
Citation: Aspembitova, A.T.; Bentley,

M.A. Oracles in Decentralized

Finance: Attack Costs, Profits and

Mitigation Measures. Entropy 2023,

25, 60. https://doi.org/10.3390/

e25010060

Academic Editors: Stanisław Drożdż,

Jarosław Kwapień and Marcin

Wątorek

Received: 6 November 2022

Revised: 13 December 2022

Accepted: 22 December 2022

Published: 28 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Oracles in Decentralized Finance: Attack Costs, Profits and
Mitigation Measures
Ayana T. Aspembitova * and Michael A. Bentley

Euler Labs, London EC1V 2NX, UK
* Correspondence: ayana.aspembitova@euler.xyz

Abstract: Decentralized finance (DeFi) is by far the most popular application of blockchain technology.
Despite the wide acceptance of new financial instruments and services, there are still many unexplored
areas in the field. We dedicate this research to the understanding of one of the most crucial limitations
of decentralized finance—oracles. DeFi protocols, as well as other blockchain applications, function
in a closed environment and regularly need to fetch real-world information (e.g., assets’ prices)—the
tool used for this purpose is called an oracle. We review the existing oracle types in DeFi applications
and focus our research on the least explored one: when another protocol, typically a decentralized
exchange, serves as a price oracle. After explaining the mechanisms behind the decentralized
exchanges, we introduce an algorithmic model that allows one to safely design a decentralized oracle
and adjust crucial parameters. We believe that understanding and implementing the logic presented
in the model can help to reduce the chances of price manipulations attacks, which are the most
frequent incident types in DeFi.

Keywords: DeFi; oracle; automated market makers; decentralized exchange; lending protocol

1. Introduction

Blockchain-based smart contracts have been successfully growing, and their use cases
are quite innovative and have attracted lots of interest valued in the billions of dollars.
However, there is a fundamental limitation of decentralized applications—they execute in
a closed environment and a bridge service (oracle) is needed when obtaining information
outside of the blockchain. As decentralized applications evolve and mature, oracles play
an increasingly prominent role in ensuring the safety across smart contracts. Despite the
critical role that oracles play in decentralized applications, the research is still in its infancy.
In [1], the authors performed a bibliometric analysis and demonstrated the alarming
scarcity of the research dedicated to blockchain oracles. Moreover, in the recent study
of DeFi incidents [2], the authors empirically showed that oracle manipulation attacks
are the most frequent incident types in DeFi. Although there are tools that can detect
the price manipulation attacks [3,4], and identify new vulnerabilities in real time, there is
still a need for prevention measures. The lack of understanding of oracles mechanics and
functions concerns not only academic research but more so the real users of decentralized
applications.

Decentralized finance (DeFi) uses blockchain technology to provide financial instru-
ments without intermediaries in a trustless and transparent manner [5]. DeFi covers a
wide range of financial products, offering innovative alternatives to traditional financial
products, such as stablecoins, exchanges, lending protocols, insurance and yield farming
protocols.

Here, we provide an overview on why DeFi rests heavily on the use of oracles and
how information from the outside world can be retrieved. Generally speaking, there is
some ground truth information that resides outside of smart contracts, and smart contracts
need it for the proper performance. To obtain such ground truth, smart contracts need

Entropy 2023, 25, 60. https://doi.org/10.3390/e25010060 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25010060
https://doi.org/10.3390/e25010060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5418-1914
https://doi.org/10.3390/e25010060
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25010060?type=check_update&version=1

Entropy 2023, 25, 60 2 of 16

reliable data sources—any entity that stores the ground truth information (databases, sensors
or other smart contracts). Then, data feeders report off-chain data to an on-chain system.
The systematic explanation on the existing type of oracles in a blockchain is provided in [6].
As for the decentralized financial applications, the ground truth needed is the price of the
assets listed in a smart contract. Although there are many types of oracles with different
functions and characteristics, the oracles currently used in DeFi can be broadly divided
into two main categories—decentralized trust-based oracles and decentralized exchanges
used as oracles.

Decentralized trust-based oracles function as a smart contract and do not rely on
a single source of information. Instead, they query multiple sources and aggregate the
obtained information into a single output. The papers [7–9] provided a detailed review
on the architecture, workflow and weak points of various decentralized oracles, such as
Chainlink [10,11], Provable [12], Oraclize, etc. Some DeFi applications are fetching the
price information directly from the decentralized exchanges by either getting the spot price
or aggregating the prices over a certain window size. Using the spot price can be very
dangerous because the price can be easily manipulated [13–15]. Therefore, more and more
DeFi applications started using the TWAP (time-weighted average price) instead—the
output price is calculated as a weighted average over a certain time period and, therefore,
the cost of price manipulation of the TWAP oracle increases linearly with the length of the
TWAP averaging window, reducing the chance of an oracle hack.

In this paper, we focus on the decentralized exchanges (DEXs) used as oracles for DeFi
protocols. While trust-based oracles have attracted some attention from the researchers,
using DEXs directly as oracles is still not well understood. In [16], the authors analyzed
the cost of TWAP manipulation when an arithmetic mean is used for the aggregation and
also considered the possibility of an MMEV attack. Decentralized exchanges utilize the
concept of automated market makers (to be explained in detail in Section 2). Our main
contributions consist of the following: we systematize the existing knowledge about using
automated market maker (AMM)-based decentralized exchanges as oracles, we derive
attack costs for the most popular cost functions used in DEXs, then we derive the relations
between protocol-specific parameters and oracle-specific parameters that impact the safety
of using the DEX-based oracle and, finally, we develop the algorithmic model that allows
to assess the risks of using oracles in a given protocol. Overall, knowing the mechanics
behind the oracles’ work would give a comprehensive understanding on how attacks
can be performed. Implementing the logic presented in the model below would give the
quantitative estimate on the cost a potential attacker needs for a successful attack. Knowing
the mechanism behind the price oracle and being able to precisely estimate the cost of a
potential attack provides an additional layer of security to the protocols using DEX-based
oracles.

