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Abstract: In this paper, the results of computer simulations based on the Nowak–Szamrej–Latané
model with multiple (from two to five) opinions available in the system are presented. We introduce
the noise discrimination level (which says how small the clusters of agents could be considered
negligible) as a quite useful quantity that allows qualitative characterization of the system. We
show that depending on the introduced noise discrimination level, the range of actors’ interactions
(controlled indirectly by an exponent in the distance scaling function, the larger the exponent, the more
influential the nearest neighbors are) and the information noise level (modeled as social temperature,
which increases results in the increase in randomness in taking the opinion by the agents), the ultimate
number of the opinions (measured as the number of clusters of actors sharing the same opinion in
clusters greater than the noise discrimination level) may be smaller than the number of opinions
available in the system. These are observed in small and large information noise limits but result in
either unanimity, or polarization, or randomization of opinions.

Keywords: sociophysics; social impact; opinion dynamics; clusterization and polarization; information
noise

1. Introduction

The formation and dynamics of opinions [1–11] and its spread and propagation [12,13]
seem to be a vivid section of sociophysics [14–20]. Existing models [21,22] may be grouped
into two families: with discrete or continuous opinions. The latter are represented by
Hegselmann–Krause model [23–25], Deffuant et al. model [26–30] (in a one-dimensional
opinion space), the Zaller–Deffuant model [31–34] (in a two-dimensional opinion space),
compromise model [35–37] or others [38,39]. In the family of discrete models, a particular
role is played by toy models dealing with binary opinions and simplified rules of opinion
formation, with majority [40,41], voter [42–44], Sznajd [45–49], Galam [50,51] models,
among others.

For example, in the voter model [42], the opinions of any given actor on some issue
change at random times under the influence of the opinions of his/her neighbors. An
actor’s opinion at any given time can take one of two values. At random times, a random
individual is selected, and that actor’s opinion is changed according to a stochastic rule.
Specifically, for one of the chosen actor’s neighbors, one is chosen according to a given set
of probabilities, and that individual’s opinion is transferred to the chosen actor.

In the majority model [40], at each time step, a group of r actors is selected, where r
can be constant or changed in each successive step. All randomly selected actors adopt the
opinion that dominates the group. If the size r of a group of neighbors is even, in case of
a tie, either the group adopts an arbitrarily determined biased opinion or maintains the
status quo.

In the original one-dimensional version of the Sznajd model [45] agent in position i
adopts the opinion of the actor sitting in position i + 2 and the actor in position i + 1 adopts
the opinion of the actor sitting in position i− 1. These rules ultimately lead the system to
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one of three (stable and fixed) attracting points: either two states of unanimity or one state
of alternately opposite opinions (‘antiferromagnetic’ state).

These models may be particularly useful for modeling the thinking dichotomy, that
is, binary thinking that involves only two extreme attitudes (Typical answers—measuring
opinions—for dichotomy-like questionnaires are: ‘No’ and ‘Yes’). Such a situation occurs
for voters in countries with two-parties systems (like in the USA), or for actors answering
fundamental or simple questions. For example, people usually well know if they like
chicken livers with onion (or not), people usually well know if they believe that our Earth
is flat (or not), people usually well know if they are pro or contra abortion, etc.

Somewhere on the border between two (discrete/continuous) families of models, discrete
opinion models allow multiple opinions to appear [52–63]. These models still allow us to
observe geometrical clusterization of opinions, but also their polarization, which is naturally
forced (assumed) in the case of models with binary opinions. Such models are particularly
attractive for modeling indifferents as an interface between pro and contra, modeling re-
sponses to Likert-scale questionnaires (Typical answers—measuring opinions—for Likert-like
questionnaires are: ‘Strongly disagree,’ ‘Disagree,’ ‘Neither agree nor disagree,’ ‘Agree,’ and
‘Strongly agree’), or modeling voter decisions in multiparty systems.

Here, we use a discrete multi-choice opinion model based on computerized ver-
sion [64] of opinion formation based on Latané theory of social impact [65–67] (see Refer-
ences [55,56,68–70] for examples of model applications and Reference [71] for a comprehen-
sive review).

In Reference [55] Nowak–Szamrej–Latané model [64] was modified to allow multiple
(more than two) opinions. It was shown that in the presence of information noise (modeled
as social temperature T), the signatures of order/disorder phase transition were observed:
in the average fraction of actors sharing the i-th opinion; its variation; the average number
of clusters of actors with the same opinion and the average size of the largest cluster of
actors who share the same opinion. The social temperature T played a role as a standard
Boltzmann distribution parameter that contains the social impact as the equivalent of
energy. The order and disordered phases were observed for low (T < TC) and high
(T > TC), respectively. For a homogeneous society (with identical actors’ supportiveness
and persuasiveness), the critical social temperature TC decreased with an increasing number
of available opinions K.

The authors of Reference [56] showed that opinion formation and spread were in-
fluenced by both: (i) flow of information between actors (effective range of interactions
between actors) and (ii) randomness in adopting opinions (noise level). Noise not only
leads to opinion disorder but also promotes consensus under certain conditions. In the
disordered phase and when the exchange of information is spatially effectively limited,
various faces of disorder were observed, including system states, where the signatures
of self-organized criticality manifested themselves as a scale-free probability distribution
function for sizes of clusters of actors sharing the same opinion. Then increasing the noise
level leads the system to a disordered random state. The critical noise level TC above which
the histograms of the sizes of the opinion groups lost their scale-free character increases
with an increase in the ease of information flow.

In this paper, we continue the studies presented in References [55,56]. Namely, with
computer simulation based on Nowak–Szamrej–Latané model [64] we check: (i) how
influential are the nearest neighbors with respect to the entire population; (ii) the opinion
clusterization (including the distribution of these cluster numbers and their sizes); (iii) and
distribution of surviving opinions.

