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Abstract: This paper considers the Strongly Asynchronous, Slotted, Discrete Memoryless, Massive
Access Channel (SAS-DM-MAC) in which the number of users, the number of messages, and the
asynchronous window length grow exponentially with the coding blocklength with their respective
exponents. A joint probability of error is enforced, ensuring that all the users’ identities and messages
are correctly identified and decoded. Achievability bounds are derived for the case that different users
have similar channels, the case that users’ channels can be chosen from a set which has polynomially
many elements in the blocklength, and the case with no restriction on the users’ channels. A general
converse bound on the capacity region and a converse bound on the maximum growth rate of the
number of users are derived. It is shown that reliable transmission with an exponential number of
users with an exponential asynchronous exponent with joint error probability is possible at strictly
positive rates.
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1. Introduction

One of the main attributes of the Internet of the Things (IoT) paradigm is the wireless
connectivity of large a number of distributed and uncoordinated devices. Each device
is automated, and is allowed to transmit random bursts of data without network or hu-
man coordination. A contention-based/grant-based network access requires multiple
rounds of back and forth transmissions between the device and the network to acquire
synchronization, identify users, and grant them allocations. This signaling overhead and
power consumption is not justified for power-limited devices with sporadic traffic patterns
and motivates a grant-free network access implementation. An un-coordinated network
access leads to a new traffic patterns and collision resolutions over the wireless network. A
foundational study of such a system is needed.

We propose a novel communication and multiple-access model that captures these
new network characteristics. The formal model definition is given in Section 2, but in
order to demonstrate the differences between our proposed model and existing work in the
literature, we briefly introduce our model parameters here for the Strongly Asynchronous
Slotted Discrete Memoryless Massive Access Channel (SAS-DM-MAC). In a SAS-DM-
MAC, the number of users Kn :“ enν increases exponentially with blocklength n with
occupancy exponent ν ě 0. Moreover, the users are strongly asynchronous, meaning, they
transmit at a randomly chosen time slot within a window of length An :“ enα slots, each slot
of length n, where α ě 0 is the asynchronous exponent. In addition, when active, each user
chooses uniformly at random one message to transmit from a set of Mn :“ enR messages,
where R ě 0 is the transmission rate. All transmissions are sent to an access point and the
receiver is required to jointly decode and identify all users. The goal is to characterize the set
of all achievable pR, α, νq triplets.

1.1. Past Work

Strongly asynchronous communication was first introduced in [1] for synchronization
of a single user, and later extended in [2] for synchronization with positive transmission rate.
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In [3] the authors of [2] made a brief remark about a “multiple access collision channel”
extension of their original single-user model. In this model, any collision of users (i.e.,
users who happen to transmit in the same block) is assumed to result in output symbols
that appear distributed as noise. The error metric is taken to be the per user probability of
error, which is required to be vanishing for all but a vanishing fraction of users. In this
scenario, it is fairly easy to quantify the capacity region for the case that the number of
users are less than the square root of the asynchronous window length (i.e., in our notation
ν ă α{2). However, finding the capacity of the “multiple access collision channel” for joint
probability of error, as opposed to per user probability of error, is much more complicated
and requires novel achievability schemes and novel analysis tools. This is the main subject
and contribution of this paper.

Recently, motivated by the emerging machine-to-machine type communications and
sensor networks, a large body of work has studied “many-user” versions of classical
multiuser channels as pioneered in [4]. In [4] the number of users is allowed to grow
at most linearly with the blocklength n. A full characterization of the capacity of the
synchronous Gaussian (random) many access channel was given [4]. In [5], the author
studied the synchronous massive random access channel where the total number of users
increases linearly with the blocklength n. However, the users are restricted to use the same
codebook and only a per user probability of error is enforced. In the model proposed here,
the users are strongly asynchronous, the number of users grows exponentially with the
blocklength, and we enforce a joint probability of error over all users.

In [6,7] a broadcast channel model was introduced where each receiver is only inter-
ested in decoding its intended messaged (and not all messages). For a per user/per pair of
users probability of error criteria doubly exponential number of receivers was shown to
be identifiable by using a randomized code. In this work we study a multi-access channel
model with non-cooperative transmitters and a single receiver which needs to decode all
messages from all users.

Training based synchronization schemes (i.e., pilot signals) was proven to be subop-
timal for bursty communications in [2]. Rather, one can utilize the users’ statistics at the
receiver for synchronization or user identification purposes. The identification problem
(defined in [8]) is a classical problem considered in hypothesis testing. In this problem, a
finite number of distinct sources each generates a sequence of i.i.d. samples. The problem
is to find the underlying distribution of each sample sequence, given the constraint that
each sequence is generated by a distinct distribution.

All studies on identification problems assume a fixed number of sequences. In [9],
authors study the Logarithmically Asymptotically Optimal (LAO) Testing of identification
problem for a finite number of distributions. The authors in [10] also propose a test for a
generalized Neyman-Pearson-like optimality criterion to match multiple yet finite number
of sequences to their source distributions.

In contrast, we allow the number of users to increase exponentially with the block-
length. We assume that the users are strongly asynchronous and may transmit randomly
anytime within a time window that is exponentially large in the blocklength. We require
the receiver to recover both the transmitted messages and the users’ identities under a
joint probability of error criteria. By allowing the number of sequences to grow exponen-
tially with the number of samples, the number of different possibilities (or hypotheses)
would be doubly exponential in the blocklength and the analysis of the optimal decoder
becomes much more challenging than classical (with constant number of distributions)
identification problems. These differences in modeling the channel require a number of
novel analytical tools.

1.2. Contribution

We consider pR, α, νq, the capacity region of the SAS-DM-MAC, where we require the
joint probability of error to vanish. Our contributions are as follows:
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• We propose a new achievability scheme that supports strictly positive values of
pR, α, νq for identical channels for the users.

• We define a new massive identification paradigm in which we allow the number
of sequences in a classical identification problem to increase exponentially with the
sequence blocklength (or sample size). We find asymptotically matching upper and
lower bounds on the probability of identification error for this problem. We use this
result in our SAS-DM-MAC model to recover the identity of the users.

• We propose a new achievability scheme for the case that the channels are chosen from
a set of conditional distributions. The size of the set increases polynomially in the
blocklength n. In this case, the channel statistics themselves can be used for user
identification.

• We propose a new achievability scheme without imposing any restrictive assumptions
on the users’ channels. We show that strictly positive pR, α, νq are possible.

• We propose a novel converse bound for the capacity of the SAS-DM-MAC.
• We show that for ν ą α, not even reliable synchronization is possible.

These results were presented in parts in [11–13].

1.3. Paper Organization

In Section 2 we introduce the notation and problem formulation for SAS-DM-MAC and
the identification problem. We present our main results in Section 3. Section 4 concludes
the paper with a discussion and future work. Proofs are provided in the Appendix.

2. Notations and Problem Formulation

We first introduce the notation used in the SAS-DM-MAC and then formally define
the problem.

2.1. Notation

Capital letters represent random variables that take on lower case letter values in
calligraphic letter alphabets. The notation an

.
“ enb means limnÑ8 log an

n “ b. We write
rM : Ns, where M, N P Z, M ď N, to denote the set tM, M` 1, . . . , Nu, and rKs :“ r1 : Ks.
yn is used to denote yn :“ ry1, . . . , yns. The n-fold cartesian product of a set S is denoted
by Sn.

A transition probability / channel from X to Y is denoted by Qpy|xq (or Q by short),
@px, yq P X ˆ Y , and the output marginal distribution induced by P P PX through the
channel Q as

rPQspyq :“
ÿ

xPX
PpxqQpy|xq,@y P Y , (1)

where PX is the space of all distributions on X . We define the shorthand notation

Qxpyq :“ Qpy|xq,@y P Y . (2)

For a MAC channel Qpy|x1, . . . , xKq,@px1, . . . , xK, yq P X1 ˆ . . .ˆ XK ˆ Y , we define
the shorthand notation

QSpy|xSq :“ Qpy|xS, ‹Scq,@S Ď rKs, (3)

to indicate that users indexed by S transmit xi P Xi,@i P S, and users indexed by Sc “ rKszS
transmit their respective idle symbol ‹j P Xj @j P Sc. When |S| “ 1 and |S| “ 0, we
respectively use

Qipy|xiq :“ Qtiupy|xiq “ Qpy|‹1, . . . , ‹i´1, xi, ‹i`1, . . . , ‹Kq, (4)

Q‹pyq :“ QtHupy|xiq “ Qpy|‹1, . . . ‹Kq.
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The P-type set and the V-shell of the sequence xn are defined, respectively, as

TpPq :“
"

xn :
N pa|xnq

n
“ Ppaq,@a P X

*
, (5)

TVpxnq :“
"

yn :
N pa, b|xn, ynq

N pa|xnq
“ Vpb|aq,@pa, bq P pX ,Yq

*
, (6)

where N pa, b|xn, ynq “
řn

i“1 1
!xi“a

yi“b
) is the number of joint occurrences of pa, bq in the pair

of sequences pxn, ynq and where N pa|xnq denotes the number of occurrences of a P X in
the sequence xn. The empirical distribution of the sequence xn is

pPxnpaq :“
1
n
N pa|xnq “

1
n

nÿ

i“1

1txi“au,@a P X . (7)

If in using (7) the target sequence xn is clear from the context, we drop the subscript
xn in pPxnp¨q.

We also use the notation Xn i.i.d
„ P when all random variables in the random vector Xn

are generated i.i.d according to distribution P.
We use DpP1 ‖ P2q to denote the Kullback Leibler divergence between distribution P1 and

P2, and

DpQ1 ‖ Q2|Pq :“
ÿ

px,yqPpXˆYq
PpxqQ1py|xq log

Q1py|xq
Q2py|xq

(8)

for the conditional Kullback Leibler divergence. We let

IpP, Qq “ DpQ ‖ rPQs | Pq (9)

denote the mutual information between random variables X and Y jointly distributed ac-
cording to PX,Ypx, yq “ PpxqQpy|xq. As for binary functions, we use

dpp ‖ qq :“ p log
p
q
` p1´ pq log

1´ p
1´ q

,

p ˚ q :“ pp1´ qq ` p1´ pqq,

hppq :“ ´p logppq ´ p1´ pq logp1´ pq

to represent binary divergence, convolution and entropy functions, respectively.
The Chernoff distance and the Bhatcharrya distance between two distributions P1, P2 P PX

are respectively defined as

CpP1, P2q :“ sup
0ďtď1

´ log

˜ÿ

xPX
P1pxqtP2pxq1´t

¸
, (10)

BpP1, P2q :“ ´ log

˜ÿ

xPX

a
P1pxqP2pxq

¸
. (11)

We extend this definition and introduce the quantities
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CpPi, Qi, Pj, Qjq :“ sup
0ďtď1

µi,jptq, (12a)

µi,jptq :“ ´ log
ÿ

xiPX ,xjPX ,yPY
PipxiqPjpxjqQipy|xiq

1´tQjpy|xjq
t, (12b)

Cp., Q‹, Pj, Qjq :“ sup
0ďtď1

´ log

¨
˝ ÿ

xPX ,yPY
PjpxqQ‹pyq1´tQjpy|xqt

˛
‚.