The paper is structured as follows. First, we review the most popular AMM-based
decentralized exchanges, demonstrate their logic and the cost functions used for asset
pricing. In the appendices, we derive the cost of the attacks for each type of AMM pricing
function discussed in Section 2. Then, in Section 3, we discuss various aggregation methods
that can be used in DEX-based oracles and show how they can be impacted by the price
manipulation attack. Section 4 aggregates all the information obtained above and provides
a step-by-step algorithm on how to mitigate attacks related to the DEX-based oracles on
the example of a lending protocol. We simulate various attack scenarios to the lending
protocol on two types of AMM cost functions—a constant product and stableswap. Finally,
we conclude all the findings and discuss the future directions of this research in the last
section.

2. Automated Market Makers

To understand the safety of using the DEX-based oracle, we need to first be familiar
with how DEXs work and understand the mathematics behind it—the cost function utilized
by the DEX. In this section, we first explain the mechanism of the decentralized exchange

Entropy 2023, 25, 60 3 of 16

protocol and then review the popular AMM cost functions and demonstrate how they are
used to price assets in a DEX.

An AMM-based decentralized exchange consists of pools of different assets (liquidity
pools). Liquidity to these pools is provided by people who wish to gain income from the
transaction fees (liquidity providers). Each pool can have few assets (currently most of the
pools have two assets) and users who want to exchange assets (traders) interact directly
with the given pool to swap asset x to asset y.

In centralized exchanges, the price discovery happens by matching the sell and buy
orders from various counterparties. In contrast to it, decentralized exchanges are based on
the automated market-making mechanism (AMM). The AMM utilizes the cost function that
discovers the price algorithmically—this function only allows counterparties to exchange
the assets for the prices along the trajectory determined by the AMM formula and quantities
of the available assets. Although the implementation of AMM functions to price assets in
decentralized exchanges is quite novel, the idea of agents automatically placing bets and
following prescribed rules is not new and has been implemented in many areas to aggregate
the information—the prediction of building openings [17], sport matches [18], etc. Overall,
the idea of automated market making is to define algorithmic rules for agents within the
system to place their bets on a certain subject, aggregate them and derive a single function
(conservation function) from the outcome. In DEXs, this process goes a little different. First,
the conservation function is defined and then agents (traders and liquidity providers)
match their trades, and whenever there is a trade that goes beyond the expectations of the
cost function, it is punished by the algorithm and, therefore, it discourages agents to behave
(trade) differently than prescribed by the conservation function. Although in DEXs agents
are not algorithmic bots but real people, they do act in a way as was expected algorithmic
bots to act to preserve the cost function.

In [19], Othman introduced five desideratas (desirable properties) for cost functions—
monotonicity, convexity, bounded loss, translation invariance and positive homogeneity.
As it was proven by [20], it is impossible for the cost function to satisfy all five properties.
Therefore, all the cost functions utilized by AMMs satisfy only a few properties, while
others are relaxed.

2.1. Logarithmic Market Scoring Rule

The first automated market maker for prediction markets was introduced by Hanson [21,22].
It has been quite popular due to its simple analytical form and satisfying the main desirable
properties for cost functions (convexity, bounded loss and translation invariance).

The Logarithmic Market Scoring Rule (LMSR) conservation function for n assets is
defined as:

C(x) = b log(
n

∑
i=1

exp(xi/b) (1)

where b > 0 is the liquidity parameter, it is strictly positive, constant and it is defined before
the pricing of assets. b parameter controls the liquidity in the market—the higher the b,
the less the price is shifted when assets are added. Moreover, it translates into the bigger
maximum loss because the market maker’s worst-case loss is the function of b which is b
log n.

The derivative of the cost function C(x) is the price function in the LMSR:

pi(x) =
exp(xi

b)

∑j exp(
xj
b)

(2)

The LMSR is used in many settings, such as auctions, prediction markets, rating mar-
kets, etc. In decentralized finance, the LMSR has not been widely used for a few reasons:
first, the LMSR does not satisfy the liquidity sensitivity property; second, it is quite easy

Entropy 2023, 25, 60 4 of 16

and cheap to compromise the price of an asset when the LMSR is used as a cost function.

By allowing the parameter b to be the function of the outstanding quantities instead of
being constant, the LMSR becomes liquidity sensitive—the Liquidity-Sensitive Logarithmic
Market Scoring Rule (LS-LMSR), introduced by Othman [23]:

C(x) = b(x) log(
n

∑
i=1

exp(xi/b(x)) (3)

where function b is as follows:
b(x) = α ∑

i
xi (4)

where α is the parameter that is strictly positive and set before the pricing of assets. The
possible maximum commission (also called vigorish v) depends on the α parameter and
does not exceed v when α is set as follows [24]:

α =
v

n log n
(5)

where n is the number of outcomes (assets in the pool for AMM-based DEX). Depending
on what is the desired maximum commission v, the optimal parameter α can be easily
calculated.

In decentralized finance, the LS-LMSR is used in applications such as Augur [25] and
Gnosis [26].

2.2. Constant Product Market

Constant product AMM (CPAMM) cost function for n assets is defined as follows:

C(x) =
n

∏
i=1

xi (6)

where C(x) set as a constant.
Constant product AMM has many advantages that makes it suitable to be used in

DEXs—it is simple to code into the smart contract, it is a convex function which meets
the principles of supply and demand and it is also liquidity sensitive. Although it has
been shown in [27] that prices in such a DEX can be inaccurate during volatile markets,
this cost function still remains the most popular and being utilized by large DEXs, such as
Uniswap [28,29].

Decentralized exchange pools consist of two tokens and Equation (6) becomes the
following:

x× y = k (7)

where k is the constant, x is the amount of the first token and y is the amount of the second
token.

