. Still, if conflicting evidence
is due to sensor malfunction, the modification would not work as expected, and the
preprocess also fails to remove the influence of fault information.

As a complex combination problem involving multiple sensors, it makes sense to think
about a connection between multi-sensor data fusion and multi-agent systems. Artificial
intelligence has long been interested in multi-agent systems, which have solved a number
of issues that were too complex for a single agent [34]. Communication topology-based
information exchange is crucial for a well-coordinated multi-agent system. Therefore, it
is worthwhile to try to enhance communication in order to increase the accuracy of data
fusion. Multi-agent systems will also be more successful in achieving this goal as the fusion
result becomes more accurate [35]. However, different from multi-agent systems, since
the reliability of information obtained by each sensor is different when sensing different
environments, and where or when the malfunction will happen is unknown, there is a
contradiction between presetting topology and obtaining higher information accuracy. That
is to say, in order to obtain higher fusion accuracy, switching topology, or how establishing
the most effective topology is a problem that must be taken into account. It is thus more
reasonable to make a connection based on the reliability of the evidence.

As a result of the discussion above, a networked approach is used in this paper by
connecting graph theory and evidence theory. A newly developed credibility test rule is
used to weed out implausible evidence based on the credibility degree of the evidence. The
effect of fault information is therefore eliminated due to the faulty sensor’s information
being cut off from the communication network. It is worth noting that we assume the
evidence used for fusion is already output by each sensor, but how the sensor obtains the
output is not within the scope of this manuscript.

The main contributions of this study are as follows: (1) A networked information
fusion method is proposed to solve the conflict evidence fusion problem. Inspired by
the knowledge of graph theory in multi-agent systems, the proposed method takes the
information interaction between evidence into account, which makes multi-data fusion
problems closer to multi-agent systems. (2) Rather than exclude the evidence with the
lowest credibility simply, a credibility degree test rule is defined for the purpose of checking
whether the evidence contains enough valid information to participate in the fusion. In
this way, accidents where credible evidence is omitted due to the order of credibility are
avoided as much as possible. (3) According to the isolated node mechanism of the proposed
method, the highly conflicting evidence provided by the faulty sensor can be distinguished
as an isolated node. Furthermore, since the isolated node is not involved in the fusion
process, the negative impact caused by the fault information can be reduced effectively.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries of
this paper briefly. The evidence interaction is explained to point out the direction for the
fusion of evidence in Section 3. A graph theory and evidence theory based multi-sensor
data fusion method is proposed in Section 4. In Section 5, a numerical example is illustrated
to verify the effectiveness of the proposed method. The conclusion is summarized in
Section 6.
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2. Preliminaries
2.1. Dempster–Shafer Evidence Theory

DST was named by Dempster [13] and Shafer [14], who firstly proposed and developed
the theory. To model the uncertainty and aggregate different information, it is necessary to
comprehend the following basic concepts in DST.

Definition 1 ((Frame of discernment (FOD)) [33]). Assume U is a set consisting of mutually
exclusive and collectively exhaustive events; the set U is called a frame of discernment, which
indicted by

U = {E1, E2, . . . , EN} (1)

2U indicates the power set of U and contains all propositions, where

2U = {∅, {E1}, {E1, E2}, . . . , U} (2)

and ∅ is an empty set.

Definition 2 ((Mass function) [33]). A FOD U is based on the concept of mass function, which
is a mapping m(·) from 2U to [0, 1], satisfying the following condition:

m(∅) = 0, ∑
A∈2U

m(A) = 1 (3)

In DST, mass function is also known as basic belief assignment (BBA). If A ∈ 2U verifies
m(A) ≥ 0, A will be called as a focal element, and the union of all of focal elements form the core of
the mass function.

Definition 3 ((Belief function) [33]). The belief function and plausibility function of a proposition
A ∈ U is defined as

Bel(A) = ∑
B⊆A

m(B) (4)

Pl(A) = 1− Bl(A) = ∑
B∩A 6=∅

m(B) (5)

where A = U − A and Bel(A) ≤ Pl(A) are always satisfied.