The rest of the paper is organized as follows. In Section 2, a detailed description of
the model is presented. Section 3 contains the results of simulations. The results obtained
are discussed in Section 4 and summarized in Section 5. The list of references and three
appendixes—presenting detailed results on: examples of final spatial opinion distribution
(Appendix A); average number of clusters (Appendix B); the number of surviving opinions
(Appendix C)—close the manuscript.
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2. Model

The model is based on previous attempts [55,56,70,72,73] to describe the dynamics of
opinion in the context of the theory of social impact [65–67] in its computerized version [64].
The system contains N actors labeled with i = 0, · · · , N − 1. Every actor i at time t has
an opinion ξi(t) ∈ Ξ. The set Ξ of available opinions consists of K different opinions
{Ξ1, · · · , ΞK}. The social impact Ii,k(t) exerted in time t on an actor i by all actors who
share opinions Ξk is calculated as

Ii,k(t) =
N−1

∑
j=0

4sj

g(di,j)
· δ(Ξk, ξ j(t)) · δ(ξ j(t), ξi(t)) (1)

or

Ii,k(t) =
N−1

∑
j=0

4pj

g(di,j)
· δ(Ξk, ξ j(t)) · [1− δ(ξ j(t), ξi(t))], (2)

where Kronecker delta δ(x, y) = 0 when x 6= y and δ(x, y) = 1 when x = y. The term
δ(Ξk, ξ j(t)) in Equations (1) and (2) indicates that the impact Ii,k(t) on the i-th agent in
time t is exerted only by agents j who at time t believe in the opinion Ξk (ξ j(t) = Ξk). The
term δ(ξ j(t), ξi(t)) in Equation (1) vanishes when ξi(t) 6= ξ j(t), i.e., it produces a non-zero
contribution of the impact Ii,k(t) on agent i only when agent j shares the opinion of agent i.
Thus, therm sj is considered to be the supportiveness of the j-th actor. On the contrary, the
term [1− δ(ξ j(t), ξi(t))] resets the impact when agents i and j share the same opinion. It
means that the components of the sum (2) can be non-zero only when interacting in time t
agents have different opinions ξi(t) 6= ξ j(t) and, thus, pj play a role of persuasiveness of the j-
th agent. The supportiveness si and persuasiveness pi are taken randomly from the interval
[0, 1]. di,j stands for the Euclidean distance between agents i and j. The distance scaling
function g(·) should be a non-decreasing function that ensures a decreasing influence from
more and more distant actors. Here, we assume that

g(x) = 1 + xα, (3)

where the exponent α is a model control parameter.
After calculating impacts (1), (2) for each actor i and every opinion Ξk available in

the system, the temporal evolution of i-th actor opinion ξi can be predicted based on either
deterministic (in absence of information noise) or non-deterministic (in presence of information
noise) way.

In the deterministic version (without information noise), the actor i in the next time
step (t + 1) takes the opinion Ξk that the believers exerted the largest impact on him/her:

ξi(t + 1) = Ξk ⇐⇒
Ii,k(t) = max(Ii,1(t), Ii,2(t), . . . , Ii,K(t)).

(4)

When information noise is present in the system, the social impact Ii,k(t) (1), (2)
determines the probability Pi,k(t) of accepting opinion Ξk in the next time step (t + 1) by
i-th actor. To that end, we introduce a (temperature-like) information noise parameter
T [74] and a Boltzmann-like factor

pi,k(t) = exp
(Ii,k(t)

T

)
, (5a)

which allow us to define the above-mentioned probability

Pi,k(t) =
pi,k(t)

∑K
j=1 pi,j(t)

. (5b)
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Then, i-th actor accepts in the next time step (t + 1) opinion Ξk

ξi(t + 1) = Ξk, with probability Pi,k(t). (6)

We assume that the actors occupy nodes of the square grid

G = {(x, y) : 0 ≤ x, y < L, x, y ∈ Z}

and agent’s label i = Lx+ y. The open boundary conditions are assumed. Initially (at t = 0),
the agents take random opinions. The examples of the initial system states are presented in
Figure 1 for K = 2 (Figure 1a) and for K = 4 (Figure 1b). Various opinions are marked by
various colors. The algorithm of performed simulations is presented in Algorithm 1 [73].
The source code of the program (written in C) is available in Reference [75].

(a) (b)

Figure 1. Example of random initial state of the system for (a) K = 2 and (b) K = 4. Various colors
correspond to various opinions.

3. Results

In this Section, we describe the results of computer simulations carried for square lattice
with L2 = 412 actors. If not stated otherwise, the results are gathered after t = 1000 time
steps and averaged over R = 100 independent system realizations (for various random initial
spatial distribution of opinions ξi(t = 0), supportiveness si and persuasiveness pi values).

3.1. How Influential Are the Nearest-Neighbours in Respect to the Entire Population?

To better understand the role played by the α parameter, we check the ratio

β(n) =
(L− 2r)−2 ·∑(L−r)

x=r ∑
(L−r)
y=r ∑K

k=1 In
i,k(t→ ∞)

L−2 ·∑L2

i=1 ∑K
k=1 Ii,k(t→ ∞)

, (7)

which describes the opinion-independent relative influence of n geometrically nearest
neighbors with respect to the total impact coming from all actors. Examples of shapes of
these nearest neighborhoods containing n = 1, 9, 25, 49 actors are sketched in Figure 2.
The measured influence ratio β(n) is averaged over (L− 2r)2 actors with r = 0 for n = 1,
r = 1 for n = 9, r = 2 for n = 25, r = 3 for n = 49, etc., reflecting the possibility of
placing the yellow square from Figure 2 in the square grid G without protruding beyond
the boundaries of the system. The term In

i,k stands for social impact calculated according
to Equations (1), (2) but with an upper summation index replaced by (n− 1) instead of
(N − 1). The impacts In

i,k and Ii,k are measured at the long-term simulation limit (t→ ∞).
The results of the simulations of β(n) are presented in Table 1.
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(a) n = 1, r = 0 (b) n = 9, r = 1 (c) n = 25, r = 2 (d) n = 49, r = 3

Figure 2. The sketches of shapes of the neighborhoods closest to the sites (a) n = 1, (b) n = 9,
(c) n = 25, (d) n = 49 sites. The values of the r parameters indicated in the figures in the headline
influence summation limits in the nominator of Equation (7).