We also use

ErpR, P, Qq :“ max
0ďρď1

rE0pR, P, Q, ρq ´ ρRs, (13)

EsppR, P, Qq :“ sup
ρą0
rE0pR, P, Q, ρq ´ ρRs (14)

to denote the random coding and the sphere packing error exponent of channel Qpy|xq, with
input distribution Ppxq and rate R as defined in [14] where

E0pR, P, Q, ρq :“ ´ log
ÿ

yPY

˜ÿ

xPX
PpxqQpy|xq

1
1`ρ

¸1`ρ

. (15)

2.2. SAS-DM-MAC Problem Formulation

Let M be the number of messages (the same for each user), A be the number of blocks,
and K be the number of users.

An pM, A, K, n, εq code for the SAS-DM-MAC consists of:

• A message set rMs, for each user i P rKs.
• An encoding function fi : rMs Ñ X n, for each user i P rKs. We define

xn
i pmq :“ fipmq. (16)

• Each user i P rKs chooses a message mi P rMs and a block index ti P rAs (called ‘active’

block henceforth), both uniformly at random. It then transmits r‹npti´1q
i xn

i pmiq ‹
npA´tiq
i s,

where ‹i P X is the designated idle symbol for user i.
• A destination decoding function

g : YnA Ñ prAs ˆ rMsqK (17)

such that its associated probability of error, Ppnqe , satisfies Ppnqe ď ε where

Ppnqe :“
1

pAMqK
ÿ

pt1,m1q,...,ptK ,mKq
P
”

gpYnAq ‰ ppt1, m1q, . . . , ptK, mKqq|Hppt1,m1q,...,ptK ,mKqq
ı
, (18)

where the hypothesis that user i P rKs has chosen to transmit message mi P rMs in
block ti P rAs is denoted by Hppt1,m1q,...,ptK ,mKqq.
A tuple pR, α, νq is said to be achievable if there exists a sequence of codes

`
enR, enα, enν, n, εn

˘

with limnÑ8 εn “ 0. The capacity region of the SAS-DM-MAC at asynchronous exponent α,
occupancy exponent ν, and rate R, is the closure of all possible achievable pR, α, νq triplets.

Remark 1. We should emphasize that we are focusing our attention on discrete memoryless
channels (DMC) where a user not transmitting/being idle is equivalent to sending that user’s idle
symbol in the DMC model, just as, in a Gaussian channel, a user not sending corresponds to sending
the symbol ‘0’. We do not study Continuous channels in this work.
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A depiction of a timeline for our channel model is provided in Figure 1a and for
specific cases: one in which user 1 and 2 are not simultaneously transmitting (Figure 1b)
and another in which user 1 and 2 are simultaneously transmitting (Figure 1c).
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A depiction of a timeline for our channel model is provided in Figure 1(a) and for specific

cases: one in which user 1 and 2 are not simultaneously transmitting (Figure 1(b)) and another

in which user 1 and 2 are simultaneously transmitting (Figure 1(c)).

C. Identification Problem Formulation

We first summarize the notation specifically used in this Section (and in Appendix B) in

Table I and then introduce the problem formulation.

Assume P :“ tP1, . . . , PTnu Ď PX consist of Tn distinct distributions on X and let random

variable Σ be uniformly distributed over STn (see definition in Table I). Let σ P STn and let
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i.i.d„ Pσ̂i , @i P rTns. Let Σ̂ “ σ̂pXnTnq.
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Figure 1. Transmitted sequence for each user and the received sequence in colliding and non-colliding
transmission time for user 1 and 2.

2.3. Identification Problem Formulation

We first summarize the notation specifically used in this Section (and in Appendix B)
in Table 1 and then introduce the problem formulation.

Table 1. Special notation for the identification problem.

SA A symmetric group which is the set of all possible permutations of A elements.

σi The i-th element of the permutation σ P SA; i P rAs.

Kk :“ Kkpwt1,2u . . . wtk,1uq; A complete graph with k nodes and edge weights wti,ju between node i, j.

cpVqr , cpEqr A cycle of length r represented by the set of its vertices and edges, respectively.

cpVqr piq i-th vertex of the cycle cpVqr .

Cprqk
Set of cycles of length r in the complete graph Kk.

Nprqk
Number of cycles of length r in a complete graph Kk.

Gpcq :“
ś
@i‰j wi,j; Gain of a cycle which we define as the product of the edge weights within the cycle c.

AM-GM inequality Refers to the following inequality n
`śn

i“1 ai
˘ 1

n ď
řn

i“1 ai.

Assume P :“ tP1, . . . , PTnu Ď PX consist of Tn distinct distributions on X and let
random variable Σ be uniformly distributed over STn (see definition in Table 1). Let
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σ P STn and let xnTn “ rxn
1 , . . . , xn

Tn
s be a sample vector of XnTn “

”
Xn

1 , . . . , Xn
Tn

ı
, in which

Xn
i

i.i.d
„ Pn

σi
,@i P rTns. Given xnTn , we would like to find the permutation σ. More specifically,

we are interested in finding a permutation σ̂ : X nTn Ñ STn in which Xn
i

i.i.d
„ Pσ̂i , @i P rTns.

Let Σ̂ “ σ̂pXnTnq.
The average probability of error for the set of distributions P is defined by

Ppnqe “ P
“
Σ̂ ‰ Σ

‰
“

1
pTnq!

ÿ

σPSTn

P
“
Σ̂ ‰ σ

‰
, (19)

where in (19) the measure P over pXn
1 , ..., Xn

Tn
q is Xn

i
i.i.d
„ Pσi ,@i P rTns.

We say that a set of distributions P is identifiable if limnÑ8 Ppnqe Ñ 0.

3. Main Results

We first introduce an achievable region for the case that different users have identical
channels (in Theorem 1). We then derive the identification criteria (in Theorem 2) and
use it in the study of a more general case of massive communications in which the users’
channels belong to a set of conditional probability distributions of polynomial size in n (in
Theorem 3). In this case, we use the output statistics to distinguish and identify the users.
Afterwards, we remove all conditions on the users’ channels and derive an achievability
bound on the capacity of the SAS-DM-MAC in (Theorem 4). We also propose a converse
bound on the capacity of general SAS-DM-MAC (in Theorem 5) and a converse bound on
the number of users (in Theorem 6).

3.1. Users with Identical Channels

The following theorem is an achievable region for the SAS-DM-MAC for the case
that different users have identical channels toward the base station when they are the sole
active user.

Theorem 1. For a SAS-DM-MAC with Qtiupy|xq “ Wpy|xq (recall Definition (4)) for all users,
the following pR, α, νq region is achievable

ď

PPPX
λPr0,1s

$
’’&
’’%

ν ă α
2

ν ă mintDpWλ ‖ W|Pq, ErpR` ν, P, Wqu
α` R` ν ă DpWλ ‖ Q‹|Pq

R` ν ă IpP, Wq

,
//.
//-

, (20)

where

Wλpy|xq :“
Wpy|xqλQ‹pyq1´λ

ř
y1PY Wpy1|xqλQ‹py1q1´λ

, @px, yq P X ˆY , (21)

and where Er was defined in (13).

In the scenario where users have identical channels toward the base station, one can
combine the user identification and decoding stages, i.e., one can distinguish the user’s
identity from the decoded message. This appears as the combination R` ν in the bounds
in (20).

One could also interpret the result in Theorem 1 as follows. There is one single “big
codebook” with MK codewords of length n. User 1 uses codewords with indices 1 through M;
User 2 uses codewords with indices M` 1 through 2M, and so forth, concluding with User
K using codewords with indices pK´ 1qM` 1 through KM. In each active slot, the receiver
decodes the “big codebook”; reliable decoding imposes logpMKq{n “ R ` ν ă IpP, Wq.
However, since in our setting we need to decode K codewords (one per active slot, as
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opposed to just one), in addition to R` ν ď IpP, Wq we also need the bound logpKq{n “
ν ă Erpν` R, P, Wq. Comparing the third and fourth bounds of (20) with the per-user
probability of error achievability region in [3], we can see an additional ν penalty as a result
of a joint probability of error criteria. However, we do not claim (via a matching converse
bound) that the rate penalty (at least in the format that we prove) is conclusive.

We should also note that for ν ă α
2 (first bound in (20)), with probability approaching

one as the blocklength n goes to infinity, the users transmit in distinct blocks. Hence,
regardless of the achievability scheme, the probability of error under a hypothesis where
a collision has occurred is vanishing as the blocklength goes to infinity. As a result, in
analyzing the joint probability of error in our achievability scheme, we need to focus on
the hypothesis that users do not collide. In our achievability scheme, we use a two-stage
decoder which first synchronizes the users (i.e., finds the location of active blocks) and
then decodes the users’ messages (which also identifies the users’ identities). The complete
proof of Theorem 1 is given in Appendix A.

Remark 2. The existence of an error exponent bound on the occupancy exponent (i.e., ν) is intuitive
(second argument in the second condition in (20)). Even if the decoder has side information about
the location of noisy blocks (i.e., blocks with only idle symbols for all users), it still has to decode
all the messages within active blocks. Due to independence of the output in different blocks and
by the fact that there cannot be intra-block coding, the probability of decoding error over active
blocks is asymptotically equal to the sum of the decoding error probabilities in each active block.
This puts a restriction on ν based on the best decay rate for the decoding error in each block, i.e., the
error exponent.

3.2. Users with Different Choice of Channels

We now move on to a more general setting in which we remove the restriction that all
users have identical channels towards the base station (when only one is active). Theorem 3
gives an achievable region when we allow the users’ channels (when they are the sole
active user toward the base station) to be chosen from a set of conditional distributions of
polynomial size in the blocklength n.

In this scenario, one may use the users’ statistics at the channel output to identify
the set of users who have a similar channel. In this regard, before introducing Theorem 3,
we introduce Theorem 2 in which we characterize the relation between the number of
distributions and their pairwise distance for them to be identifiable. The proof of Theorem 2,
given in Appendix B, is itself based on a novel graph theoretic technique to analyze the
optimal Maximum Likelihood (ML) decoder, which is of independent interest.