The price for each token in a pool can be calculated by simply dividing the number
of tokens in one reserve to the number of tokens in another. A more detailed review of
constant product markets is given in [30,31]

2.3. Combination of Constant Sum and Constant Product Markets

In DeFi, there are assets that have the same value, for example, a different version of
USD (USDC, USDT, etc.). Because the ratio between asset x and asset y in such pools is
stable and close to 1, they are called stableswap pools. The pricing formula for stableswap
pools was developed by the Curve team [32]. Essentially, this is a combination of the
constant product market pricing formula xy = k and the linear invariant x + y = C. The
rationale behind adding the linear invariant term to the constant product formula is to

Entropy 2023, 25, 60 5 of 16

achieve the closer peg 1:1 and allow lower slippage for stableswap pools. When using only
a linear invariant formula, tokens are always traded at 1:1 with zero slippage; however,
this might lead to the depleting of the pool’s one token. Using only a constant product
formula leads to larger slippage and a less stable peg. Therefore, the combination of these
two curves allows to keep the pool balanced while providing a more stable peg.

The final stableswap curve formula looks as in Equation (8). For the full explanation
and derivation, refer to the paper [33].

22 A(x + y) + D = 22 AD +
D3

22xy
(8)

where A is the amplification factor for the linear invariant curve—the larger the A, the
closer the curve to the linear. D is the total amount of tokens in the pool.

To calculate the price for the token, one needs to express the curve for y from
Equation (8), and the derivative of that expression stands for the price. Stableswap AMM
is widely used in many DEX pools that have the same price for both tokens.

3. Aggregation Methods

In this paper, we focus on oracles for DeFi applications that get price information
directly from the decentralized exchanges by aggregating the output prices over a certain
time period. Every time there is a new swap (trade) in the DEX, the price is updated in oracle
and then the time-weighted average is calculated. To mitigate the possible effect of the
price manipulation within one or a few blocks, one would prefer to use the time-weighted
and/or liquidity-weighted average price.

In this section, we discuss various aggregation methods and show the impact of a
price manipulation attack on each of them.

3.1. Arithmetic Mean Time-Weighted Average Price

The arithmetic mean TWAP over n price updates is calculated as follows:

TWAP =
∑n

i=1 ti pi

∑n
i=1 ti

(9)

where ti is the time elapsed between the price update i and next price update i + 1, and pi
is the price during that period. n is the averaging window.

We estimate the effect of manipulation on the TWAP price when the attacker wants to
consistently manipulate the spot price for m times of price updates within the averaging
window n.

TWAPm =
∑n−m

i=1 ti pi + ∑n
j=n−m+1 tj pj

∑n
i=1 ti

(10)

assuming that attack would happen in the last m blocks. From here, we would like to
estimate the pj—how big should the manipulated price be that the attacker should target
in order to achieve the desired effect on TWAPm.

m

∑
j=0

tj pj = TWAPm ×
n

∑
i=1

ti −
n−m

∑
i=1

ti pi (11)

In the case when the attacker does not want to be exposed to arbitrageurs and wants to
manipulate the price within one block m = 1, the manipulated price will be as follows:

pj =
TWAPm ×∑n

i=1 ti −∑n−m
i=1 ti pi

tj
(12)

Although using the TWAP instead of a spot price is safer in terms of avoiding the malicious
price manipulations, the output from the averaging might not be accurate.

Entropy 2023, 25, 60 6 of 16

3.2. Geometric Mean Time-Weighted Average Price

The geometric mean TWAP over n blocks can be calculated as the nth root of the
product of the spot price on each block:

TWAP = (
n

∏
i=1

pi)
1
n (13)

If the attacker wants to manipulate the geometric mean TWAP by manipulating the
price over m blocks, then the target TWAP will be calculated as follows:

TWAPm = (pn−m × qm)
1
n (14)

An attacker wanting to manipulate the TWAP to some particular oracle price TWAPm
over m blocks will need to know what spot price q they need to move the normal spot price
p to in each of those blocks. It can be calculated by rearranging Equation (14):

q = m

√
TWAPn

pn−m (15)

This equation shows that it is surprisingly difficult to move the geometric mean TWAP
from the wider market spot price when manipulated blocks are few in number relative to
unmanipulated blocks. That is, the spot price must be moved a significant distance from its
wider market price in order to have even a modest impact on the geometric mean TWAP.

3.3. Median Time-Weighted Average Price

Using median time-weighted average prices as oracles has been discussed in [34],
although they have not been widely implemented in practice yet. Theoretically, because the
median is unaffected by the effect of outliers, it could be a solution to avoid single-block
manipulation attacks, especially in pools with small liquidity. For an attacker to influence
the oracle’s final output price, they would need to control the last m block prices for at least
half of the period of the window size.

From the economic point of view, storing price time series over a certain period to
calculate the median could be very expensive in terms of the gas cost in the Ethereum
blockchain. In alternative blockchains with a different technical design and cheaper gas
cost, this could be possible if the pros of using the median TWAP outweigh the cons. In
DeFi, median TWAP oracles have been implemented in the Euler Finance protocol as an
alternative price source to the geometric mean TWAP [34].

4. Algorithmic Model to Estimate the Safety of TWAP Oracle

We have reviewed AMM cost functions in decentralized exchanges that are often used
as price oracles. Moreover, we looked at the most popular methods for price aggregation
in oracles. Now, we would like to systematize everything into the algorithmic model that
allows to estimate the safety of any DEX-based TWAP oracle. Inputs in the model are
parameters of the protocol using TWAP oracle and parameters of AMM that is being used
as oracle. Outputs of the model are the attack cost AC and capital C needed to provide to
the protocol under attack to be able to profit from it. Overall, the model output only tells
how much funds a potential attacker needs to gain the profit from price manipulation. To
assess the economic feasibility of such an attack, one would need to perform additional
independent analysis, for instance, if model output tells that attack would cost 100 USD,
then it is economically feasible for many people and, therefore, it is not safe. If model
estimates AC and C to be big so only a few people can technically perform an attack, then
one can conclude that chances of oracle attack are low. Outputs from the model can serve
as a starting point to decide on the safety of TWAP-based oracle.