Table 1. Average ratio β(n) [defined in Equation (7)] of the influence of the neighborhood with n sites
(presented in Figure 2) to the total influence of the entire network with L2 sites for various values of
K and α.

α 2 3 4 6

n K = 2

1 0.05987(13) 0.14973(63) 0.2209(13) 0.2902(16)
9 0.25269(45) 0.58795(79) 0.80513(74) 0.95820(21)

25 0.39642(56) 0.76437(75) 0.92761(38) 0.993687(41)
49 0.49898(57) 0.84573(64) 0.96450(21) 0.998328(12)
81 0.57600(53) 0.89073(54) 0.97971(13) 0.9994007(45)

121 0.63641(46) 0.91866(44) 0.987262(83) 0.9997408(20)
169 0.68530(41) 0.93739(36) 0.991477(58) 0.9998727(10)
225 0.72578(35) 0.95064(29) 0.994033(42) 0.99993158(54)
289 0.75989(31) 0.96039(24) 0.995680(31) 0.99996061(31)
361 0.78903(28) 0.96778(20) 0.996790(23) 0.99997609(18)

n K = 3

1 0.05990(17) 0.15080(92) 0.2232(16) 0.2937(22)
9 0.25275(62) 0.5873(15) 0.8041(10) 0.95793(26)

25 0.39649(85) 0.7635(13) 0.92698(53) 0.993625(52)
49 0.49906(96) 0.8449(11) 0.96414(29) 0.998311(15)
81 0.5761(10) 0.89006(90) 0.97950(18) 0.9993947(53)

121 0.6365(10) 0.91812(72) 0.98712(12) 0.9997382(22)
169 0.6854(10) 0.93694(59) 0.991385(81) 0.9998715(10)
225 0.72586(96) 0.95027(48) 0.993969(57) 0.99993091(62)
289 0.75996(93) 0.96008(39) 0.995633(41) 0.99996022(35)
361 0.78909(88) 0.96753(32) 0.996755(31) 0.99997585(21)

n K = 4

1 0.05990(16) 0.15095(98) 0.2247(20) 0.2962(27)
9 0.25275(50) 0.5871(15) 0.80338(98) 0.95757(28)

25 0.39649(65) 0.7633(14) 0.92657(51) 0.993549(51)
49 0.49906(70) 0.8448(11) 0.96393(29) 0.998291(15)
81 0.57609(70) 0.88999(90) 0.97938(18) 0.9993876(54)

121 0.63649(69) 0.91807(74) 0.98705(12) 0.9997353(22)
169 0.68538(66) 0.93690(60) 0.991331(79) 0.9998701(12)
225 0.72586(63) 0.95024(49) 0.993931(56) 0.99993012(63)
289 0.75997(59) 0.96006(41) 0.995605(40) 0.99995976(36)
361 0.78911(56) 0.96751(34) 0.996735(30) 0.99997557(21)

n K = 5

1 0.05988(15) 0.1511(10) 0.2248(21) 0.2976(26)
9 0.25267(48) 0.5867(15) 0.8029(11) 0.95741(29)

25 0.39638(58) 0.7629(13) 0.92634(61) 0.993525(55)
49 0.49893(59) 0.8445(11) 0.96380(34) 0.998284(15)
81 0.57595(57) 0.88970(90) 0.97930(21) 0.9993847(57)

121 0.63634(55) 0.91784(73) 0.98700(14) 0.9997340(25)
169 0.68523(53) 0.93673(60) 0.991302(92) 0.9998694(12)
225 0.72571(51) 0.95010(49) 0.993909(65) 0.99992979(66)
289 0.75982(49) 0.95995(40) 0.995590(46) 0.99995958(37)
361 0.78896(49) 0.96742(33) 0.996723(35) 0.99997546(24)
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Within the estimated uncertainties, the ratio β(n) does not depend on the number K
of opinions available in the system and appears to be a purely geometric characteristic
of the model. Of course, we expected an observed increase in β(n) with an increase in
n independently on K and α. Much more interesting is the observed monotonic increase
in β(n) with the increase in the distance scaling function exponent α. For α = 2, roughly
25% of the impact comes from n = 9 nearest-neighbors. This ratio increases to β(9) ≈ 59%
for α = 3, β(9) ≈ 80% for α = 4 and β(9) ≈ 96% for α = 6. For n = 25, roughly
β(25) ≈ 39%, 76%, 92%, and 99% of the social impact exerted comes from only those
twenty-five neighbors for α = 2, 3, 4, and 6, respectively. In other words, the α parameter
says how influential the nearest neighbors are with respect to the entire population: the
larger α, the more influential the nearest neighbors are.

3.2. The Final Opinions Distributions

The initial random opinions presented in Figure 1 evolve according to Equation (4)
(in the absence of information noise T = 0) or Equation (6) (for T > 0). This temporal
evolution subsequently changes the spatial opinion distribution. In Figure 3, examples of
the two most probable final opinion spatial distributions for various noise levels T after 103

time steps are presented. The exponent in the distance scaling function is assumed to be
α = 3. The system contains L2 = 412 actors and K = 4 possible opinions.