Theorem 2. A sequence of distributions P “ tP1, . . . , PTnu is identifiable iff

lim
nÑ8

ÿ

1ďiăjďTn

e´2nBpPi ,Pjq “ 0, (22)

where BpPi, Pjq is the Bhatcharrya distance, which was defined in (11).

Remark 3. From Theorem 2 one can see that when the number of distributions Tn is a constant or
grows polynomially with n, the sequence of distributions are always identifiable and by the problem
formulation in Section 2.3, it is implied that the probability of error in the identification problem
decays to zero as the blocklength n goes to infinity.

By using the criterion for identifiability of a massive number of distributions in Theorem 2,
we move on to the SAS-DM-MAC problem. We adapt the concept of identification of
distribution to identify the users’ statistics at the output with an optimal ML test. We use
the result of Theorem 2 in the derivation of Theorem 3.
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Theorem 3. For a SAS-DM-MAC where Qipy|xq “ Wcpiqpy|xq is the channel for user i P rKns,

for W :“
!Ť

iPrKnsWci

)
and|W | “ polypnq the region

lim inf
nÑ8An, (23)

is achievable where An is defined as

An :“
ď

εą0

ď

pP1,...P|W|qPP |W|X
pλ1,...λ|W|qPr0,1s|W|

č

jPr|W |s

$
’’’’’’’&
’’’’’’’%

νj ` ε ă α
2

νj ` ε ă min
!

DprPjWjsλj ‖ rPjWjsq, ErpR` νj, Pj, Wjq
)

α` ε ă DprPjWjsλj ‖ Q‹q
0 ă infiPr|W |s

i‰j
B
`
rPiWis, rPjWjs

˘

R` νj ` ε ă IpPj, Wjq

,
///////.
///////-

, (24)

and where Er is defined in (13), BpPi, Pjq was defined in (11) and

νj :“
1
n

logpNjq,

Nj :“
Knÿ

i“1

1tQi“Wju and such that
|W |ÿ

j“1

Nj “ Kn, (25)

rPjWjsλpyq :“

`
rPjWjspyq

˘λ
pQ‹pyqq1´λ

ř
y1PY

`
rPjWjspy1q

˘λ
pQ‹py1qq1´λ

. (26)

The proof of Theorem 3 is given in Appendix F.
In the proof of Theorem 3 we propose a three stage decoder which performs the task of

synchronization, identification and decoding, sequentially. It is also worth noting that given
that the number of users is exponential in the blocklength and the number of channels is
only polynomial in the blocklength, there must exist at least a single channel that occupies
exponentially many blocks. Hence, it is not surprising to see bounds on the occupancy
level of each channel (i.e., νj) in (24).

Remark 4. We should note that (as it is apparent in (24)) as long as we have the assumption that
the number of user’s channels increase with blocklength n, our optimization space over all users
also increases with n and hence our achievability and converse bounds would be dependent on the
exact definition of n Ñ8 (e.g, compared to (20) in Theorem 1). However, in order to compute these
bounds, we only need to optimize with respect to Pi, i P rKns as opposed to Pn in the conventional
n-letter capacity expressions.

3.3. General Case

Now we investigate a SAS-DM-MAC with no restriction on the channels of the users
toward the base station. The key ingredient in our analysis is a novel way to bound the
probability of error reminiscent of Gallager’s error exponent [14]. We show an achievability
scheme that allows a positive lower bound on the R and on ν. This proves that reliable
transmission with an exponential number of users with an exponential asynchronous
exponent with joint error probability is possible. We use an ML decoder sequentially in
each block to identify the active user and its message.
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Theorem 4. For a SAS-DM-MAC the following region is achievable

lim inf
nÑ8

ď

εą0

ď

pP1,...PKn qPPKn
X

č

iPrKns

$
’’’’&
’’’’%

ν ă α
2

ν` R` ε ă CpPi, Qi, Pi, Qiq,
2ν` R` ε ă infjPrKns

j‰i
CpPi, Qi, Pj, Qjq,

α` ν` R` ε ă Cp . , Q‹, Pi, Qiq,

,
////.
////-

(27)

The proof of Theorem 4 is given in Appendix G.

Remark 5. Note that one can show the following (see Appendix H):

CpPi, Qi, Pi, Qiq “ ´ log
ÿ

x,x1,y
PipxqPipx1q

b
Qipy|xqQipy|x1q, (28a)

Cp . , Q‹, Pi, Qiq ď IpPi, Qiq `DprPiQis ‖ Q‹q, (28b)

where (28a) is the special case of E0pR, P, Q, ρ “ 1q in (15), and the right hand side of (28b) is the
bound on α` R in the single user strong asynchronous channel [15]. From (28) and (27) we thus
see that

ν ă ErpR, Pi, Qiq,

α` R ă IpPi, Qiq `DprPiQis ‖ Q‹q ´ ν,

which shows that the second and fourth bounds in (27) are, respectively, less than the synchronous
channel error exponent and the point-to-point strong asynchronous channel capacity.

3.4. Example

Consider the SAS-DM-MAC with input-output relationship Y “
ř

iPrKns Xi ‘ Z with
Z „ Bernoullipδq for some δ P p0, 1{2q. In our notation

Qpy|xq “ PrXi ‘ Z “ y|Xi “ xs “ PrZ “ x‘ ys

“

#
1´ δ x‘ y “ 0 pi.e., x “ yq
δ x‘ y “ 1 pi.e., x ­“ yq

.

Assume that the input distribution used is P “ Bernoullippq for some p P p0, 1{2q. The
achievability region in Theorem 1, is

ď

pPr0, 1
2 s

λPr0,1s

$
’’’&
’’’%

ν ă α{2
ν ă min

!
p ¨ dpελ ‖ δq, minqPr0,1s

!
dpδ ‖ qq `maxt0, dpq ‖ 1

2 q ´ R´ ν
))

α` R` ν ă p ¨ dpελ ‖ 1´ δq
R` ν ă hpp ˚ δq ´ hpδq

,
///.
///-

, (29)

where ελ :“ δλp1´δqp1´λq
δλp1´δqp1´λq`p1´δqλδp1´δq .

Moreover, by assuming Pi “ Bernoullippiq for all i P rKns, we can show that the
optimal t in CpPi, Qi, Pj, Qjq “ supt µi,jptq is t “ 1{2 and hence the achievability region in
Theorem 4 is

lim inf
nÑ8

ď

εą0

ď

pP1,...PKn qPPKn
X

č

iPrKns

$
’’&
’’%

ν ă α
2

ν` R` ε ă BpPi, Qq “ gppi ˚ pi, δq
2ν` R` ε ă infi‰j CpPi, Q, Pj, Qq “ infi‰j gppi ˚ pj, δq

α` ν` R` ε ă Cp . , Q‹, Pi, Qq “ gppi, δq

,
//.
//-

,
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where

gpa, bq :“ ´ log
´

1´ a` 2a
a

bp1´ bq
¯

.

Finally, by symmetry, we can see that the optimal pi “
1
2 ,@i P rKns and hence gp 1

2 , δq “

´ log
´

1{2`
a

δp1´ δq
¯
ą 0. So on the BSC(δ) strictly positive rates and ν are achievable.

In this regard, the region in Theorem 4 reduces to

α` ν` R ă ´ log
´

1{2`
a

δp1´ δq
¯

. (30)

The achievable region in (29) for pα, ν, Rq is shown in Figure 2a. In addition, the
achievable region for pα, ν, Rq with the achievable scheme in Example (30) is also plotted in
Figure 2b for comparison. Figure 2 shows that the achievable scheme in Theorem 1 indeed
results in a larger achievable region than the one in Theorem 4.

(a) Achievable region in (29). (b) Achievable region in (30).

Figure 2. Comparison of the achievable region in Theorems 1 and 4, for the Binary Symmetric
Channel with cross over probability δ “ 0.11.

The fact that the achievability region for Theorem 1 is larger than the achievability
region of Theorem 4 for identical channels is not surprising. In Theorem 1 we separated the
synchronization and decoding steps, whereas in Theorem 4 synchronization and codeword
decoding was done the same time but sequentially for each block. The sequential block
decoding step results in a smaller achievability region in Theorem 4.

3.5. Converse on the Capacity Region of the SAS-DM-MAC

Thus far, we have provided achievable regions for the SAS-DM-MAC when different
users have identical channels; when their channels belong to a set of channels with size that
grows polynomially in the blocklength; and without any restriction on the users’ channels.
Theorem 5 next provides a converse to the capacity region of the general SAS-DM-MAC.

Theorem 5. For the SAS-DM-MAC, such that ν ă α{2, the following region is impermissible

lim inf
nÑ8

ď

εą0

č

pP1,...PKn qPPKn
X

pλ1,...λKn qPr0,1sKn

$
’’’’’’’’’&
’’’’’’’’’%

!
ν ą 1

Kn

řKn
i“1 DpQiλi

‖ Qi|Piq ` ε,

α ą 1
Kn

řKn
i“1 DpQiλi

‖ Q‹|Piq ´ p1´ r̄nqpν` Rq ` ε
)

Ť
!

ν ą 1
Kn

řKn
i“1 EsppR, Pi, Qiq ` ε

)
Ť

tR ą IpPi, Qiq ` εu

,
/////////.
/////////-

, (31)
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where r̄n is the infimum probability of error, over all estimators T, in distinguishing different
hypothesis Qiλi

pyn|xn
i pmqq, i P rKns, m P rMns, i.e.,

r̄n :“ inf
T

1
Kn Mn

Knÿ

i“1

Mnÿ

m“1

Qiλi
pT ‰ i, m|xn

i pmqqq. (32)

Proof. The complete proof is given in Appendix I.

The first bound in (31) corresponds to synchronization, while the second and third
bounds correspond to decoding. Also, as it was noted before in Remark 2, one can again
see that the value of ν is restricted by the decoding error exponent.

3.6. Converse on the Number of Users in a SAS-DM-MAC

In previous sections, we restricted ourselves to the regime where ν ă α
2 . However, an

interesting question is how large a ν can be. Theorem 6 provides a converse bound on the
value of ν such that for ν ą α, not even reliable synchronization is possible.

Theorem 6. For a SAS-DM-MAC with ν ą α, reliable synchronization is not possible, i.e., even
with M “ 1, one has Ppnqe ą 0.

The complete proof can be found in Appendix J.