We first introduce the general algorithmic model that allows to estimate the feasibility
of price manipulation attack. Then, we explain how the model can be implemented based
on the example of lending protocol—this is the most popular use case of TWAP oracles.

Entropy 2023, 25, 60 7 of 16

We provide a brief explanation of how lending protocols work, demonstrate how model
can be used and simulate various attack scenarios for constant product and stableswap
AMM-based TWAP oracles.

4.1. Algorithmic Model

Algorithm 1 shows step by step how to estimate the safety of TWAP oracle. Model
outputs are attack cost AC and minimum collateral C an attacker needs to profit from their
manipulation. Knowing these parameters allows us to estimate the economic feasibility of
such an attack and, therefore, to decide whether it is safe to implement the given DEX as an
oracle. Input parameters needed for the model can be divided as protocol specific, oracle
specific (averaging window size WS) and DEX specific (liquidity L). These parameters
can be easily found in protocol’s web-page and in DEXs page (L). To find values of ∆x
(number of tokens needed to move the price to the target value) and ∆y (number of tokens
to receive in return after the swap), one needs to know the type of AMM that DEX uses to
price assets. In Appendices A and B, we have derived equation for ∆x and ∆y for constant
product and stableswap AMMs. Overall, all these parameters can be precisely found and
no assumptions need to be made. There is one more parameter that is crucial to take into
account—the number of blocks m during which attacker will try to manipulate the price.
This can not be known upfront but its value affects the cost of an attack significantly. One
would suppose that the value of m should be small because any deviation from the spot
price would be noticed by arbitrageurs and set back to the real value, not allowing an
attacker to manipulate for many blocks. However, in pools with infrequent trading activity,
the arbitrage opportunity might go unnoticed for longer times. Moreover, there is a chance
of multi-block MEV-style attack, where an attacker could cooperate with the miner to mine
a few blocks in a row. This style of attack combined with the oracle price manipulation
makes the oracle attack cost cheaper. In the examples and simulations below, we assume
no MMEV attack and frequent trading activity in a pool.

Algorithm 1: Model to estimate the safety of DEX-based oracle
Input: Protocol risk parameters, WS, m, ∆x, ∆y, L
Output: AC, C

1 Calculate minimum deviation from the spot price needed to profit based on
protocol-specific parameters.

2 Calculate target manipulation price from oracle TWAPm.

TWAPm = TWAPs + TWAPs × ε

3 Calculate how big should be the manipulation price pm to achieve needed
TWAPm. For this:
(I) Estimate the oracle window size WS.
(II) Decide on number of blocks m to manipulate the price.
(III) Depending on aggregation method, calculate pm using Equation (12) or
Equation (14).

4 Calculate attack cost AC based on AMM-specific parameters (liquidity L) and pm
found above. Find ∆x and ∆y according to the AMM type, as shown in
Appendices A and B.

AC = ∆x− ∆y

5 Calculate the minimum capital needed to obtain profit Pro f it > 0 depending on
protocol’s risk parameters.

6 Estimate the economic feasibility of an attack based on the attack cost AC and
collateral C values.

Entropy 2023, 25, 60 8 of 16

4.2. Lending Protocols

Lending protocols (also called money markets, credit protocols or protocols for loan-
able funds) are a market that matches borrowers and lenders—users—who wish to gain
interest on their savings, deposit their funds to the lending protocol and then it allows
borrowers to lend available assets paying certain interest rate. Detailed explanation on how
lending protocols work was provided in the paper [35]. Overall, lending protocols have
attracted a lot of interest and become very popular among DeFi community—Ethereum-
based lending protocols such as Aave [36], Compound [37], dYdX [38] and MakerDAO [39].
Credit protocols are one of the most popular use cases for AMM-based DEX data to be used
as a price feed. Chainlink type of price databases are not always available for relatively
new blockchains. In such cases, DEXs, acting as the only option for nascent chains, are
used as substitutes for more robust oracle solutions. Considering the large TVL (total value
locked in protocol) associated with the popularity of credit protocols and their growing
functionality and complexity, it is vital to understand the safe settings of AMM pools that
are used as a price information source.

In lending protocols, any user can anonymously borrow funds, but to be able to do so,
they first need to provide some collateral asset. To ensure the safety and the solvency of
protocol, the Loan-to-Value (LTV) parameter is used—this parameter shows how much
a user can borrow relative to their collateral value (all loans in lending protocols are
overcollateralized. For example, if user deposited 100 USD worth of collateral C and LTV
parameter is 80%, then they can borrow up to 80% worth of the other asset B. More detailed
explanations of lending protocols and their risk parameters can be found in [35–37,39].

In practice, lending protocols are the most frequent target for oracle manipulation
attacks. An attacker tries to artificially increase their collateral value by compromising the
oracle price information to be able to borrow more.

We assume a scenario where the attacker artificially increases the value of their col-
lateral to be able to borrow more than their actual collateral value allows. In this case,
attacker’s profit can be formulated as follows:

Pro f it = (C× LTV + C× LTV × ε)− C (16)

Here, ε is the target price manipulation fraction and C is the value of collateral—for
convenience and normalization purposes, we consider it not as an absolute value but
relative to the pool liquidity. This normalization allows us to generalize findings and give
parameter recommendations for any pools regardless the size:

C =
Collateral

PoolLiquidity
(17)

Because the attacker would need to give up their collateral in order to realize their
profit from manipulation, we subtract the actual value of their collateral from the profit.
From Equation (16), it is clear that the lower the LTV parameter, the more difficult it is to
get the profit from an attack and the higher the ε should be. We can derive the value of the
target manipulation price from the Equation (16)—we set the Profit = 0 and calculate the ε
as:

ε ≥ 1
LTV

− 1 (18)

Figure 1 shows the minimum manipulation target ε an attacker needs to achieve for
the attack to be profitable given a certain LTV.