For a deterministic version of the algorithm (T = 0, see Figure 3a,b), all K opinions
initially present in the systems survive; however, the clustering of actors who share the
same opinions is observed. A slight increase in temperature (T = 1) ‘melts’ the ‘frozen’
state leading either to consensus (the same opinion shared by all actors, see Figure 3c)
or polarization (two, well separated, clusters of opinions, see Figure 3d). As a cluster
of opinions—or more precisely, actors—we consider a group of actors who share the
same opinions and are connected by the nearest-neighbor interaction (sitting in the von
Neumann neighborhood, as for random site percolation problem). The number of actors
who share the same opinion and belong to the same cluster defines the cluster size S . The
increase in noise level to T = 2 allows a small number of actors to appear with other
available but short-lived opinions (appearing at time t and immediately disappearing at
t + 1) (see Figure 3e,f) as the temperature increases T—according to Equation (5)—favorites
the appearance of less probable opinions (exerting less impact). The above-mentioned
increase in probability (5) with T leads to an increase in the number of single actors or even
pairs of actors with minority opinions destroying locally either consensus (see Figure 3g) or
system polarization (see Figure 3h). The further increase in T also allows for the appearance
of larger (but still relatively small) clusters of opinions (Figure 3i,j). Finally, for a high noise
level, all opinions become equiprobable as

lim
T→∞

Pi,k(t) = 1/K

in every time step t for every actor i and for every opinion Ξk. The latter leads to the system
blinking with all K available ‘colors of opinion at every time step t and at every site i—the
snapshot of the system does not differ much from the one presented in Figure 1b.

Examples of the spatial distributions of the final opinion for α = 3 and K = 2, 3, and
5 (Figures A1–A3) and for α = 4 and K = 2, 3, 4, and 5 (Figures A4–A7) are collected in
Appendix A.

3.3. Opinion Clustering

As the most commonly observed phenomenon in the system is opinion clustering,
we check the distribution of these cluster numbers and sizes. To this end, we utilize the
Hoshen–Kopelman algorithm [76] (pp. 59–60), [77–79]. With Hoshen–Kopelman algorithm,
one can label every site in such a way that sites (actors sharing the same opinions) in
various clusters are labeled with various labels, and sites belonging to a given cluster are
labeled with the same label.
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Let us look again at Figure 3c,d obtained for α = 3, K = 4 and T = 1. In Figure 3c,
consensus takes place, and we observe a single cluster (the number of clusters C = 1), and
all actors belong to this cluster (the size of the cluster S = L2). In Figure 3d, the system
polarization is observed, thus, the number of observed clusters is two (C = 2), but most of
the actors are in a ‘red’ cluster (S1 ≈ 0.92L2) while actors with minority opinion (marked
with ‘green’) are occupying the upper left corner of the system (S2 ≈ 0.08L2).

(a) T = 0 (b) T = 0

(c) T = 1 (d) T = 1

(e) T = 2 (f) T = 2

(g) T = 3 (h) T = 3

(i) T = 4 (j) T = 4

Figure 3. Examples of two most probable spatial distributions of the final opinion after 103 time steps.
L = 41, α = 3, K = 4 and various levels of noise T.

As for larger noise levels, single sites with minority opinions appear from time to
time (cf., for example, Figure 3e,h), but the main picture behind remains the same (i.e.,
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in principle, we still deal either with consensuses or system polarization), it would be useful
to introduce the noise discrimination level θ. For example, setting θ = 5 and neglecting
appearance clusters with sizes S smaller than θ is sufficient to keep the picture of the
number C of clusters as for those presented in Figure 3c,d also for systems presented in
Figure 3e,h.

The results presented below are based on assuming various levels of discrimination θ
in the spirit described above. In other words, the θ parameter arbitrarily says how small
the clusters of agents sharing the same opinion could be considered negligible.

3.3.1. Average Number of Opinion Clusters

In Figure 4, the average number C of opinion groups is presented for α = 3 and K = 4.
Statistics are based on R = 100 replications of the system with L2 = 412 actors measured
after t = 103 time steps of evolution. We assume the discrimination threshold θ = 25.

0 1 2 3 4
T

0.03

0.12

0.50

2.00

8.00

32.00

⟨⟩

Figure 4. Average number 〈C〉 of opinion clusters after t = 103 time steps for the exponent of the
distance scaling function α = 3, the number K = 4 of opinions available in the system, and the noise
discrimination threshold θ = 25. The system contains L2 = 412 actors. The results are averaged over
R = 100 independent system realizations.

For T = 1 roughly half among R = 100 simulations end in consensus (C = 1) or
system polarization (C = 2) leading to the average number of clusters 〈C〉 ≈ 1.73(80).
The symbol 〈· · · 〉 stands for the averaging procedure on R = 100 independent system
realizations (simulations). The increase in the level of noise T ≥ 2 with the assumed
discrimination threshold θ = 25 does not change the average number of clusters 〈C〉 to
much: 〈C〉 = 1.24(57), 1.14(38) and 1.22(46) for T = 2, 3 and 4, respectively.

However, for T = 0 this number 〈C〉 ≈ 11.6 (with uncertainty 3.0) is much higher
than for T 6= 0 (please note the logarithmic scale on the 〈C〉 axis). We should stress that the
number of clusters C = 17 (Figure 3a) and C = 8 (Figure 3b) is higher than the number of
opinions available K = 4 in the systems. In other words, several different clusters of the
same opinion are counted for the number C. For instance, in Figure 3b, we observe four
clusters (of sizes C larger than θ = 25) of ‘green’ opinions, two of ‘blue’ opinions, two of
‘red’ opinions, and none of ‘yellow’ opinions.

The average number 〈C〉 of clusters for various values of the distance scaling function
exponent α = 2, 3, 4, and 6, number of available opinions K = 2, 3, 4, and 5, information
noise level T = 0, 1, 2, 3, and 4 and noise discrimination levels θ = 12, 25 and 50 are
presented in Figures A8–A10 in Appendix B.