4. Discussion and Conclusions

In this paper we studied a Strongly Asynchronous and Slotted Massive Access Channel
(SAS-DM-MAC) where Kn :“ enν different users transmit a randomly selected message
among Mn :“ enR ones within a strong asynchronous window of length An :“ enα blocks
of n channel uses each. We found inner and outer bounds on the pR, α, νq tuples. Our
analysis is based on a joint probability of error in which we required all users’ messages
and identities to be jointly correctly decoded at the base station. Our results are focused on
the regime ν ă α

2 , where the probability of user collision vanishes. We proved in Theorem 6
that for the regime ν ą α, not even synchronization is possible. We now discuss some of
the difficulties in analyzing the region α

2 ď ν ď α.

For the region ν ă α
2 , with probability

pAn
Knq

pAnqKn Ñ 1 as blocklength n Ñ 8, the users
transmit in distinct blocks. Hence, in analyzing the probability of error of our achievable
schemes, we only need to bound the error under the hypothesis that users do not collide.
For α

2 ď ν ď α, we need to consider the events where collisions occur. In particular, based on
Lemma 1 (proved in the Appendix L), for α

2 ď ν ď α, the probability of every arrangement
of users is itself vanishing in the blocklength.

Lemma 1. For the region α
2 ď ν ď α the non-colliding arrangement of users has the highest

probability among all possible arrangements, yet, the probability of this event is also vanishing as
blocklength n goes to infinity.

As a consequence of Lemma 1, one needs to propose an achievable scheme that
accounts for several arrangements (the number of which is non-trivial to the authors) and
collision of users and drives the probability of error in these arrangements to zero. It is
also worth noting that the number of possible hypotheses is doubly exponential in the
blocklength. Finally, it is worth emphasizing that the authors in [16] can get to ν ď α since
they require the recovery of the messages of a large fraction of users, and require the per-user
probability of error to be vanishing (rather than the overall or joint probability of error,
which is a much stronger condition). To prove whether or not strictly positive pR, α, νq are
possible in the region α

2 ď ν ď α, with vanishing joint probability of error, is a challenging
open problem.
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Appendix A. Proof of Theorem 1

We first introduce the codebook generation and then introduce and analyze the decoder.

Appendix A.1. Codebook Generation

Let Kn “ enν be the number of users, An “ enα be the number of blocks, and Mn “ enR

be the number of messages. Each user i P rKns generates a constant composition codebook
with composition P by drawing each message’s codeword uniformly and independently at
random from the P-type set TpPq (recall definition in (5)). The codeword of user i P rKns

for message m P rMns is denoted as xn
i pmq.

Appendix A.2. The Decoder and Analysis of the Probability of Error

A two-stage decoder is used, to first synchronize and then decode (which also identifies
the users’ identities) the users’ messages. The probability of error of this two-stage decoder
is thus given by

Pr Error s ď Pr Error | No-collisions ` Pr collision s

ď Pr Synchronization error | No-collision s (A1a)

` Pr Decoding error | No synchronization error, No-collision s (A1b)

` Pr collision s. (A1c)

Synchronization Step. We perform a sequential likelihood test as follows. Fix a
threshold

T P r´DpQ‹ ‖ W|Pq, DpW ‖ Q‹|Pqs. (A2)

For each block j P rAns if there exists any message m P rMns for any user i P rKns such
that

Lpxn
i pmq, yn

j q :“
1
n

log
Wpyn

j |x
n
i pmqq

Q‹pyn
j q

ě T, (A3)

then declare that block j is an ‘active’ block, and an ‘idle’ block otherwise. Let

Hp1q :“ Hpp1,1q,p2,1q,...,pKn ,1qq, (A4)

be the hypothesis that user i (for each i P rKns) is active in block i and sends message mi “ 1.
As explained earlier (in the paragraph after Theorem 1), the probability of collision in (A1c)
is vanishing and we can focus on calculating (A1a) and (A1b). For (A1a), by symmetry of
the different no-collision hypotheses, the average probability of synchronization error (over
different such hypotheses) is upper bounded by
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P
”
Synchronization error|Hp1q

ı

ď

Knÿ

j“1

P
«

Knč

i“1

Mnč

m“1

Lpxn
i pmq, Yn

j q ă T|Hp1q
ff
`

Anÿ

j“Kn`1

P
«

Knď

i“1

Mnď

m“1

Lpxn
i pmq, Yn

j q ě T|Hp1q
ff

ď

Knÿ

j“1

P
”

Lpxn
j p1q, Yn

j q ă T|Hp1q
ı
`

Anÿ

j“Kn`1

Knÿ

i“1

Mnÿ

m“1

P
”

Lpxn
i pmq, Yn

j q ě T|Hp1q
ı

ď enνe´nDpWλ‖W|Pq ` enpα`ν`Rqe´nDpWλ‖Q‹|Pq, (A5)

where (A5) can be derived as in Chapter 11 [17]. The upper bound on the probability of
error for the synchronization error in (A5) vanishes as n goes to infinity if the second and
third bound in (20) hold.

Decoding Step. In this stage we evaluate the decoding error under the no-collision,
no synchronization error hypothesis using a maximum likelihood decoder. Moreover, since
in each block, we have to distinguish among enpR`νq messages, we can upper bound the
probability of decoding error in (A1b) as

PrDecoding error| No synchronization error, No-collisions ď
Knÿ

i“1

PrDecoding error in block is

ď enνe´nErpR`ν,P,Wq (A6)

where (A6) is by [14] and Er is defined in (13). This retrieves the second bound in (20).
Finally, as a synchronous channel and since in each block we have to distinguish among
enpR`νq messages we retrieve the fourth bound in (20).

Appendix B. Proof of Theorem 2

We now introduce a graph theoretic Lemma, the proof of which is given in Appendix C.

Lemma A1. In a complete graph Kk
`
w1,2, . . . , wk,1

˘
, for the set of cycles of length r, Cprqk , we have

1

Nprqk

¨
˚̋ ÿ

cPCprqk

Gpcq

˛
‹‚ď

˜
w2

1,2 ` . . .`w2
k,1`k

2

˘
¸ r

2

where Cprqk and Nprqk are the set and number of all cycles of length r in a complete graph Kk,
respectively.

Next, we use Lemma A1 to derive upper and lower bounds on the probability of error.

Appendix B.1. Upper Bound on the Probability of Identification Error

We use the optimal ML decoder, which minimizes the average probability of error,
given by

σ̂pxn
1 , . . . , xn

Tn
q :“ arg max

σPSTn

Tnÿ

i“1

log
`
Pσipx

n
i q
˘
, (A7)

where Pσi

`
xn

i
˘
“
śn

t“1 Pσi

`
xi,t

˘
. Let Σ̂ “ σ̂pXn

1 , . . . , Xn
Tn
q be the estimate of the permutation

of the distributions of Xn
i , i P rTns. The average probability of error associated with the ML

decoder can also be written as
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Ppnqe “ P
“
Σ̂ ‰ rTns

‰

“ P

»
– ď

σ̂‰rTns
Σ̂ “ σ̂

fi
fl

“ P

»
————–

Tnď

r“2

ď

σ̂:!řTn
i“1 1tσ̂i‰iu“r

)
Σ̂ “ σ̂

fi
ffiffiffiffifl

(A8a)

“ P

»
————–

Tnď

r“2

ď

σ̂:!řTn
i“1 1tσ̂i‰iu“r

)

Tnÿ

i“1

log
Pσ̂i

`
Xn

i
˘

Pi
`
Xn

i
˘ ě 0

fi
ffiffiffiffifl

, (A8b)

where P over
´

Xn
1 , ..., Xn

Tn

¯
is used when Xn

i
i.i.d
„ Pσi ,@i P rTns and where (A8a) is due to the

requirement that each sequence is distributed according to a distinct distribution and hence
the number of incorrect distributions ranges from r2 : Tns. In order to avoid considering
the same set of error events multiple times in the union over

!
σ̂ :

řTn
i“1 1tσ̂i‰iu “ r

)
, we

incorporate a graph theoretic interpretation of
!řTn

i“1 1tΣ̂i‰iu “ r
)

in (A8b) which is used
to denote the fact that we have identified r distributions incorrectly. It is apparent from
Figure A1a that the event that r distributions are incorrectly identified either forms a single
cycle of length r (r “ 4 in Figure A1a) or multiple cycles with sum length equal to r (2
cycles of length 2 in Figure A1b). Hence, it is straightforward to show that we can replace
the union over

!
σ̂ :

řTn
i“1 1tσ̂i‰iu “ r

)
in (A8b) with the union over cycles of length r in a

complete graph KTn , i.e.,
!

c P CprqTn

)
.

P1 Pi Pk PTn
Pj

P1PkPj

Pi

(a) 4 incorrectly identified distributions with a single cycle of length 4.

P1 Pi Pk PTn
Pj

P1 Pk PjPi

(b) 4 incorrectly identified distributions with 2 cycles of length 2 each.

Figure A1. r incorrectly identified distribution will form cycles with sum length r.

Hence, we can re-write the probability of error in (A8b) as

Ppnqe “ P

»
—–

Tnď

r“2

ď

cPCprqTn

ÿ

iPcpVq
log

PcpVqpiq
`
Xn

i
˘

Pi
`
Xn

i
˘ ě 0

fi
ffifl

ď

Tnÿ

r“2

ÿ

cPCprqTn

e
´n

ř
iPcpVq BpP

cpVqpiq,Piq, (A9)
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where the inequality in (A9) follows from Appendix D. Next, we define wi,j :“ e´nBpPi ,Pjq
to be the edge weight between vertices pi, jq in the complete graph KTnpwp1,2q, . . . wpKn ,1qq
shown in Figure A2.

i

j

1

e−nB(Pi,Pj)

2

e−nB(P1,P2)

An

Figure A2. Complete graph KTn with edge weight e´nBpPi ,Pjq for every pair of vertices i ‰ j P rKns.

With this definition of the complete graph KTn , it is easy to see that Gpcq “

e
´n

ř
iPcpVq BpP

cpVqpiq ,Piq is the gain of cycle c in the complete graph KTn . Based on this, we
re-write the probability of error in (A9) as

Ppnqe ď

Tnÿ

r“2

ÿ

cPCprqAn

Gpcq (A10a)

ď

Tnÿ

r“2

NprqTn´`Tn
2

˘¯ r
2

´
w2

1,2 ` . . .`w2
Tn ,1

¯r{2
(A10b)

ď

Tnÿ

r“2

4r

¨
˝ ÿ

1ďiăjďTn

e´2nBpPi ,Pjq
˛
‚

r{2
(A10c)

ď

16
´ř

1ďiăjďTn
e´2nBpPi ,Pjq

¯

1´ 4
bř

1ďiăjďTn
e´2nBpPi ,Pjq

, (A10d)

where r enumerates the number of incorrectly identified distributions and where (A10b) is
by Lemma A1 and (A10c) is by Fact 1 (see Appendix C) and

NprqTn

pnTnq
r{2 “

`Tn
r
˘
pr´ 1q!{2

´`Tn
2

˘¯r{2 ď 4r.