Entropy 2023, 25, 60 9 of 16

Figure 1. Minimum price target needed for given LTV to obtain the profit from the attack.

Next, after we know the minimum price target needed to make the attack profitable,
we can calculate the total cost of an attack using the equations derived in Appendices A
and B.

4.3. Attack Scenarios to Lending Protocol Using Constant Product AMM-Based TWAP Oracle

Knowing both the profit and attack cost equations, it is straightforward to simulate
various attacks to lending protocols that are using any type of AMM as oracle. We looked
at the two most popular types of AMM used in decentralized exchanges—constant product
and stableswap—to obtain the full understanding about attacker’s profits and manipulation
capital needed.

In this section, we demonstrate how to calculate the cost of an attack under certain
conditions using the terms and explanations shown above. Assumptions used in this
example are as follows:

• Loan to Value of the target asset equals 40%.
• TWAP window equals 30 min.
• Time without arbitrage equals 1 min.

Note that we are not making any assumptions regarding pool liquidity given how
Equation (16) was defined, which allows us to make calculations, irrespective of the pool
liquidity.

Using the attack cost formula and simulating scenarios with varying attacker’s collat-
eral C, price target ε and pool’s liquidity L, we arrive at the following profitability matrix
shown in Figure 2, where the space in red indicates a loss (negative profit), the space in blue
indicates a positive profit for the attacker and the white area indicates zero-profit scenarios.

Entropy 2023, 25, 60 10 of 16

Figure 2. Overview of various attack scenarios in constant product market. The x-axis shows the
amount of an attacker’s collateral in terms of liquidity, and the y-axis is the target manipulation price
ε. The space in red shows the non-profitable attack scenarios (when attack cost exceeds the profit).
Blue areas show profitable attacks, while the space in white shows when Pro f it− AttackCost is close
to zero. LTV=0.4 for all scenarios.

From the results shown in Figure 2, we see that the attacker can theoretically reach
a profit under almost every combination of events. Moreover, we see that an attack can
be profitable by adjusting the requirements to the collateral and the manipulation target
ε. The lower the ε, the higher the collateral the attacker needs to provide for the attack to
become profitable and vice versa. These results make us question whether there is such a
combination of ε and collateral that allows an attacker to obtain profit from an attack with
minimum resources?

Figure 3 shows that, effectively, we can retrieve the attack’s minimum cost through
a specific combination of ε and collateral provided; let us call it an optimal target. For the
example covered in this section, this point happens at collateral being around five times
larger than the pool’s liquidity and manipulation target ε being 4.7. Most importantly,
the figure below shows that the total capital needed for a profitable attack is 9.3 times the
liquidity in the pool used for the AMM.

The optimal target found above and amount of resources needed to reach that point
can serve as a reference when deciding on the safety of an oracle.

Entropy 2023, 25, 60 11 of 16

Figure 3. Attack cost, minimum collateral needed and the total resources needed for the profitable
attack.

4.4. Attack Scenarios to Lending Protocol Using Stableswap AMM-Based TWAP Oracle

In the previous section, we showed how parameters need to be set for the constant
product AMM oracle. In this section, we look at the attack cost and profit when using the
stableswap pool as an oracle.

With the attack cost calculated for the stableswap in Appendices A and B, we can run
simulations as in the previous section and produce the profitability matrix. Note that the
assumptions used within this section (except for the amplification factor, which is unique
to the stableswap AMM) are the same as those used in the previous section. The following
figure shows the profitability matrix using a stableswap with an amplification factor A of
30.

From Figure 4, it can be seen that the profitability space for an attack is larger in a
stableswap AMM than a CPAMM. In other words, manipulating a stableswap-based TWAP
is cheaper than a CPAMM-based TWAP oracle using the same assumptions.

Figure 5 shows the minimum cost of performing a profitable attack, indicating a
significantly lower point of minimum cost for an attack in a stableswap AMM than in a
constant product AMM. Moreover, another difference is the considerably slower growth
rate of the attack cost as the manipulation target increases, which makes the total cost of
the attack stagnate as the manipulation target increases. In contrast with constant product
AMM, the total cost of an attack keeps increasing. For a stableswap AMM, this results in
relatively cheap attack opportunities.

As a final note, a stableswap pool can be relatively stable (in terms of price) at a
very unbalanced state (in terms of underlying reserves). At the extreme, we could have a
situation where the pool is very close to the “knee” of the pricing curve (where the constant
sum (linear) part of pricing curve meets the constant product part), and manipulation
attacks become increasingly easier to perform given the aggressive nature of the stableswap
curve. In other words, we cannot assume that the attack will take place from a 50:50 state
or anything closer to that. The more unbalanced the pool at the start of the manipulation
attack, the less resources needed to conduct the attack. Therefore, we do not recommend
using stableswap pools as an oracle. Please also refer to Appendix B, where various attack
scenarios in stableswap pool were shown under different LTV values—it is clear that this
type of pool is much cheaper to manipulate comparing with the constant product market.
Moreover, as we can see from Figure 5, once the optimal price target is reached, attacker does
not need significantly more resources to manipulate price higher and to obtain even higher
returns from the attack.

Entropy 2023, 25, 60 12 of 16

Figure 4. Overview of various attack scenarios in stableswap market. The x-axis shows the amount
of attacker’s collateral in terms of liquidity, and y-axis is the target manipulation price ε. The space in
red shows the non-profitable attack scenarios (when attack cost exceeded the profit). Blue areas show
profitable attacks, while the space in white shows when Pro f it− AttackCost is close to zero. LTV =
0.4 for all scenarios.

Figure 5. Attack cost, minimum collateral needed and the total resources needed for the profitable
attack.