3.3.2. The Sizes of the Largest Clusters

In Reference [56] average largest cluster size 〈Smax〉 (normalized to the system size
L2) for K = 2 and K = 3 and various values of the noise level T and the interaction range
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α were presented in Figures 6a and 7a, respectively. Here, we also extend this study to a
larger number K of opinions available in the system, namely for K = 4 and K = 5. The
results are presented in Figure 5.

(a) K = 2

2 3 4 6
α

4

3

2

1

0

T
99.9 93.9 43.9 10.9

100 98 86.6 23.4

100 99.5 95.9 79.9

100 99.3 93.5 86

100 83.1 59.4 46.5
0
10
20
30
40
50
60
70
80
90
100

(b) K = 3

2 3 4 6
α

4

3

2

1

0

T

99.9 83.6 2.67 1.9

100 89.8 47.5 3.07

100 85.6 62.1 37.3

99.5 78.8 55.4 41.3

90 35 17.4 9.52
0
10
20
30
40
50
60
70
80
90
100

(c) K = 4

2 3 4 6
α

4

3

2

1

0

T

99.8 61.9 1.32 1.1

100 88.6 3.1 1.39

100 92.2 67.7 6.77

100 83.7 61.9 49

90.1 35.7 15.6 7.45
0
10
20
30
40
50
60
70
80
90
100

(d) K = 5

2 3 4 6
α

4

3

2

1

0

T

99.7 1.13 0.876 0.855
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Figure 5. The average ratio (in percents) of the size of the largest cluster 〈Smax〉 to the size of the
entire system L2 depending on the parameters α and T. L = 41, t = 103, R = 100.

Let us again look at the thermal evolution of Smax of the system presented in Figure 3.
Due to the freezing system for T = 0 (as presented in Figure 3a,b), the largest cluster sizes
are around Smax = 267 and Smax = 794 (cluster of ‘green’ opinion in the upper left corner
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and cluster of ‘red’ opinion in the left side of Figures 3a,b, respectively). The increase in
noise level to T = 1 increases the sizes of the largest cluster to Smax = L2 and Smax = 1540
for Figures 3c,d, respectively. Then, the subsequent increase in T only reduces the size of
the largest cluster.

3.4. Distribution of Surviving Opinions

The methodology of cluster counting allows for the construction of histograms 〈C(T)〉
presented in Figures 4 and A8–A10—as mentioned in Section 3.3.1—neglects the colors of
the clusters. Thus, the information provided there is insufficient to determine whether all
K opinions available in the system persisted until the assumed time t = 103. Now, we are
interested in checking the number 1 ≤ Φ ≤ K of surviving opinions for various values of
the parameters K, α, and T.

As mentioned above, the system presented in Figure 3b for K = 4, α = 3, T = 0 has
eight clusters larger than θ = 25, and, thus, the number of clusters C is eight. As three
opinions available in the system are observed, then Φ = 3. In contrast, for T = 1 (see
Figure 3d), only Φ = 2 opinions (‘red’ and ‘green’) survived. There, due to the polarization
of the system, the number of clusters C and the number of surviving opinions Φ are equal.

3.4.1. Histograms of Surviving Opinions

The opinion that survives in the system is the opinion that, at the end of the simulation,
it is represented by at least one cluster with size S not smaller than θ.

In Figure 6, the histogram of the number Φ(T) of surviving opinions for α = 3, K = 4
and the level of noise discrimination θ = 25 are presented.

0 1 2 3 4
T

0

20

40

60

80

100

f
Φ = 0
Φ = 1
Φ = 2
Φ = 3
Φ = 4

Figure 6. The histogram of frequencies f of the number Φ of surviving opinions for α = 3, K = 4 and
the level of noise discrimination θ = 25.

The results are collected again after t = 103 time steps and for R = 100 system
realizations.

For T = 0, 95% of these R simulations ended with Φ = 4 [ f (Φ = 4) = 95%, yellow
rectangle in the first bar of Figure 6] surviving opinions, and 5% of the simulations ended
with Φ = 3 surviving opinions [ f (Φ = 3) = 5%, blue rectangle in the first bar of Figure 6].
Situations with consensus (Φ = 1) or system polarization (Φ = 2) were not observed:
f (Φ = 1) = f (Φ = 2) = 0% [absence of green and red rectangles in the first bar of
Figure 6]. Finally, the orange color is also absent [ f (Φ = 0) = 0%] in the first bar of
Figure 6], which means that the situation of all opinions disappearing was not observed. Of
course, the rules of the game do not allow for vanishing all opinions: the case f (Φ = 0) > 0
means that the fraction f (Φ = 0) of system realizations ended with a lot of very small
clusters, each of them smaller than the assumed noise discrimination level θ.

For T = 1, 47% of these R simulations ended with Φ = 1 [ f (Φ = 1) = 47%, red
rectangle on the second bar of Figure 6] surviving opinions, 37% of the simulations ended
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with Φ = 2 surviving opinions [ f (Φ = 2) = 37%, green rectangle in the second bar of
Figure 6] and 16% of the simulations ended with Φ = 3 surviving opinions [ f (Φ = 3) =
16%, blue rectangle in the second bar of Figure 6], etc.

For the highest noise level investigated (T = 4) we have f (Φ = 1) ≈ 99% (red
rectangle in the fifth bar in Figure 6) and f (Φ = 2) ≈ 1% (green rectangle in the fifth bar in
Figure 6).

Histograms of frequencies f (Φ) of the numbers Φ of the surviving opinions for various
values of K, α, T and three values of noise discrimination level θ = 12, 25, 50 are presented
in Figures A11–A13 in Appendix C.

3.4.2. The Most Probable Number of Surviving Opinions

We finalize the presentation of the results with heat maps of the most probable final
number of surviving opinions Φ? (see Figure 7). We define the most probable number of
surviving opinions Φ? as this value of Φ for which the fraction f (Φ) is the largest (for fixed
values of the noise discrimination level θ, the noise level of information T and the effective
range of interaction α).