Finally, (A10d) will go to zero as n goes to infinity if

lim
nÑ8

ÿ

1ďiăjďTn

e´2nBpPi ,Pjq “ 0.

Remark A1. As a result of Lemma A1, it can be seen from (A10c) that the sum of probabilities
that r ě 3 distributions are incorrectly identified is dominated by the probability that only r “ 2
distributions are incorrectly identified. This shows that the most probable error event is indeed an
error event with two wrong distributions.
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Appendix B.2. Lower Bound on the Probability of Identifiability Error

For our converse, we use the optimal ML decoder, and as a lower bound to the
probability of error in (A8b), we only consider the set of error events with exactly two
incorrect distributions, i.e., the set of events with r “ 2. In this case we have

Ppnqe ě P

»
– ď

1ďiăjďTn

log
PipXn

j q

PjpXn
j q
` log

PjpXn
i q

PipXn
i q
ě 0

fi
fl

ě

´ř
1ďiăjďTn

P
“
ξi,j

‰¯2

ř
pi,jq,pj,kq
pi,jq‰pl,kq

i‰j,l‰k

Prξi,j, ξk,ls
, (A11)

where P is taken over
´

Xn
1 , ..., Xn

Tn

¯
and is used when Xn

i
i.i.d
„ Pσi ,@i P rTns and where (A11)

is by [18] and finally

ξi,j :“

#
log

Pi
Pj
pXn

j q ` log
Pj

Pi
pXn

i q ě 0

+
. (A12)

We prove in Appendix E that a lower bound on Ppnqe is given by

Ppnqe ě

´ř
1ďiăjďTn

e´2nBpPi ,Pjq
¯2

ř
1ďiăjăkďTn

e´nBpPi ,Pjq´nBpPi ,Pkq´nBpPk ,Pjq`
˜

ř
1ďiăjďTn

e´2nBpPi ,Pjq
¸2 (A13a)

ě

´ř
1ďiăjďTn

e´2nBpPi ,Pjq
¯2

8

˜
ř

1ďiăjďTn

e´2nBpPi ,Pjq
¸3

2

`

˜
ř

1ďiăjďTn

e´2nBpPi ,Pjq
¸2

(A13b)

“

bř
1ďiăjďTn

e´2nBpPi ,Pjq

8`
bř

1ďiăjďTn
e´2nBpPi ,Pjq

, (A13c)

where (A13b) is by Lemma A1. As can be seen from (A13c), if limnÑ8
ř

1ďiăjďTn
e´2nBpPi ,Pjq ‰

0, the probability of error is bounded away from zero. As a result

lim
nÑ8

ÿ

1ďiăjďTn

e´2nBpPi ,Pjq “ 0,

must hold, which also matches our upper bound on the probability of error in (A10d).

Appendix C. Proof of Lemma A1

We first consider the case that r is an even number and then prove

rpnq
r
2´1
pGpc1q ` . . . GpcNqq ď

Nr
n

´
a2

1 ` . . .` an
2
¯ r

2 , (A14)

where as shorthand notation we defined and use N :“ Nprqk and n :“
`k

2

˘
and

 
w1,2 . . . wk,1

(
“

ta1, . . . , anu.
Our goal is to expand the right hand side (RHS) of (A14) such that all elements have

coefficient 1. Then, we parse these elements into N groups (details provided later) such
that using the AM-GM inequality (defined in Table 1) on each group, we obtain one of the
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N terms on the LHS of (A14). Before stating the rigorous proof and to shed some light
onto the proof strategy, we provide an example for the graph with k “ 4 vertices shown in
Figure A3. In this example, we consider the Lemma for r “ 4 cycles (for which N “ 3).

24

a1

a2

a3

a4

a5 a6

Fig. 5: A complete graph with 4 vertices

provide an example for the graph with k “ 4 vertices shown in Fig. 5. In this example, we

consider the Lemma for r “ 4 cycles (for which N “ 3).
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If we use the AM-GM inequality on Θ1, Θ2 and Θ3, we can obtain the lower bound
equal to 24pa1a2a3a4q, 24pa1a6a3a5q and 24pa4a5a2a6q, respectively where rn

r
2´1 “ 24 and

hence (A14) holds in this example.
We proceed to prove Lemma A1 for arbitrary k and (even) r ě 2. We propose the

following scheme to group the elements on the RHS of (A14) and then prove that this
grouping indeed leads to the claimed inequality.

Grouping Scheme

For each cycle ci “ tai1 . . . , airu, we need a group of elements, Θi, from the RHS
of (A14). In this regard, we consider all possible subsets of the edges of cycle ci with 1 to
r
2 elements (e.g.,

!
tai1u, . . . tai1 , ai2u, . . . tai1 . . . , air{2u, . . .

)
). For each one of these subsets,

we find the respective elements from the RHS of (A14) that is the multiplication of the
elements in that subset. For example, for the subset tai1 , ai2 , ai3u, we consider the elements

like a
ni1
i1

a
ni2
i2

a
ni3
i3

for all possible ni1 , ni2 , ni3 ą 0 from the RHS of (A14). However, note that
we do not assign all such elements to cycle ci only. If there are ` cycles of length r that all
contain tai1 , ai2 , ai3u, we should assign 1

` of the elements like a
ni1
i1

a
ni2
i2

a
ni3
i3

, ni1 , ni2 , ni3 ą 0 to
cycle ci (note the symmetry of the strategy over cycles).

We state some facts, which can be easily.
Fact 1. In a complete graph Kk, there are N “ Nprqk “

`k
r
˘ pr´1q!

2 cycles of length r.
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Fact 2. By expanding the RHS of (A14) such that all elements have coefficient 1, we

end up with
ˆ

Nprqk r
n

˙
n

r
2 elements.

Fact 3. Expanding the RHS of (A14) such that all elements have coefficient 1, and
finding their product yields

pa1 ˆ . . .ˆ anq
p Nr

n qrn
r
2´1

.

Fact 4. In the above grouping scheme each element on the RHS of (A14) is summed in
exactly one group. Hence, by symmetry and Fact 2, each group is the sum of rn

r
2´1 elements.

Now, consider any two cycles ci “ tai1 , . . . , airu, cj “ taj1 , . . . , ajru. Assume that using
the above grouping scheme, we obtain the group of elements Θi, Θj (where by fact 3 each
one is the sum of rn

r
2´1 elements). If we apply the AM-GM inequality on each of the two

groups, we obtain

Θi ě rn
r
2´1

´
a

ni1
i1
ˆ . . .ˆ an1r

ir

¯
ˆ

1

rn
r
2´1

˙

,

Θj ě rn
r
2´1

´
a

nj1
j1
ˆ . . .ˆ a

njr
jr

¯
ˆ

1

rn
r
2´1

˙

,

where
śr

t“1 a
nit
it

is the product of the elements in Θi. By symmetry of the grouping scheme
for different cycles, it is obvious that @t P rrs, nit “ njt . Hence nit “ njt “ pt,@i, j P rNs. i.e.,
we have

Θi ě rn
r
2´1

´
ap1

i1
ˆ . . .ˆ apr

ir

¯
ˆ

1

rn
r
2´1

˙

. (A15)

By symmetry of the grouping scheme over the elements of each cycle, we also get that
nik “ nil “ qi,@k, l P rrs, i.e.,

Θi ě rn
r
2´1

´
aqi

i1
ˆ . . .ˆ aqi

ir

¯
ˆ

1

rn
r
2´1

˙

. (A16)

It can be seen from (A15) and (A16) that all elements of all groups have the same
power nit “ p,@i P rNs, t P rrs. i.e.,

Θi ě rn
r
2´1

´
ap

i1
ˆ . . .ˆ ap

ir

¯
ˆ

1

rn
r
2´1

˙

.

Since each element on the RHS of (A14) is assigned to one and only one group and
since

śr
t“1 a

nit
it
“
śr

t“1 ap
it

is the product of the elements of each group Θi, the product of
all elements in Θ1 ` . . .`ΘN (which is equal to product of the elements in the expanded
version of the RHS of (A14)) is

śN
i“1

śr
t“1 ap

it
.

In addition, since each ai appears in exactly Nr
n of the cycles, by Fact 3 and a double

counting argument, we have

pˆ
Nr
n
“

ˆ
Nr
n

˙
rn

r
2´1,

and hence p “ rn
r
2´1. Hence, the lower bound of the AM-GM inequality on the Θ1 ` . . .`

ΘN , will result in
rn

r
2´1Gpc1q ` . . .` rn

r
2´1Gpc

Nprqk
q,

and the Lemma is proved for even r.
For odd values of r, the problem that may arise by using the grouping strategy in its

current form, is when r ă k
2 . In this case, some of the terms on the RHS of (A14) may contain
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multiplication of ai’s that are not present in any of the Gpciq’s. To overcome this, take both
sides to the power of 2m for the smallest m such that rm ą k

2 . Then the RHS of (A14) is at
most the multiplication of rm different ai’s and on the LHS of (A14), there are 2m cycles
of length r multiplied together. By our choice of 2m, now, all possible combinations of
ai’s on the RHS are present in at least one cycle multiplication in the LHS. Hence, it is
straightforward to use the same strategy as even values of r to prove the theorem for the
odd values of r.