5. Conclusions and Discussion

DeFi protocols, as well as any other blockchain applications, function in a closed
environment, and for their proper performance, a reliable data source (oracle) is needed.
Currently, there are two different ways to fetch the data about assets’ prices—either by using
trust-based oracles (e.g., Chainlink) or by getting the prices directly from the decentralized

Entropy 2023, 25, 60 13 of 16

exchange. In our research, we focused on understanding the mechanism of the latter option.
Understanding the safety of a DEX-based oracle starts from the deep understanding on
how DEXs work; nowadays, they function using the automated market-making (AMM)
mechanisms and the asset’s price discovery happens along the curve of the AMM cost
function. We reviewed the most widely used AMM cost functions and derived the cost of
an attack for them. The next step was to look at the various aggregation methods; because
using the spot price directly from DEX can lead to cheap price manipulations, most of the
DeFi applications aggregate historical spot prices over a certain window size to decrease
the chance of an attack. Depending on the method implemented and the window size,
the target manipulation price can be higher or lower. We have provided equations to
estimate the target attack price based on the aggregation method. We then developed
the algorithmic model to estimate the safety of a DEX-based oracle on the example of
a lending protocol. A step-by-step algorithm considers protocol-specific, oracle-specific
and DEX-specific parameters and provides the logic on how to proceed with deciding on
the safety of an oracle. Although we used the lending protocol as an example of a DeFi
application using a DEX-based oracle, the model we introduced can be easily generalized to
other types of protocols by changing the protocol-specific parameter (LTV in our example).

Incidents that happen in the new field of decentralized finance often lead to the
crisis of trust from users and have a large social impact on the entire industry. Despite
the crucial role oracles play in decentralized finance, their underlying mechanics are still
under-explored and poorly understood which resulted in several protocol exploits [13–15].
However, we see the growing interest from both academia and industry practitioners
to improve the oracles’ resistance to manipulation attacks—new AMM curves are being
introduced [40–42], oracle research is growing and more protocols are aware of price
manipulation attacks. There is still a lot of work that can be done to achieve the goal of a
safe decentralized price oracle in every layer—protocols using oracles can improve their
risk management strategies, the AMM cost function can contribute a lot to the safety of
oracles, as we saw in Sections 4.3 and 4.4, where the different pricing curves result in the
different costs of attack. Finding the optimal AMM cost function that would minimize the
chances of manipulation is not a trivial task, and new pricing curves are being proposed by
academia [40,42] and implemented in practice [41]. We hope to see more work performed
in this direction. More research can be conducted about information aggregation methods
as well—for economic reasons, currently, protocols are using simple statistical methods
such as the TWAP. Finding an optimal solution that is less sensitive to the outliers and at
the same time has a high price precision and cheap gas cost is still an open question at
the moment. Overall, oracles in decentralized finance remain one of the most important
and under-researched topics in the field with a huge impact on the entire cryptocurrency
system.

Author Contributions: Conceptualization, A.T.A. and M.A.B.; methodology, A.T.A. and M.A.B.;
validation, A.T.A. and M.A.B.; formal analysis, A.T.A. and M.A.B.; investigation, A.T.A. and M.A.B.;
resources, A.T.A. and M.A.B.; data curation, A.T.A.; writing—original draft preparation, A.T.A.;
writing—review and editing, A.T.A. and M.A.B.; visualization, A.T.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to acknowledge Delphi Labs and Jonathan Erlich for their help
and fruitful discussions.

Conflicts of Interest: The authors declare no conflicts of interest.

Entropy 2023, 25, 60 14 of 16

Abbreviations
The following abbreviations are used in this manuscript:

LTV Loan to Value
AMM Automated Market Maker
TWAP Time-Weighted Average Price
DEX Decentralized Exchange

Appendix A. Attack Cost Calculation for Constant Product Market

In constant product AMMs, the liquidity is defined as follows:

x× y = k (A1)

If an attacker wants to move the spot price of an asset, they would need to swap
against the pool, depending on whether they want to manipulate the price up or down. If
we assume that they want to increase the price of y, they would need to sell some amount of
x and receive some y tokens in return (adding x tokens from the pool, an attacker decreases
its value). After the swap, the liquidity in the pool will be as follows:

(x + ∆x)(y− ∆y) = k = xy (A2)

From here, we can express the ∆y—how much of token y attacker would receive after
making a swap:

∆y = y(
∆x

x + ∆x
) (A3)

Because the attacker wants to increase the price y by adding the ∆x tokens and
removing ∆y tokens, we can express how big the change of manipulated price pj would be:

pj =
x + ∆x
y− ∆y

=
x + ∆x

y− y(∆x
x+∆x)

=
(x + ∆x)2

xy
=

(x + ∆x)2

k
(A4)

From here, we can express the ∆x—how many tokens x are needed to get the target pj:

∆x =
√

pj × y× x− x (A5)

Now, when we know both how many tokens x will be needed to make a swap and
how many tokens y we receive in exchange, we can easily calculate the total attack cost by
subtracting ∆x− ∆y:

AC = (
√

pj × y× x− x)− pj × y
√

pj × y× x− x
x + (

√
pj × y× x− x)

(A6)

Appendix B. Attack Cost Calculation for Stableswap Market

The stableswap formula first introduced by Curve protocol is as follows:

22 A(x + y) + D = 22 AD +
D3

22xy
(A7)

To be able to calculate the cost of an attack, we first need to express the y—how it is
valued in terms of token x. For this, we rearrange Equation (8) in the form of quadratic
equation which allows us to easily obtain the y formula:

y =
(1− 1

A)×
D
4 − x) +

√
[(1− 1

A)×
D
4 − x]2 + 4D3

16Ax

2
(A8)

The derivative of the function in Equation (A8) would stand for the price:

Entropy 2023, 25, 60 15 of 16

y′ = 0.5
[−1 + 1

2 (−
D3

Ax2 − 2(1− 1
A)D− x)]√

D3

Ax + ((1− 1
A)D− x)2

(A9)

To calculate the number of tokens ∆x an attacker needs to swap to move the price to a
specific target, we numerically solve for x in the price formula obtained in the previous step.