For example, for K = 4, α = 3, θ = 25 and

• for T = 0 (see the first bar of Figure 6) Φ? = 4 as 95% = f (Φ = 4) > f (Φ = 3) = 5%,
• for T = 1, 2, 3 (see the second, third, and fourth bar of Figure 6) Φ? = 1 as f (Φ =

1) > f (Φ = 2) > f (Φ = 3),
• for T = 4 (see the fifth bar of Figure 6) Φ? = 1 as 99% = f (Φ = 1) > f (Φ = 2) = 1%.
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(j) K = 5, θ = 12
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(l) K = 5, θ = 50
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Figure 7. The most probable final number Φ? of surviving opinions for various numbers K of opinions
available in the system and noise discrimination thresholds θ depending on the level of information
noise T and the range of interaction α.

4. Discussion
4.1. Average Number of Opinion Clusters

For a low value of the noise discrimination level (θ = 12, Figure A8) and α = 2
(see Figures A8a–d) for the nondeterministic version of the algorithm (T > 0), only one
cluster exceeds the threshold size, regardless of the number K of opinions available in the
system. Therefore, the system is dominated by a single group of opinions, and consensus
takes place.

Reducing the impact of distant actors (α = 3, Figure A8e–h) allows additional clusters
of size S greater than θ = 12. Their number 〈C〉most often does not exceed two, except for
the simulation of a high number of opinions available (K > 3) and high social temperature
(T = 4). For such parameter settings, we can observe, on average more than two clusters, at
the same time with a greater standard deviation of this number — the number of clusters,
depending on the simulation, ranges from 〈C〉 = 1 to about 〈C〉 = 5÷ 6. Independently of
the number of K the deterministic case (T = 0) produces a relatively high average number
〈C〉 of clusters (〈C〉 = 4 for K = 2 opinions, 〈C〉 = 16 and for K > 2).

An increased exponent (α = 4, Figure A8i–l) results in a clear increase in the average
number 〈C〉 of clusters in the system up to 〈C〉 = 32 for T = 0.

For the largest value considered of α = 6 (Figure A8m–p) the most numerous sets
of clusters with a size S exceeding θ = 12 are observed. With two opinions in the system
(Figure A8m), the temperature T = 3 is sufficient for a significant division of agents for
〈C〉 ≥ 16 clusters with a size exceeding the threshold θ. The trend continues for simulations
with available K = 3 different opinions (Figure A8n). However, for high temperatures
and a large number of possible opinions (K = 4, T = 4 and K = 5, T = 3, 4), the average
number of clusters 〈C〉 with size S greater than the threshold θ begins to decline due to
too much fragmentation—the system becomes an irregular set of many very small clusters
(Figures A6i,j and A7i,j), and none of the opinions can get a noticeable advantage. For T = 0,
the average number of clusters in the system remains very high and reaches 〈C〉 = 32.

For increased threshold θ = 25 (Figure A9) noticeable differences appear for K = 4, 5
and α = 3 and the highest of the social temperatures studied T = 4 (Figure A9g,h), where
fewer clusters were recorded that met the condition S > θ = 25.

For the simulations with K = 5 and T = 4, where at least one cluster of an appropriate
size has been preserved, it was so rare that the average number of clusters was a fraction
(〈C〉 ≈ 0.15). This value well reflects the division of agents who share the same opinion
into small, randomly arranged clusters.

A further increase in the threshold θ (up to 50, Figure A10) results in disappearing
clusters of sizes S larger than θ for α ≥ 4 and K ≥ 4 (Figure A10k,l,o,p).

4.2. The Sizes of the Largest Clusters

We would like to recall the ambivalent role observed of the information noise level T in
shaping the largest cluster size Smax mentioned in Reference [56] (p. 14): ‘[. . . ] the average
size of the maximum cluster Smax decreases with α for fixed T values. The appearance
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of noise in the system (T = 1) slightly organizes the system in relation to the noiseless
situation with T = 0 (which is particularly visible for α > 2 [. . . ]). Indeed, as in earlier
studies [80,81], a small level of noise brought more order to the system. Furthermore, the
introduction of noise (T) in the adoption of opinions causes an increase in Smax, and then
its decrease, which is especially visible for α > 2 (this inflection point is nearly T = 2).’ and
later: ‘[. . . ] noise for certain values of α promotes unanimity. This situation occurs for α = 3
(both for K = 2 and K = 3), when the frozen state system, with increasing noise T, achieves
the consensus state for T = 3, before disordering for T = 5’ [56] (p. 18).

This nonmonotonous dependence Smax/L2 on the noise parameter T is observed for
any value of α, but for larger values of α and larger values of the number K of opinions
available in the systems, this dependence becomes more and more spectacular. For example,
for K = 5 (Figure 5d) we see a high peak of Smax/L2 ≈ 50% for T = 1 and α = 6 deeply
reduced to 2.4% and 5.5% for a larger (T = 2) and lower (T = 0) noise level. The similar
behavior in Smax in dependence on T is also observed for α = 4 with Smax/L2 ≈ 60%
for T = 1, 2 reduced to 1.2% and 13.3% for a higher (T = 3) and lower (T = 0) noise
level. The further increasing influence of more distance actors (decreasing α) makes the
Smax dependence smoother and smoother, making it almost flat for α = 2 with only
marginal deviation from Smax/L2 = 100% at the edges of the range of values studied for
the parameter T.

The picture presented above is also qualitatively reproduced for K = 4 (see Figure 5c).
Independently of the number K of opinions considered available in the system for a

fixed value of the noise parameter T, the average size of the largest cluster Smax decreases
with increasing of α, i.e., with limiting the influence of very long-range interactions.