Appendix D. Proof of (A9)

The inequality in (A9) is by

P

»
– ÿ

iPcpVq
log

PcpVqpiq
`
Xn

i
˘

Pi
`
Xn

i
˘ ě 0

fi
fl (A17a)

ď exp

$
&
%n inf

t
logE

»
– ź

iPcpVq

˜
PcpVqpiq

`
Xn

i
˘

Pi
`
Xn

i
˘

¸t
fi
fl
,
.
-

ď exp

$
&
%n

ÿ

iPcpVq
logE

»
–
˜

PcpVqpiq
`
Xn

i
˘

Pi
`
Xn

i
˘

¸1{2fi
fl
,
.
- (A17b)

“ exp

$
&
%´n

ÿ

iPcpVq
BpPcpVqpiq, Piq

,
.
-,

where (A17a) is by the Chernoff inequality. The fact that we used t “ 1{2 in (A17b) instead
of finding the exact optimizing t, comes from the fact that t “ 1{2 is the optimal choice for
r “ 2 and as we will explain in Remark A1. The rest of the error events are dominated
by the set of only 2 incorrectly identified distributions. This can be seen as follows for

Xn
1

i.i.d
„ P1, Xn

2
i.i.d
„ P2

P
„

log
P1pXn

2 q

P2pXn
2 q
` log

P2pXn
1 q

P1pXn
1 q
ě 0



“
ÿ

P̂1,P̂2 :ř
xPX P̂1pxq log P2pxq

P1pxq`
P̂2pxq log P1pxq

P2pxqě0

exp
 
´nD

`
P̂1 ‖ P1

˘
´nD

`
P̂2 ‖ P2

(̆

.
“ e´nDpP̃‖P1q´nDpP̃‖P2q “ e´2nBpP1,P2q, (A18)

where P̃ in the first equality in (A18), by using the Lagrangian method, can be shown to be

equal to P̃pxq “
?

P1pxqP2pxqř
x1
?

P1px1qP2px1q and subsequently the second inequality in (A18) is proved.

Appendix E. Proof of (A13a)

We upper bound the denominator of (A11) by
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Prξi,j, ξi,ks “ P
«

log
PipXn

j q

PjpXn
j q
` log

PjpXn
i q

PipXn
i q
ě 0X log

PipXn
k q

PkpXn
k q
` log

PkpXn
i q

PipXn
i q
ě 0

ff

ď P
«

log
PipXn

j q

PjpXn
j q
` log

PjpXn
i q

PipXn
i q
` log

PipXn
k q

PkpXn
k q
` log

PkpXn
i q

PipXn
i q
ě 0

ff

ď exp

#
n inf

t
log

¨
˝E

»
–
˜

PipXn
j q

PjpXn
j q
¨

PjpXn
i q

PipXn
i q
¨

PipXn
k q

PkpXn
k q
¨

PkpXn
i q

PipXn
i q

¸t
fi
fl
˛
‚
+

ďexp

$
&
%n logE

»
–
˜

PipXn
j q

PjpXn
j q
¨
PjpXn

i q

PipXn
i q
¨

PipXn
k q

PkpXn
k q
¨
PkpXn

i q

PipXn
i q

¸ 1
2
fi
fl
,
.
-

“ exp
 
´nBpPi, Pjq ´ nBpPj, Pkq ´ nBpPi, Pkq

(
. (A19)

An upper bound for P
“
ξi,j, ξk,l

‰
can be derived similarly.

Appendix F. Proof of Theorem 3

We propose a three-stage achievability scheme where we should again note that with
similar arguments as the ones in Theorem 1, by imposing the first bound in (24), we can
mainly focus on the no-collision hypothesis. The three achievability stages perform the
tasks of synchronization, identification, and decoding, respectively and the joint probability
of error can be decomposed as

PrErrors ď Pr Synchronization error | No-collision s

` Pr Identification error | No synchronization error, No-collision s

` Pr Decoding error | No synchronization, No identification error, No-collisions

` Prcollisions.

Appendix F.1. Codebook Generation

Let Kn “ enν be the number of users, An “ enα be the number of blocks, Mn “ enR

be the number of messages, and |W | “ polypnq be the number of channels. Each user
i P rKns generates a random i.i.d codebook according to distribution Pcpiq where the index
cpiq P r|W |s is chosen based on the channel Qi “ Wcpiq. For each user i P rKns, the codeword
for each message m P rMns is denoted as xn

i pmq.

Appendix F.2. Probability of Error Analysis

A three-stage decoder is used. We now introduce the three stages and bound the
probability of error for each stage.

Synchronization Step. We perform a sequential likelihood ratio test for synchroniza-
tion as follows. Recall Qip¨|¨q “ Wcpiqp¨|¨q for all user i P rKns. Fix thresholds

Tcpiq P
”
´D

´
Q‹ ‖ rPcpiqWcpiqs

¯
, D

´
rPcpiqWcpiqs ‖ Q‹

¯ı
, i P rKns. (A20)

For each block j P rAns if there exists any user i P rKns such that

Lcpiqpyn
j q :“

1
n

log
rPcpiqWcpiqspyn

j q

Q‹pyn
j q

ě Tcpiq, (A21)

then declare that block j is an ‘active’ block. Else, declare that block j is an ‘idle’ block. Note
that were able to calculate the probabilities of error corresponding to (A3) by leveraging the
constant composition construction of codewords in Theorem 1. In here, we can leverage
the i.i.d. construction of the codewords and calculate the probability of error corresponding
to (A21).
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We now find an upper bound on the average probability of synchronization error
for this scheme over different hypotheses. With the same argument as the one after (A4)
we have

P
”
Synchronization error|Hp1q

ı

ď P
«

Knď

i“1

LcpiqpYn
i q ă Tcpiq|Hp1q

ff
` P

»
–

Anď

s“Kn`1

Knď

i“1

LcpiqpYn
s q ě Tcpiq|Hp1q

fi
fl

ď

Knÿ

i“1

P
”

LcpiqpYn
i q ă Tcpiq|Hp1q

ı
` enαP

«
Knď

i“1

LcpiqpYnq ě Tcpiq|Hp1q
ff

“

Knÿ

i“1

P
”

LcpiqpYn
i q ă Tcpiq|Hp1q

ı
` enαP

»
–
|W |ď

j“1

LjpYnq ě Tj|Hp1q
fi
fl (A22a)

ď

Knÿ

i“1

e
´nD

´
rPcpiqWcpiqsλi

‖rPcpiqWcpiqs
¯
` enα

|W |ÿ

j“1

e
´nD

´
rPjWjsλj

‖Q‹
¯

(A22b)

“

|W |ÿ

j“1

Nje
´nD

´
rPjWjsλj

‖rPjWjs
¯
` enαe

´nD
´
rPjWjsλj

‖Q‹
¯

, (A22c)

where (A22a) is by taking j :“ cpiq and (A22b) is by the Chernoff inequality in which
rPjWjsλ was defined in (26) and where (A22c) is again by taking j :“ cpiq and re-counting
the events.

The probability of error in this stage will decay to zero as blocklength n goes to infinity
if for all j P r|W |s and for a ε ą 0

νj ` ε ă D
´
rPjWjsλj ‖ rPjWjs

¯
, (A23a)

α` ε ă D
´
rPjWjsλj ‖ Q‹

¯
. (A23b)

This corresponds to the second and third bounds in (24).
Identification Step. Having found the location of the ‘active’ blocks, we move on to

the second stage of the achievability scheme to identify which user is active in which block.
We note that, by the random codebook generation and the memoryless property of the
channel, the output of the block occupied by user i P rKns is i.i.d distributed according to
the marginal distribution

rPcpiqQcpiqspyq :“
ÿ

xPX
PcpiqpxqQcpiqpy|xq.

We leverage this property and customize the result in Theorem 2 to identify the
different distributions of the different users. Note that at this point, we only distinguish
the users with different channels from one another. Users with the same channel are
distinguished from each other in the decoding stage as will be explained next. In Theorem 2,
it was assumed that all the distributions are distinct, while in here, our distributions are
not necessarily distinct. The only modification that is needed in order to use the result of
Theorem 2 is as follows. We need to consider a graph in which the edge between every two
similar distributions has edge weights equal to zero (as opposed to eBpP,Pq “ e0 “ 1). By
doing so, we can easily conclude that the probability of identification error in our problem
using an ML decoder is upper bounded by
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Pr Identification error | No synchronization error, No-collision s

ď
ÿ

1ďiăjď|W |
e´2nBprPiWis,rPjWjsq (A24)

ď
ÿ

1ďiăjď|W |
e´2n infi,j BprPiWis,rPjWjsq (A25)

which goes to zero for |W | “ polypnq if 0 ă infi,j B
`
rPiWis, rPjWjs

˘
. This corresponds to the

fourth bound in (24).
Decoding Step. After finding the permutation of users in the active blocks, we can go

ahead with the third stage of the achievable scheme to find the transmitted messages of the
users using a maximum likelihood decoder. In this stage, we can group each set of users
(with group size Nj, j P r|W |s defined in (25)) who have similar channel Wj. In each block
of each group we have to distinguish among eR`νj messages and with similar steps as the
proof of Theorem 1, we have

Pr Decoding error | No synchronization, No identification error, No-collisions

ď

|W |ÿ

j“1

P
”

Decoding error for
users with channel Wj

| No synchronization and identification error, No-collision
ı

ď

|W |ÿ

j“1

Nje
´nErpR`νj ,Pj ,Wjq “

|W |ÿ

j“1

enpνj´ErpR`νj ,Pj ,Wjqq, (A26)

which retrieves the second bound in (24). Finally, as for a synchronous channel and since
we have to distinguish among eR`νj messages in each block for some ε ą 0, we must have

R` νj ` ε ă IpPj, Wjq,@j P r|W |s, (A27)

which corresponds to the last bound in (24).
Finally to conclude the proof, we should note that the bounds derived in (A23), (A26)

and (A27) are all achievable bounds for each user for large enough block length n (say for
n ě n0). Since we need the intersection of the achievable bounds for all users while the
number of users itself increases with n, we need to express the asymptotic bound with the
definition of n going to infinity. By expressing the achievable set for all users as An defined
in (24) by the equivalence of lim infnÑ8An ”

Ť8
n0“1

Ş8
n“n0

An and by noting that for some
n0 every region Aněn0 is achievable by our achievability scheme previously introduced
here, we see that (23) is indeed achievable.

Remark A2. Note that the existence of ε ą 0 in our bounds are due to the fact that we have
a summation that depends on n and our exponent also decays exponentially with n while the n
multiplier depends on the summation arguments. By including a constant ε ą 0 that multiplies n,
we guarantee that the summation as a whole decays to zero.

Remark A3. The achievability proof of Theorem 1 relies on constant composition codes whereas the
achievability proof of Theorem 3 relies on i.i.d. codebooks. The reason for these restrictions is that
in Theorem 3 we also need to distinguish different users and in order to use the result of [13], we
focused our attention on i.i.d. codebooks.

Appendix G. Proof of Theorem 4

For the proof of Theorem 4, we use an ML decoder sequentially to perform the
synchronization, identification and decoding all together, for each block.

Proof. Codebook generation: Each user i P rKns generates an i.i.d. random codebook
according to the distribution Pi.



Entropy 2023, 25, 65 24 of 31

Probability of error analysis: For each block s P rAns, the decoder outputs

i˚ “ arg max
iPr0:Kns,mPrMns

Qipyn
s |x

n
i pmqq ,

where xn
0 “ H.