After we find how many tokens ∆x are needed to have the price y′ (or pj to be consis-
tent with Appendix A), we use that number to figure out how many tokens ∆y would be in
the pool after the swap by using Equation (A8) with the known x.

Finally, we can calculate the attack cost by subtracting the difference in token numbers
before and after the swap: AC = ∆x− ∆y.

References
1. Caldarelli, G. Who Is Contributing to Academic Research on Blockchain Oracles? A Bibliometric Analysis. Preprints 2021.

Availabel online: https://www.preprints.org/manuscript/202109.0135/v1 (accessed on 5 November 2022).
2. Zhou, L.; Xiong, X.; Ernstberger, J.; Chaliasos, S.; Wang, Z.; Wang, Y.; Qin, K.; Wattenhofer, R.; Song, D.X.; Gervais, A. SoK:

Decentralized Finance (DeFi) Incidents. arXiv 2022, arXiv:abs/2208.13035.
3. Wu, S.; Wang, D.; He, J.; Zhou, Y.; Wu, L.; Yuan, X.; He, Q.; Ren, K. DeFiRanger: Detecting Price Manipulation Attacks on DeFi

Applications. arXiv 2021, arXiv:abs/2104.15068.
4. Zhou, L.; Qin, K.; Cully, A.; Livshits, B.; Gervais, A. On the Just-In-Time Discovery of Profit-Generating Transactions in DeFi

Protocols. In Proceedings of the 2021 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 24–27 May 2021;
pp. 919–936.

5. Werner, S.M.; Perez, D.; Gudgeon, L.; Klages-Mundt, A.; Harz, D.; Knottenbelt, W.J. SoK: Decentralized Finance (DeFi). arXiv
2021, arXiv:abs/2101.08778.

6. Eskandari, S.; Salehi, M.; Gu, W.C.; Clark, J. SoK: oracles from the ground truth to market manipulation. In Proceedings of the
3rd ACM Conference on Advances in Financial Technologies, Arlington Virginia, VA, USA, 26–28 September 2021.

7. Al-Breiki, H.; ur Rehman, M.H.; Salah, K.; Svetinovic, D. Trustworthy Blockchain Oracles: Review, Comparison, and Open
Research Challenges. IEEE Access 2020, 8, 85675–85685.

8. Lo, S.K.; Xu, X.; Staples, M.; Yao, L. Reliability analysis for blockchain oracles. Comput. Electr. Eng. 2020, 83, 106582.
https://doi.org/10.1016/j.compeleceng.2020.106582.

9. Liu, B.; Szalachowski, P. A First Look into DeFi Oracles. In Proceedings of the 2021 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPS), Online, 23–26 August 2021, pp. 39–48.

10. Steve Ellis, A.J.; Nazarov, S. Chainlink: A Decentralized Oracle Network. Available online: https://research.chain.link/
whitepaper-v1.pdf (accessed on 5 November 2022).

11. L. Breidenbach, C. Cachin, B.C.A.C.S.E.e.a. Chainlink 2.0: Next Steps in the Evolution of Decentralized Oracle Networks.
Available online: https://chain.link/whitepaper (accessed on 5 November 2022).

12. Oraclize. A Scalable Architecture for On-Demand, Untrusted Delivery of Entropy. Available online: https://provable.xyz/
papers/random_datasource-rev1.pdf (accessed on 5 November 2022).

13. bZx Hack II Full Disclosure (With Detailed Profit Analysis). Available online: https://peckshield.medium.com/bzx-hack-ii-full-
disclosure-with-detailed-profit-analysis-8126eecc1360 (accessed on 5 November 2022).

14. Understanding the Cream Finance Hack. Available online: https://medium.com/@AndyPavia/swissblock-post-mortem-cream-
finance-hack-7c1caff4335c (accessed on 5 November 2022).

15. Harvest Finance). Available online: https://rekt.news/harvest-finance-rekt/ (accessed on 5 November 2022).
16. Mackinga, T.; Nadahalli, T.; Wattenhofer, R. TWAP Oracle Attacks: Easier Done than Said? Cryptology ePrint Archive, Paper

2022/445, 2022. Available online: https://eprint.iacr.org/2022/445 (accessed on 5 November 2022).
17. Othman, A.; Sandholm, T. Automated market-making in the large: the gates hillman prediction market. In Proceedings of the

11th ACM conference on Electronic commerce, Cambridge, MA, USA, 7–11 June 2010.
18. Goel, S.; Pennock, D.M.; Reeves, D.M.; Yu, C. Yoopick: A Combinatorial Sports Prediction Market. In Proceedings of the

Twenty-Third AAAI Conference on Artificial Intelligence, Chicago, IL, USA, 13–17 July 2008; pp. 1880–1881.
19. Othman, A. Automated Market Making: Theory and Practice. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA,

2012.
20. Artzner, P.; Delbaen, F.; Eber, J.M.; Heath, D. Coherent Measures of Risk. Math. Financ. 1999, 9 203–228.
21. Hanson, R.D. Combinatorial Information Market Design. Inf. Syst. Front. 2003, 5, 107–119.
22. Hanson, R.D. Logarithmic Markets Scoring Rules For Modular Combinatorial Information Aggregation. J. Predict. Mark. 2012,

1, 3–15.

https://www.preprints.org/manuscript/202109.0135/v1
https://research.chain.link/whitepaper-v1.pdf
https://research.chain.link/whitepaper-v1.pdf
https://chain.link/whitepaper
https://provable.xyz/papers/random_datasource-rev1.pdf
https://provable.xyz/papers/random_datasource-rev1.pdf
https://peckshield.medium.com/bzx-hack-ii-full-disclosure-with-detailed-profit-analysis-8126eecc1360
https://peckshield.medium.com/bzx-hack-ii-full-disclosure-with-detailed-profit-analysis-8126eecc1360
https://medium.com/@AndyPavia/swissblock-post-mortem-cream-finance-hack-7c1caff4335c
https://medium.com/@AndyPavia/swissblock-post-mortem-cream-finance-hack-7c1caff4335c
https://rekt.news/harvest-finance-rekt/

Entropy 2023, 25, 60 16 of 16

23. Othman, A.; Pennock, D.M.; Reeves, D.M.; Sandholm, T. A Practical Liquidity-Sensitive Automated Market Maker. ACM Trans.
Econ. Comput. 2013, 1, 14:1–14:25. https://doi.org/10.1145/2509413.2509414.