4.3. Histograms of Surviving Opinions

The histograms f (Φ; T) of the surviving opinions (Section 3.4.1) presented in
Figures A11–A13 in Appendix C are almost untouched by the noise discrimination level
θ for a highly effective interaction range [α = 2, Figures A11a–d, A12a–d and A13a–d]
as well as for the lowest possible number of opinions available in the system [K = 2,
Figures A11a,e,i,m, A12a,e,i,m and A13a,e,i,m]. This is a consequence of the appearance of
consensus or system polarization and is consistent with the generally observed final system
states presented earlier in Figures 3 and A1–A7.

The most noticeable differences occur in Figures A11g,h,k,l,o,p, A12g,h,k,l,o,p
and A13g,h,k,l,o,p, that is, for α ≥ 3 and K ≥ 4. For a high noise level (T = 4) in
this parameter regime, the frequency f (Φ = 0) dominates the system (absence of sizes S
greater than θ) except for the lowest assumed threshold θ = 12, allowing observation up to
Φ = 3 surviving opinions, but of small cluster sizes.

4.4. The Most Probable Number of Surviving Opinions

We finalize the discussion of the results obtained with an analysis of the heat maps
(Figure 7) of the most probable final number Φ∗ (Section 3.4.2, Figure 7) of the remaining
opinions for various numbers K of opinions available in the system and various noise dis-
crimination numbers θ. These maps are constructed in the (α, T) plane. With the assumed
scanning accuracy of the parameters, α i T parameters, the shape of the obtained maps dif-
fers qualitatively from those reported in Figures 6 and 7 in Reference [56], particularly with
well-visible juts for higher values of Φ∗ for intermediate values of the level of information
noise 2 ≤ T ≤ 3 and high values of α ≈ 6 (that is, for a long effective range of interaction
between actors).

5. Conclusions

In Reference [55], the model of opinion formation was introduced based on the Latané
theory of social impact with many available opinions. In computer simulations based on
the Szamrej–Nowak–Latané model, it was shown that increasing the number of opinions
decreases the critical noise level separating ordered and disordered phases. The observed
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results were followed by further studies [56] in which both the noise level T and the
interaction range α were considered. It was shown that the noise level has an ambiguous
role: its lower value helps in system ordering (spatial clustering of opinions), while its
higher value destroys any spatial correlations among actors and their opinions. This useful
role for the small noise level was also reported in References [81–84].

In this paper, we follow the path indicated in the References [55,56] and with a
computerized version of the social impact theory (Section 2) we simulate the formation
of opinions in an artificial society. Images obtained from spatial opinion distributions
(Section 3.2) were analyzed in terms of the grouping of opinions and the characteristics
of these opinion clusters (Section 3.3). Based on the simulation results, we show how the
number Φ∗ of observed opinions (understood as spatial clusters of at least θ actors sharing
the same opinion) depends on the model control parameters (effective range of interaction
α and noise level T). In contrast to the Reference [56]— where the number of (arbitrarily
recognized as small or large) cluster sizes were investigated—here we introduce the noise
discrimination level θ allowing the finest analysis of histograms of cluster sizes.

As a square lattice is not best suited for modeling social interaction, also checking
another network topology seems to be a promising way for further studies. On the other
hand, the square lattice naturally produces a regular ego-centered network of actors [85–87],
where nodes in subsequent coordination zones may be equated with subsequent ‘circles’
(in the ego-centered network theory terminology) containing the support clique (sites from
the first and second coordination zones, Figure 2b), sympathy group (sites from the third to
fifth coordination zones, the outermost ‘ring’ in Figure 2c), affinity group (sites from the
sixth to the ninth coordination zones, the outermost ‘ring’ in Figure 2d) and active network
(sites from the 10-th to 14-th coordination zones, not marked in Figure 2). Keeping the
terminology of Reference [87], a ‘red’ actor presented in Figure 2a plays the role of ‘ego’
while actors in subsequent coordination zones are his/her ‘alters’. Our results (Table 1)
show that—independently of the number K of opinions available in the system—from 57%
(low values of α in Equation (3)) to 99% (high values of α in Equation (3)) social impact on
‘ego’ comes from these five circles. We note that this effect is purely geometrical and should
be recognized in any other topology of the underlying network of social contacts.

The maps shown in Figures 3, A3 indicate the tendency of the system to dominate
only one opinion for T > 1 ultimately. With the available opinions, K > 3, by introducing a
higher temperature T in the system, the share of dominant opinion in the entire system is
reduced due to more spatially separated actors with different opinions. For the number of
opinions K = 5 and the social temperature T = 4, this effect is magnified to such an extent
that larger clusters in the system disappear, leading to an ever-changing random system
state in which none of the available opinions prevail above the noise discrimination level θ.

High social temperature (observed, e.g., before elections) can be identified with high-
mood liability, where many often consecutive events cause constant changes in individual
opinions. A large part of voters do not know who to vote for; they have just started to
think about it, their opinions are poorly established, and the final opinion is determined by
random events.

As the exponent α increases in the distance scaling function, the system tends to form
more and more clusters. On the other hand, increasing the social temperature T destroys
the stability of the smaller clusters that exist in the system, which disappear in favor of the
dominant clusters. However, as both values increase—especially for the large number of K
opinions available in the system—agents’ opinions become highly dispersed, and believers
of the same opinion are unable to form large clusters. For high values of K, α, and T, the
system is fragmented, and the state of the system is represented by dynamically changing
and randomly distributed clusters on the grid, and each opinion has a similar number of
agents believing in it.