We now find an upper bound on the probability of error given the hypothesis Hp1q
in (A4) for this decoder as follows

Ppnqe ď
ÿ

iPrKns

ÿ

mPr2:Mns
P
„

log
QipYn

i | xn
i pmqq

QipYn
i | xn

i p1qq
ą 0|Hp1q


(A28a)

`
ÿ

iPrKns

ÿ

jPr0:Kns
j‰i

ÿ

mPrMns
P
«

log
QjpYn

i |x
n
j pmqq

QipYn
i |x

n
i p1qq

ą 0|Hp1q
ff

(A28b)

`
ÿ

sPrKn`1:Ans

ÿ

jPrKns

ÿ

mPrMns
P
«

log
QjpYn

s |xn
j pmqq

Q‹pYn
s q

ą 0|Hp1q
ff

(A28c)

ď
ÿ

iPrKns
enRe

´n supt´ logE

«ˆ
QipYi|Xiq
QipYi|Xiq

˙t
ff

`
ÿ

iPrKns

ÿ

jPr0:Kns
j‰i

enRe
´n supt´ logE

«ˆ
QjpYi|Xjq
QipYi|Xiq

˙t
ff

` enα
ÿ

jPrKns
enRe

´n supt´ logE

«ˆ
QjpYs|Xjq

Q‹pYsq
˙t

ff

,

where PX,Xpx, x1q “ PXpxqPXpx1q. The term given in (A28a) is due to decoding error, (A28b)
is due to identification error and finally (A28c) is due to synchronization error. The last
inequality is by the Chernoff bound. In order for each term in the probability of error upper
bound to vanish as n grows to infinity and by the explanation in the proof of Theorem 3 for
the inclusion of n Ñ8 in our bounds, we find the conditions stated in the theorem.

Appendix H. Proof of (28)

To see (28a), we note that due to the symmetry in

CpP, Q, P, Qq “ sup
t
´ log

ÿ

x,x1,y
PpxqPpx1qQpy|xq1´tQpy|x1qt,

the supremum is achieved at the midpoint t “ 1
2 . hence CpP, Q, P, Qq “ µp 1

2 q. Moreover,
we find an upper bound on Cp . , Q‹, Pi, Qiq by noting that µ0,iptq defined in (12b) is concave
in t with µ0,ip1q “ 0 and

Bµ0,iptq
Bt

|t“1“ ´IpPi, Qiq ´DprPiQis ‖ Q‹q ď 0.

Hence µ0,iptq is always less than pIpPi, Qiq `DprPiQis ‖ Q‹qqp1´ tq and for 0 ď t ď 1
it is always less than IpPi, Qiq `DprPiQis ‖ Q‹q.
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Appendix I. Proof of Theorem 5

We first define the following special shorthand notations that we will use throughout
this proof

Fn :“ MnKn, Qn
i,mpy

nq :“ Qipyn|xn
i pmqq, (A29a)

ĚPYnpynq :“
1
Fn

Knÿ

i“1

Mnÿ

m“1

Qn
i,mpy

nq, Qn
i,mλi

pynq :“

´
Qn

i,mpy
nq
¯λi
pQn‹pynqq1´λi

ř
yn

´
Qn

i,mpy
nq
¯λi
pQn‹pynqq1´λi

, (A29b)

Ě
PpλqYn pynq :“

1
Fn

Knÿ

i“1

Mnÿ

m“1

Qn
i,mλi

pynq,
`ĚPYn

˘
tpy

nq :“

`ĚPYnpynq
˘t
pQn‹pynqq1´t

ř
yn
`ĚPYnpynq

˘t
pQn‹pynqq1´t

, (A29c)

Qn‹pynq :“
nź

i“1

Q‹pyiq. (A29d)

We use the optimal ML decoder to find the location of the ‘active’ blocks. In this stage,
we are not concerned about the identity or the message of the users. In this regard, the
decoder output is determined via

arg max
pl1,...,lKn q
li‰lj ,@i‰j

liPrAns,iPrKns

Knÿ

i“1

log
ĚPYnpYn

li
q

Qn‹pYn
li
q

. (A30)

Given the hypothesis that the users are active in blocks rKns, denoted by Hp1q in (A4),
the corresponding error events for the ML decoder are given by

!
error|Hp1q

)
“

ď

pl1,...,lKn q‰p1,...,Knq

#
Knÿ

i“1

log
ĚPYnpYn

li
q

Qn‹pYn
li
q
ą

Knÿ

i“1

log
ĚPYnpYn

i q

Qn‹pYn
i q

+

Ě
ď

iPrKns
jPrKn`1:Ans

#
log

ĚPYnpYn
j q

Qn‹pYn
j q
ě log

ĚPYnpYn
i q

Qn‹pYn
i q

+

Ě

$
&
%

ď

jPrKn`1:Ans
log

ĚPYnpYn
j q

Qn‹pYn
j q
ě T

,
.
-
č

$
&
%

ď

iPrKns
T ě log

ĚPYnpYn
i q

Qn‹pYn
i q

,
.
-, (A31)

for any T P R. We take T to be

T :“
1
Fn

Knÿ

i“1

Mnÿ

m“1

´
D
´

Qn
i,mλi

‖ Qn‹
¯
´D

´
Qn

i,mλi
‖ ĚPYn

¯¯
, (A32)

for different λi P r0, 1s, i P rKns.
We also find the following lower bounds

Qn‹
„

log
ĚPYn

Qn‹
pYnq ě T


ě e

´ n
Kn

´řKn
i“1 DpQiλi

‖Q‹|Piq´pR`νqp1´srnq` hpsrnq
n

¯
, (A33a)

ĚPYn

„
log

ĚPYn

Qn‹
pYnq ď T


ě e´

n
Kn

řKn
i“1 DpQiλi

‖Qi|Piq, (A33b)

which are proved in Appendix K.
By using the inequalities in (A33a) and (A33b), we find a lower bound on the proba-

bility of (A31) as follows
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P

»
– ď

jPrKn`1Ans
log

ĚPYnpYn
j q

Qn‹pYn
j q
ě TX

ď

iPrKns
T ě log

ĚPYnpYn
i q

Qn‹pYn
i q
|Hp1q

fi
fl (A34a)

“ P

»
– ď

jPrKn`1:Ans
log

ĚPYnpYn
j q

Qn‹pYn
j q
ě T|Hp1q

fi
flP

»
– ď

iPrKns
T ě log

ĚPYnpYn
i q

Qn‹pYn
i q
|Hp1q

fi
fl (A34b)

“: PrZ1 ě 1sPrZ2 ě 1s (A34c)

ě

ˆ
1´

VarrZ1s

E2rZ1s

˙ˆ
1´

VarrZ2s

E2rZ2s

˙
(A34d)

ě

¨
˝1´

1
řAn

j“Kn`1 Prξ j “ 1s

˛
‚
˜

1´
1

řKn
i“1 Prζi “ 1s

¸
(A34e)

ě

ˆ
1´ e

´nα` n
Kn

´řKn
i“1 DpQiλi

‖Q‹|Piq´pR`νqp1´srnq` hpsrnq
n

¯˙ˆ
1´ e´nν` n

Kn

řKn
i“1 DpQiλi

‖Qi|Piq
˙

, (A34f)

where (A34b) follows by independence of Yn
i and Yn

j whenever i ‰ j,@i, j P rAns and the
inequality in (A34d) is by Chebyshev’s inequality, where we have defined

Z1 :“
Anÿ

j“Kn`1

ξ j, ξ j :“ Ber
ˆ

Qn‹
„

log
ĚPYn

Qn‹
pYn

j q ě T
˙

, (A35a)

Z2 :“
Knÿ

i“1

ζi, ζi :“ Ber
ˆ
ĚPYn

„
log

ĚPYn

Qn‹
pYn

i q ď T
˙

, (A35b)

where tξ j, ζiu are mutually independent. We can see from (A34f) that if for some ε ą 0

ν ą
1

Kn

Knÿ

i“1

DpQiλi
‖ Qi|Piq ` ε, (A36a)

α ą
1

Kn

Knÿ

i“1

DpQiλi
‖ Q‹|Piq ´ p1´ r̄nqpν` Rq ` ε, (A36b)

then the probability of error is strictly bounded away from zero and hence the region
specified by (A36) (first bound in (31)) is impermissible.

We now focus only on decoding error probability, with the assumption that we have
identified the active blocks. This is hence a lower bound on the overall probability of error.
We have

PrDecoding error |No synchronization errors (A37a)

“ P
«

Knď

i“1

Decoding error in block i

ff
(A37b)

ě 1´
1

řKn
i“1 P

“
Dc

i
‰ (A37c)

ě 1´
1

řKn
i“1 e´nEsppR,Pi ,Qiq , (A37d)

ě 1´
1

Kn e´n 1
Kn

řKn
i“1 EsppR,Pi ,Qiq

, (A37e)

“ 1´ e
´n

´
ν´ 1

Kn

řKn
i“1 EsppR,Pi ,Qiq

¯
(A37f)
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where
Dc

i :“ Decoding error in block i,

and where (A37c) can be derived using the same technique used in (A34). Finally, (A37d)
is by lower bounding the probability of decoding error as in [14] where we defined Esp
in (14). (A37e) is by Jensen’s inequality and finally as it can be seen in (A37f), if ν ą´

1
Kn

řKn
i“1 EsppR, Pi, Qiq

¯
` ε for an ε ą 0 the lower bound to the probability of decoding

error is bounded away from zero for large values of n and this retrieves the second bound
in (31). In addition, the usual converse bound on the rate of a synchronous channel also
applies to any asynchronous channel and hence the region where R ą IpP, Qq ` ε is also
impermissible. This concludes the proof.

Appendix J. Proof of Theorem 6

User i P rKns has a codebook with Mn “ enR codewords of length n. Define for i P rKns

an ‘extended codebook’ consisting of An Mn codewords of length nAn constructed such
that @m P rMns and @ti P rAns

rXnAn
i pmi, tiq :“

“
‹

npti´1q
i fipmiq ‹

npAn´tiq
i

‰
,

as depicted in Figure A4.

1

2

An

Mn

xn
i (Mn)

xn
i (Mn)

xn
i (Mn)

xn
i (1)

xn
i (1)

xn
i (1) ⋆ni ⋆ni ⋆ni ⋆ni

⋆ni ⋆ni ⋆ni ⋆ni ⋆ni

⋆ni

⋆ni ⋆ni ⋆ni ⋆ni⋆ni

⋆ni ⋆ni ⋆ni ⋆ni⋆ni

⋆ni ⋆ni ⋆ni ⋆ni ⋆ni

⋆ni ⋆ni ⋆ni ⋆ni⋆ni

1

Figure A4. Extended codebook.