Definition 4 ((Dempster’s combination rule) [33]). Dempster’s combination rule uses the
orthogonal sum of two BBAs. Assume two independent BBAs m1(·) and m2(·) are on the FOD U,
their combination m(·) = m1(·)⊕m2(·) is expressed as follows:

m(A) =

{
1

1−K ∑B∩C=A m1(B)m2(C), A 6= ∅
0, A = ∅

(6)

K = ∑
B∩C=∅

m1(B)m2(C) (7)

where B and C are also propositions in 2U , and K represents the conflict between two BBAs.

2.2. Graph Theory

Graphs have been used to model information exchange between agents in cooperative
multi-agent systems for years [36,37]. A graph consists of a pair (N , E), where N is a finite
nonempty set of nodes, and E ∈ N ×N is a set of ordered pairs of nodes, which are called
edges. The pairs of nodes in an undirected graph are unordered. A directed path is a
sequence of ordered edges of the form (vi, vj), where vi, vj ∈ N in a digraph. Nodes are
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connected if there is at least one path between two nodes. On the contrary, isolated nodes
are not connected to any other nodes.

2.3. The Distance Measure between Basic Belief Assignments

The measure of similarity between BBAs is a natural consideration. The distance
measure between BBAs can tell us whether two pieces of evidence are close or distant. In
this regard, Jousselme’s distance [38] is a appropriate approach.

Definition 5 ((Jousselme Distance) [38]). The distance between mi(·) and mj(·) is defined as:

dij =

√
1
2
[mi(·)−mj(·)]T D[mi(·)−mj(·)] (8)

where D is an 2N × 2N matrix whose elements are

D(A, B) =
|A ∩ B|
|A ∪ B| , A, B ⊆ 2U (9)

|A| is the cardinality of A.

3. Evidence Interaction

How to deal with the conflict between evidence in DST has been a problem bothering
researchers for a long time. Jousselme’s distance provides an easy and effective way to
compare evidence. For instance, a small distance implies the support from other evidence,
which means this evidence should play a more important role in fusion. Conversely, a
large distance means this evidence is not supported by other evidence, that is to say, an
insignificant role should be distributed to this evidence. However, only the similarity
measure is still not enough to generate an accurate fusion result.

In order to better utilize the accurate information provided by the evidence, the
credibility of the evidence is necessary. Furthermore, the case where the sensor failure
happened is unavoidable. How can we know a sensor is malfunctioning or functioning
normally? Assuming a sensor does fail, how can we know how badly it has failed? Can
the information provided by the faulty sensor still be used for fusion? To answer these
questions, the graph theory is leveraged to describe the interaction between the evidence
in this section. According to the Jousselme distance, the credibility degree is obtained to
measure the relative importance of evidence. What is more, the credibility is utilized to
determine whether evidence obtained by a faulty sensor should be involved in the fusion
process or not.

Definition 6 ((Divergence Measure) [32]). Through Jousselme’s distance, the divergence measure
matrix, denoted as DMM, can be obtained:

DMM =



0 · · · d1i · · · d1k
... · · ·

... · · ·
...

di1 · · · 0 · · · dik
... · · ·

... · · ·
...

dk1 · · · dki · · · 0

 (10)

where dii = 0(1 ≤ i ≤ k) represents the BBA mi is identical to itself.

Definition 7 ((Support Degree) [33]). Let m1, m2, . . . , mi, . . . , mk be the BBAs on the FOD U,
we denote the support degree of BBA mi from other BBAs as Supi, which is defined as:

Supi =
k− 1

∑k
j=1 dij

, j 6= i (11)
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The support degree is the reciprocal of the average distance between mi and the other BBAs.

Definition 8 ((Credibility Degree) [33]). The credibility degree of BBA mi(1 ≤ i ≤ k) on FOD
U, denoted as Crdi, is defined as

Crdi =
Supi

∑k
j=1 Supj

(12)

Definition 9 (Evidence Connection). Let a fully connected undirected graph G represent the
initial topology of BBAs; the element of the initial adjacency matrix A is defined as

aij = 1, (i 6= j); aij = 0, (i = j) (13)

To determine whether BBA mi(·) obtained by a faulty sensor is reliable or not, the credibility
should be tested. If the following condition holds, mi(·) is considered as a unreliable evidence.

Crd− Crdi
Crdi

≥ 1 (14)

Once the BBA mi is considered as unreliable, the connection between mi and other BBAs will
be disconnected. Correspondingly, aij(j 6= i) and aji(j 6= i) will be replaced by 0. The modified
graph will represent the interaction between evidence, and the last BBAs will be fused following this
information flow, which is detailed in the next section.