24. V. C. Carvalho, A.; Silveira, D.; Ely, R.A.; Cajueiro, D.O. A Logarithmic Market Scoring Rule Agent-based Model to Evaluate Prediction
Markets. SSRN: Amsterdam, The Netherlands, 2022.

25. Peterson, J.; Krug, J.; Zoltu, M.; Williams, A. K.; Alexander, S Augur: A Decentralized Oracle and Prediction Market Platform.
arXiv 2022, arXiv:1501.01042.

26. Gnosis Whitepaper. Available online: https://github.com/gnosis/research/blob/master/gnosis-whitepaper.pdf (accessed on 5
November 2022).

27. Berg, J.A.; Fritsch, R.; Heimbach, L.; Wattenhofer, R. An Empirical Study of Market Inefficiencies in Uniswap and SushiSwap.
arXiv 2022, arXiv:2203.07774.

28. Hayden Adams, N.Z.; Robinson, D. Uniswap v2 Core. Available online: https://uniswap.org/whitepaper.pdf (accessed on 5
November 2022).

29. Hayden Adams, Noah Zinsmeister, M.S.R.K.; Robinson, D. Uniswap v3 Core. Available online: https://uniswap.org/whitepaper-
v3.pdf (accessed on 5 November 2022).

30. Angeris, G.; Chitra, T. Improved Price Oracles: Constant Function Market Makers. In Proceedings of the 2nd ACM Conference
on Advances in Financial Technologies, New York, NY, USA, 21–23 October 2020.

31. Angeris, G.; Kao, H.T.; Chiang, R.; Noyes, C.R.; Chitra, T. An Analysis of Uniswap Markets. Cryptoecon. Syst. 2021, 1.
https://doi.org/10.21428/58320208.c9738e64.

32. Egorov, M. StableSwap-Efficient Mechanism for Stablecoin liquidity. Available online: https://wikibitimg.fx994.com/attach/20
20/10/189869321/WBE189869321_21425.pdf (accessed on 5 November 2022).

33. Xu, J.; Paruch, K.; Cousaert, S.; Feng, Y. SoK: Decentralized Exchanges (DEX) with Automated Market Maker (AMM) protocols.
arXiv 2021, arXiv:abs/2103.12732.

34. Hoyte, D. Median Oracle. Available online: https://github.com/euler-xyz/median-oracle (accessed on 5 November 2022).
35. Gudgeon, L.; Werner, S.M.; Perez, D.; Knottenbelt, W.J. DeFi Protocols for Loanable Funds: Interest Rates, Liquidity and Market

Efficiency. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, New York, NY, USA, 21–23
October 2020.

36. Aave Protocol Whitepaper. Available online: https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_
Whitepaper_v1_0.pdf (accessed on 5 November 2022).

37. R. Leshner, G.H. Compound: The Money Market Protocol. Available online: https://compound.finance/documents/Compound.
Whitepaper.pdf (accessed on 5 November 2022).

38. Juliano, A. dYdX: A Standard for Decentralized Margin Trading and Derivatives. Available online: https://whitepaper.dydx.
exchange (accessed on 5 November 2022).

39. The Maker Protocol: MakerDAO’s Multi-Collateral Dai (MCD) System. Available online: https://makerdao.com/en/whitepaper
(accessed on 5 November 2022).

40. Krishnamachari, B.; Feng, Q.; Grippo, E. Dynamic Curves for Decentralized Autonomous Cryptocurrency Exchanges. arXiv 2021,
https://doi.org/10.48550/ARXIV.2101.02778.

41. Egorov, M. Automatic Market-Making with Dynamic Peg. 2021. Available online: https://classic.curve.fi/files/crypto-pools-
paper.pdf (accessed on 5 November 2022).

42. Port, A.; Tiruviluamala, N. Mixing Constant Sum and Constant Product Market Makers. arXiv 2022, https://doi.org/10.48550/
ARXIV.2203.12123.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/gnosis/research/blob/master/gnosis-whitepaper.pdf
https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-v3.pdf
https://wikibitimg.fx994.com/attach/2020/10/189869321/WBE189869321_21425.pdf
https://wikibitimg.fx994.com/attach/2020/10/189869321/WBE189869321_21425.pdf
https://github.com/euler-xyz/median-oracle
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://whitepaper.dydx.exchange
https://whitepaper.dydx.exchange
https://makerdao.com/en/whitepaper
https://classic.curve.fi/files/crypto-pools-paper.pdf
https://classic.curve.fi/files/crypto-pools-paper.pdf

	Introduction
	Automated Market Makers
	Logarithmic Market Scoring Rule
	Constant Product Market
	Combination of Constant Sum and Constant Product Markets

	Aggregation Methods
	Arithmetic Mean Time-Weighted Average Price
	Geometric Mean Time-Weighted Average Price
	Median Time-Weighted Average Price

	Algorithmic Model to Estimate the Safety of TWAP Oracle
	Algorithmic Model
	Lending Protocols
	Attack Scenarios to Lending Protocol Using Constant Product AMM-Based TWAP Oracle
	Attack Scenarios to Lending Protocol Using Stableswap AMM-Based TWAP Oracle

	Conclusions and Discussion
	Appendix A
	Appendix B
	References