By using Fano’s inequality, i.e., HpXnAn
1 , . . . , XnAn

Kn
|YnAnq ď nεn : εn Ñ 0 as n Ñ8, for

any codebook of length nAn we have

HpXnAn
1 , . . . , XnAn

Kn
q “ Hpm1, t1, . . . , mKn , tKnq

“ nKnpα` Rq

“ HpXnAn
1 , . . . , XnAn

Kn
|YnAnq ` IpXnAn

1 , . . . , XnAn
Kn

; YnAnq

ď nεn ` nenα |Y | ðñ

ν`
log

´
1` 1

αKn

ř
iPrKns Ri

¯

n
ď α`

log
´

1` εn
enα|Y |

¯

n
,

where
log

´
1` 1

αKn

ř
iPrKns Ri

¯

n ě 0 and
logp1` εn

enα|Y| q
n ě 0 vanish as n goes to infinity.

Appendix K. Proof of (A33a) and (A33b)

Before deriving lower bounds on (A33a) and (A33b), we note that by the Type-
counting Lemma [19], at the expense of a small decrease in the rate (which vanishes in
the limit for large blocklength) we may restrict our attention to constant composition
codewords. Henceforth, we assume that the composition of the codewords for user i P rKns

is given by Pi. Moreover, to make this paper self-contained, we restate the following
Lemmas that we use in the rest of the proof.
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Lemma A2 (Compensation Identity). For arbitrary πi :
řK

i“1 πi “ 1 and arbitrary probability
distribution functions Pi P PX , i P rKs, we define P̄pxq “

řK
i“1 πiPipxq. Then for any probability

distribution function R we have

D
`
P̄ ‖ R

˘
`

Kÿ

i“1

πiD
`
Pi ‖ P̄

˘
“

Kÿ

i“1

πiDpPi||Rq. (A38)

Lemma A3 (Fano). Let F be an arbitrary set of size N. For P̄ “
ř

θPF Pθ
N we have

1
N

ÿ

θPF

D
`
Pθ ‖ P̄

˘
ě p1´ r̄q logpNp1´ r̄qq ` r̄ log

ˆ
Nr̄

N ´ 1

˙
, (A39)

where

r̄ :“ inf
T

1
N

ÿ

θPF

PθtT ‰ θu (A40)

in which the infimum is taken over all possible estimators T.

We now continue with the proof of (A33a). Using the Chernoff bound we can write

Qn‹

«
log

ĚPYn

Qn‹
pYnq ě

1
Fn

Knÿ

i“1

Mnÿ

m“1

D
´

Qn
i,mλi

‖ Qn‹
¯
´D

´
Qn

i,mλi
‖ ĚPYn

¯ff Chernoff.
“ e´ supt Aptq. (A41)

The Chernoff bound exponent, supt Aptq, is expressed and simplified as follows

Aptq :“
t

Fn

Knÿ

i“1

Mnÿ

m“1

D
´

Qn
i,mλi

‖ Qn‹
¯
´D

´
Qn

i,mλi
‖ ĚPYn

¯
´ logEQn‹

«ˆĚPYn

Qn‹
pYnq

˙t
ff

“
t

Fn

Knÿ

i“1

Mnÿ

m“1

ÿ

yn

Qn
i,mλi

pynq log
ĚPYnpynq

Qn‹pynq
´ log

ÿ

yn

`ĚPYnpynq
˘t
pQn‹pynqq

1´t

“
1
Fn

Knÿ

i“1

Mnÿ

m“1

ÿ

yn

Qn
i,mλi

pynq log

pĚPYn pynqqtpQn‹pynqq1´t

ř
ynpĚPYn pynqqtpQn‹pynqq1´t

Qn‹pynq

“
1
Fn

Knÿ

i“1

Mnÿ

m“1

ÿ

yn

Qn
i,mλi

pynq log

`ĚPYn
˘

tpy
nq

Qn‹pynq

“
1
Fn

Knÿ

i“1

Mnÿ

m“1

D
´

Qn
i,mλi

‖ Qn‹
¯
´D

´
Qn

i,mλi
‖
`ĚPYn

˘
t

¯

“
1

Kn

Knÿ

i“1

nD
`
Qiλi

‖ Q‹|Pi
˘
´

1
Fn

Knÿ

i“1

Mnÿ

m“1

D
´

Qn
i,mλi

‖
`ĚPYn

˘
t

¯
, (A42)

where (A42) is the result of the constant composition structure of the codewords. As a result,

sup
t

Aptq “
1

Kn

Knÿ

i“1

nD
`
Qiλi

‖ Q‹|Pi
˘
´ inf

t

#
1
Fn

Knÿ

i“1

Mnÿ

m“1

D
´

Qn
i,mλi

‖
`ĚPYn

˘
t

¯+
. (A43)

Moreover,
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inf
t

1
Fn

Knÿ

i“1

Mnÿ

m“1

D
´

Qn
i,mλi

‖
`ĚPYn

˘
t

¯

“ inf
t

1
Fn

Knÿ

i“1

Mnÿ

m“1

ÿ

yn

Qn
i,mλi

pynq log
Qn

i,mλi
pynq

`ĚPYn
˘

tpy
nq

“ inf
t

1
Fn

Knÿ

i“1

Mnÿ

m“1

ÿ

yn

Qn
i,mλi

pynq log
Qn

i,mλi
pynq

`ĚPYn
˘

tpy
nq
¨

Ě
PpλqYn pynq

Ě
PpλqYn pynq

“ inf
t

1
Fn

Knÿ

i“1

Mnÿ

m“1

D
ˆ

Qn
i,mλi

‖ Ě
PpλqYn

˙
`D

ˆĚ
PpλqYn ‖

`ĚPYn
˘

t

˙

ě
1
Fn

Knÿ

i“1

Mnÿ

m“1

D
ˆ

Qn
i,mλi

‖ Ě
PpλqYn

˙
.

Note that
Ě
PpλqYn is the average of Qn

i,mλi
over m, i’s (m P rMns, i P rKns) and hence based on

Lemma A3, we have

1
Fn

Knÿ

i“1

Mnÿ

m“1

D
ˆ

Qn
i,m ‖ Ě

PpλqYn

˙
ě p1´srnq logpFnp1´srnqq `srn log

ˆ
Fnsrn

Fn ´ 1

˙

ě p1´srnq log Fn ´ hpr̄nq.

As a result

sup
t

Aptq ď
1

Kn

Knÿ

i“1

nDpQiλi
‖ Q‹|Piq ´ npR` νqp1´srnq ` hpr̄nq.

Now we continue with the proof of (A33b). Again, using the Chernoff bound we have

ĚPYn

«
log

PYn

Qn‹
pYnq ď

1
Fn

Knÿ

i“1

Mnÿ

m“1

D
´

Qn
i,mλi

‖ Qn‹
¯
´D

´
Qn

i,mλi
‖ ĚPYn

¯ff

“ĚPYn

«
log

Qn‹
PYn

pYnq ě
1
Fn

Knÿ

i“1

Mnÿ

m“1

D
´

Qn
i,mλi

‖ ĚPYn

¯
´D

´
Qn

i,mλi
‖ Qn‹

¯ff .
“ e´ supt Bptq,

where

sup
t

Bptq :“ sup
t

t
Fn

Knÿ

i“1

Mnÿ

m“1

ÿ

yn

Qn
i,mλi

pynq log
Qn‹pynqĚPYnpynq

ĚPYnpynq
´ log

ÿ

yn

pQn‹pynqq
t`ĚPYnpynq

˘1´t

“ sup
t

ÿ

yn

Ě
PpλqYn pynq log

`ĚPYn
˘

1´tpy
nq

ĚPYnpynq

“ sup
t

D
ˆĚ

PpλqYn ‖ ĚPYn

˙
´D

ˆĚ
PpλqYn ‖

`ĚPYn
˘

1´t

˙

ď D
ˆĚ

PpλqYn ‖ ĚPYn

˙
“
ÿ

yn

˜
1
Fn

Knÿ

i“1

Mnÿ

m“1

Qn
i,mλi

pynq

¸
log

¨
˝

1
Fn

řKn
i“1

řMn
m“1 Qn

i,mλi
pynq

1
Fn

řKn
i“1

řMn
m“1 Qn

i,mpy
nq

˛
‚

ď
ÿ

yn

1
Fn

Knÿ

i“1

Mnÿ

m“1

Qn
i,mλi

pynq log
Qn

i,mλi
pynq

Qn
i,mpy

nq
“

1
Fn

Knÿ

i“1

Mnÿ

m“1

D
´

Qn
i,mλi

‖ Qn
i,m

¯
(A44)

“
1

Kn

Knÿ

i“1

nD
`
Qiλi

‖ Q|Pi
˘
,
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and where the inequality in (A44) is by the Log-Sum inequality.

Appendix L. Proof of Lemma 1

We will prove the Lemma by contradiction. Define

ti fi Number of users in block i.

Assume that the arrangement with highest probability (let us call it A) has at least two
blocks, say blocks 1, 2, for which t1 ´ t2 ą 1. This assumption means that the arrangement
with the highest probability is not the non-overlapping arrangement.

The probability of this arrangement, PpAq, is proportional to

PpAq9
ˆ

Kn

t1

˙ˆ
Kn ´ t1

t2

˙
“

Kn!
t1, pKn ´ t1q!

pKn ´ t1q!
t2! pKn ´ t1 ´ t2q!

“
Kn!

t1! t2! pKn ´ t1 ´ t2q!
.

We now consider a new arrangement, Anew, in which t1,new “ t1 ´ 1 and t2,new “ t2 ` 1
and all other blocks remain unchanged. This new arrangement is also feasible since we have
not changed the number of users. The probability of this new arrangement is proportional to

PpAnewq9

ˆ
Kn

t1 ´ 1

˙ˆ
Kn ´ t1 ´ 1

t2 ` 1

˙

“
Kn!

pt1 ´ 1q! pKn ´ t1 ` 1q!
pKn ´ t1 ` 1q!

pt2 ` 1q! pKn ´ t1 ´ t2q!

“
Kn!

pt1 ´ 1q! pt2 ` 1q! pKn ´ t1 ´ t2q!
.

Comparing PpAq and PpAnewqwe see that PpAq ă PpAnewqwhich is a contradiction
to our primary assumption that A has the highest probability among all arrangements.
Hence there do not exist two blocks which differ more than one in the number of active
users within them in the arrangement with the highest probability.
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