4. The Proposed Method

The previous descriptions provided sufficient theoretical preparation for the fusion
problem considered in this paper. Thus, a new networked method is presented to process
the fusion problems in this section, which contains the following procedures. Firstly, the
credibility degree of evidence can be measured via Jousselme’s distance. Secondly, by
means of the relative significance hidden in the credibility, the transmission relationship
between evidence can be generated, in which the impact of faulty information is reduced.
Lastly, following the evidence interaction flows, the fusion result can be obtained through
Dempster’s combination rules by two rounds. The procedures of the proposed approach
are depicted in Figure 1.

4.1. Calculate the Credibility Degree of the Evidence

As mentioned above, it is necessary to take advantage of the signals provided by
credibility degree. Hence, the credibility degree of the evidence will be obtained via the
following steps.

Step 1-1: By mean of Jousselme’s distance, the divergence measure matrix DMM can be
constructed as (10).
Step 1-2: For mi, the average distance ADi from other evidence can be calculated by

ADi =
∑k

j=1,j 6=i dij

k− 1
, 1 ≤ i ≤ k; 1 ≤ j ≤ k (15)

Step 1-3: The support degree Supi of mi is defined as

Supi =
1

ADi
, 1 ≤ i ≤ k (16)

Step 1-4: The credibility degree Crdi of mi is calculated by

Crdi =
Supi

∑k
j=1 Supj

, 1 ≤ i ≤ k (17)
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Figure 1. The flowchart of the proposed method.

4.2. Generate the Evidence Transmission Relationship

Now, we obtained the credibility of the evidence. According to the conception of
the proposed method, the transmission relationship between evidence can be established
as follows.

Step 2-1: For each evidence, the credibility degree is tested by (14).
Step 2-2: For evidence mi satisfying (14), replace aij(j 6= i) and aji(j 6= i) in (13) by 0.
Step 2-3: In accordance with the modified adjacency matrix A′, the interaction graph G′

between evidence is constructed.

4.3. Fusion along the Flows of Evidence Interaction

The interaction graph between the evidence is now generated; it is time to fuse the
evidence and obtain the combination result via the steps below.

Step 3-1: For each evidence mi in connected part of the interaction graph G′, fuse evidence
mi and evidence connected to mi directly via the Dempster’s combination rule (6); the
fusion result is represented as process evidence mi.
Step 3-2: All process evidence obtained in the previous step are fused via Dempster’s
combination rule (6). Hence, the final combination result is obtained.
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As explained above, the proposed method still belongs to the second scheme intro-
duced in Section 1. In the preprocess, credibility is calculated as a standard to measure the
relative importance of evidence like many previous works. However, different from the
previous weighting operations, the weighting is represented from another perspective in
the form of the evidence interaction graph in the proposed method. The reason for utilizing
the evidence interaction graph is that we attend to express and process the multi-data
fusion problems in the form of networks. Furthermore, the unreliable evidence is weeded
out after the credibility test, which prevents the false evidence from adversely affecting
the outcome. As described in this section, the proposed method is theoretically feasible.
To verify the feasibility of the proposed method in applications, examples are given in the
next section.

5. Example Illustration

In order to demonstrate the effectiveness of the proposed method, two application
cases from [33,39] are illustrated in this section.

5.1. Case 1

• Problem statement

Consider a target recognition problem associated with sensor reports collected from
five different types of sensors. It should be noted that this is a fictitious example, and target
A is supposed as the real target. These sensor reports, which are modeled as the BBAs, are
given in Table 1 from [33], where the FOD U that consists of three potential objects is given
by U = A, B, C.

Table 1. The basic belief assignments for multi-sensor-based target recognition. (Reprinted from [33]
Copyright (2022), with permission from Elsevier).

BBA A B C A, C

m1 0.41 0.29 0.30 0.00
m2 0.00 0.90 0.10 0.00
m3 0.58 0.07 0.00 0.35
m4 0.55 0.10 0.00 0.35
m5 0.60 0.10 0.00 0.30

• The fusion approach

Step 1-1: Construct the divergence measure matrix DMM = (dij)k×k as follows:

DMM =


0 0.5386 0.3495 0.3257 0.3311

0.5386 0 0.8142 0.7850 0.7906
0.3495 0.8142 0 0.0300 0.0374
0.3257 0.7850 0.0300 0 0.0354
0.3311 0.7906 0.0374 0.0354 0


Step 1-2: Obtain the average evidence distance ADi of mi as:

AD1 = 0.3862 AD2 = 0.7321

AD3 = 0.3078 AD4 = 0.2940

AD5 = 0.2986

Step 1-3: Calculate the support degree of mi as:

Sup1 = 2.5892 Sup2 = 1.3659

Sup3 = 3.2491 Sup4 = 3.4011

Sup5 = 3.3490
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Step 1-4: Compute the credibility degree of mi as:

Crd1 = 0.1855 Crd2 = 0.0979

Crd3 = 0.2328 Crd4 = 0.2437

Crd5 = 0.2400

Step 2-1: Calculate the test value Tvi of the credibility degree of mi as:

Tv1 = 0.0782 Tv2 = 1.0429

Tv3 = −0.1409 Tv4 = −0.1793

Tv5 = −0.1667

Step 2-2: Modify the adjacency matrix A to A′:

A′ =


0 0 1 1 1
0 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0


Step 2-3: Generate the interaction graph G′ between evidence as Figure 2.

Figure 2. The interaction graph generated by the proposed method.

Step 3-1: Fuse the connected evidence via the Dempster’s rule of combination; the process
evidence mi is computed. Since the connection graph is modified by a full connected graph,
the process evidence generated by the proposed method is also the same. The process
evidence m1 is shown as follows:

m1(A) = 0.9649

m1(B) = 0.0006

m1(C) = 0.0344

m1(A, C) = 0.0000

Step 3-2: Fuse the process evidence via Dempster’s combination rule; the fusion results are
shown in Table 2.
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Table 2. Combination results of the evidence in terms of different combination rules.

Method A B C A, C Target

Dempster [13] 0.0000 0.1422 0.8578 0.0000 C
Dubois and Prade [24] 0.7504 0.0160 0.0158 0.0832 A
PCR6 [26] 0.4518 0.3624 0.0438 0.1420 A
Murphy [28] 0.9620 0.0210 0.0138 0.0032 A
Deng et al. [29] 0.9820 0.0039 0.0107 0.0034 A
Yuan et al. [30] 0.9886 0.0002 0.0072 0.0039 A
Xiao [33] 0.9905 0.0002 0.0061 0.0043 A
Proposed method 1.0000 0.0000 0.0000 0.0000 A

The more precise results of the proposed method are exhibited bellow.

m(A) = 0.999998

m(B) = 1.866277× 10−13

m(C) = 1.623702× 10−6

m(A, C) = 2.134348× 10−33

m(A, B, C) = 4.299348× 10−17

• Discussion

From Case 1, we notice that m2 is the highly conflicting evidence with others. The fus-
ing results obtained by different combination methods are presented in Table 2. As shown
in Table 2, except Dempster’s combination rule [13], Dubois and Prade’s method [24], PCR6
method [26], Murphy’s method [28], Deng et al.’s method [29], Yuan et al.’s method [30],
Xiao’s method [33] and the proposed method all identify the correct target. Among the
results shown in Table 2, after fusion by two rounds, the proposed method has the clos-
est support to 1for target A, which demonstrates the proposed method is effective when
conflicting evidence exists. In fact, by excluding the untrustworthy evidence from the
connection graph, the adverse effects are greatly eliminated, so that the fusion of reliable
evidence is reinforced from the other side.

5.2. Case2

• The decision-making application

In this subsection, an application case from [39] is considered, which was evaluated
through a series of experiments implemented in the Internet of Things (IoT) and smart
building projects by the CERIST-ALGERIA research center laboratory. In this scenario,
4 sensors are installed to monitor ambient light to optimize electrical lighting and energy
control, and 4 hypotheses are defined as follows. H1: The office is occupied and the lighting
value exceeds 580 lx; H2: The office is idle and the lighting value exceeds 580 lx; H3: The
office is occupied and the lighting value does not exceed 580 lx; and H4: The office is empty
and the lighting value does not exceed 580 lx. Ten percent of belief was assigned to θ to
estimate the impact of the environment on evidence generation. The BBAs collected by
four sensors are shown in Table 3.

Table 3. The basic belief assignments for IoT decision making. (Reprinted from [39] Copyright (2022),
with permission from Elsevier).

BBA H1 H2 H3 H4 θ

m1 0.648 0.153 0.090 0.009 0.100
m2 0.621 0.072 0.198 0.009 0.100
m3 0.729 0.054 0.099 0.018 0.100
m4 0.747 0.063 0.081 0.009 0.100
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• The fusion approach

Step 1-1: Construct the divergence measure matrix DMM = (dij)k×k as follows:

DMM =


0 0.0973 0.0909 0.0948

0.0973 0 0.1046 0.1217
0.0909 0.1046 0 0.0201
0.0948 0.1217 0.0201 0


Step 1-2: Obtain the average evidence distance ADi of mi as:

AD1 = 0.0944 AD2 = 0.1079

AD3 = 0.0719 AD4 = 0.0789

Step 1-3: Calculate the support degree of mi as:

Sup1 = 10.5982 Sup2 = 9.2687

Sup3 = 13.9153 Sup4 = 12.6745

Step 1-4: Compute the credibility degree of mi as:

Crd1 = 0.2281 Crd2 = 0.1995

Crd3 = 0.2995 Crd4 = 0.2728

Step 2-1: Calculate the test value Tvi of the credibility degree of mi as:

Tv1 = 0.0959 Tv2 = 0.2531

Tv3 = −0.1654 Tv4 = −0.0837

Step 2-2: Modify the adjacency matrix A to A′:

A′ =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


Step 2-3: Generate the interaction graph G′ between evidence as Figure 3.

Figure 3. The interaction graph generated by the proposed method.

Step 3-1: Fuse the connected evidence via the Dempster’s rule of combination; the process
evidence mi is computed. Since the connection graph is modified by a fully connected
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graph, the process evidence generated by the proposed method is also the same. The
process evidence m1 is shown as follows:

m1(H1) = 0.9919

m1(H2) = 0.0026

m1(H3) = 0.0051

m1(H4) = 0.0001

Step 3-2: Fuse the process evidence via Dempster’s combination rule; the fusion results are
shown in Table 4.

Table 4. Combination results of the evidence for case 2.

BBA H1 H2 H3 H4 Target

Dempster [13] 0.9918 0.0027 0.0051 0.0001 H1
Dubious and Prade [24] 0.7704 0.0110 0.0200 0.0003 H1
PCR6 [26] 0.9158 0.0246 0.0428 0.0005 H1
Xiao [33] 0.9919 0.0026 0.0051 0.0001 H1
Jiang et al. [40] 0.9908 0.0030 0.0058 0.0001 H1
Wang et al. [39] 0.9921 0.0025 0.0050 0.0001 H1
Proposed method 1.0000 0.0000 0.0000 0.0000 H1

The more precise results of the proposed method are exhibited bellow.

m(H1) = 0.999999

m(H2) = 6.923081× 10−11

m(H3) = 8.412098× 10−10

m(H4) = 2.165541× 10−14

m(θ) = 4.952586× 10−15

• Discussion

From case 2, we notice that there is low conflict between the evidence. As shown in
Table 4, in this usual case without strong conflicts, all methods identify the correct target.
Additionally, the proposed method has the highest support for target H1.

6. Conclusions

In this paper, a networked method to handle information fusion problems was pro-
posed by taking the evidence interaction graph and DST into account. The original purpose
is twofold. One is to reduce the impact of conflicting evidence on fusion, and the other
is to realize information fusion in the way of multi-agent systems achieving consensus.
However, even if the communication topology is established, the difference between ev-
idence and the relative neighboring error between multi-agents is not the same, and the
fusion between evidence and the collaborative control of multi-agent systems cannot be
carried out in the same way. As a result, only the first goal was achieved, i.e., the influ-
ence of conflicting evidence generated by various reasons on fusion was reduced, but
the collaborative method between evidence still needs to be explored. In summary, the
proposed fusion method is an attempt to bring information fusion into a part of networked
systems, which provides a new inspiration for information fusion and networked systems.
However, while the fusion performance is satisfactory, the amount of calculation is also
significantly increased. In the future, we intend to develop some new rules for modifying
evidence connections. In particular, by reducing the number of connected edges or making
the connection weights of the edges more refined, we will try to achieve the purpose of
reducing computation.
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