Increasing the discrimination coefficient decreases the importance of small—spatially
separated—groups of agents sharing a given opinion in the measurement of opinions. This
may contribute to the impression of strong polarization in the system, giving a vision of the
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presence of well-established divisions in society. This, in turn, may promote the image of a
deep conflict between members of society, for example, between the voters of the two main
political forces, creating the impression of a high electoral threshold. This effect is clearly
visible in Figure 7, where the successive increase in θ leads to the systematic impression
that the opinions of minorities (or at least their spatial dispersion) successively decrease
the measured number Φ∗ of the remaining opinions. This effect is best visible in the last
row of Figure 7 (Figures 7j,l), that is, for a large number of available options (K = 5), where
for the threshold θ = 50 (Figure 7l) regardless of the influence of the effective interaction
range α or the social temperature T, we do not observe a group of followers of the fifth
opinion, and followers of the fourth opinion appear only marginally with only one of the
examined sets of parameters (α = 3 and T = 0). On the one hand, this can be a hint for
manipulators of public opinion, and on the other hand, it can suggest how to oppose such
manipulation effectively.

We emphasize that the concept of multiple opinions (K ≥ 3) seems to be essential
for the possibility of speaking about system polarization (which term is probably often
overused in binary models of opinion formation). Based on the results collected in Table 1
we conclude that the larger α, the more influential the nearest neighbors are (see Section 3.1).
The level of noise discrimination θ (allowing for detailed studies of the number Φ∗ of
surviving opinions) may be a useful tool for the analysis of social systems, not only in
models of opinion dynamics.

The further direction of investigating this model may include checking the compu-
tational complexity, that is, the time to reach the equilibrium of the system as dependent
on the size of the system or checking the influence of setting si and pi in a way other than
proposed here (i.e., taking them from normal instead of uniform distribution, or setting
all of them to the same arbitrarily chosen values and reducing their space into only two
parameters: ∀i : si = s, pi = p).
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Appendix A. Examples of Final Spatial Opinion Distribution

Examples of the two most probable spatial distributions of the final opinion after
t = 103 time steps of the system evolution for various noise levels T. The system contains
L2 = 412 actors. The exponent of the distance scaling function α = 3 and the number of
available opinions K = 2 (Figure A1), α = 3 and K = 2 (Figure A2), α = 3 and K = 5
(Figure A3), α = 4 and K = 2 (Figure A4), α = 4 and K = 3 (Figure A5), α = 4 and K = 4
(Figure A6), α = 4 and K = 5 (Figure A7).
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(a) T = 0 (b) T = 0

(c) T = 1 (d) T = 1

(e) T = 2 (f) T = 2

(g) T = 3

(h) T = 4

Figure A1. Examples of two most probable spatial distributions of the final opinion after 103 time
steps. L = 41, α = 3, K = 2 and various levels of noise T.
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(a) T = 0

(b) T = 1 (c) T = 1

(d) T = 2 (e) T = 2

(f) T = 3 (g) T = 3

(h) T = 4 (i) T = 4

Figure A2. Examples of two most probable spatial distributions of the final opinion after 103 time
steps. L = 41, α = 3, K = 3 and various levels of noise T.



Entropy 2023, 25, 58 18 of 30

(a) T = 0 (b) T = 0

(c) T = 1 (d) T = 1

(e) T = 2 (f) T = 2

(g) T = 3 (h) T = 3

(i) T = 4 (j) T = 4

Figure A3. Examples of two most probable spatial distributions of the final opinion after 103 time
steps. L = 41, α = 3, K = 5 and various levels of noise T.
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(a) T = 0

(b) T = 1 (c) T = 1

(d) T = 2 (e) T = 2

(f) T = 3 (g) T = 3

(h) T = 4 (i) T = 4

Figure A4. Examples of two most probable spatial distributions of the final opinion after 103 time
steps. L = 41, α = 4, K = 2 and various levels of noise T.
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(a) T = 0

(b) T = 1 (c) T = 1

(d) T = 2 (e) T = 2

(f) T = 3 (g) T = 3

(h) T = 4 (i) T = 4

Figure A5. Examples of two most probable spatial distributions of the final opinion after 103 time
steps. L = 41, α = 4, K = 3 and various levels of noise T.
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(a) T = 0 (b) T = 0

(c) T = 1 (d) T = 1

(e) T = 2 (f) T = 2

(g) T = 3 (h) T = 3

(i) T = 4 (j) T = 4

Figure A6. Examples of two most probable spatial distributions of the final opinion after 103 time
steps. L = 41, α = 4, K = 4 and various levels of noise T.
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(a) T = 0 (b) T = 0

(c) T = 1 (d) T = 1

(e) T = 2 (f) T = 2

(g) T = 3 (h) T = 3

(i) T = 4 (j) T = 4

Figure A7. Examples of two most probable spatial distributions of the final opinion after 103 time
steps. L = 41, α = 4, K = 5 and various levels of noise T.
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Figure A8. Average number 〈C〉 of opinion clusters after t = 103 time steps for various exponents of
the distance scaling function α and various numbers of available opinions K in the system. Noise
discrimination threshold θ = 12. The system contains L2 = 412 actors. The results are averaged over
R = 100 independent system realizations.

(a) α = 2, K = 2

0 1 2 3 4
T

0.03
0.12
0.50
2.00
8.00

32.00

⟨⟩

(b) α = 2, K = 3

0 1 2 3 4
T

0.03
0.12
0.50
2.00
8.00

32.00

⟨⟩

(c) α = 2, K = 4

0 1 2 3 4
T

0.03
0.12
0.50
2.00
8.00

32.00

⟨⟩

(d) α = 2, K = 5

0 1 2 3 4
T

0.03
0.12
0.50
2.00
8.00

32.00

⟨⟩

(e) α = 3, K = 2

0 1 2 3 4
T

0.03
0.12
0.50
2.00
8.00

32.00

⟨⟩

(f) α = 3, K = 3

0 1 2 3 4
T

0.03
0.12
0.50
2.00
8.00

32.00

⟨⟩

(g) α = 3, K = 4

0 1 2 3 4
T

0.03
0.12
0.50
2.00
8.00

32.00

⟨⟩

(h) α = 3, K = 5

0 1 2 3 4
T

0.03
0.12
0.50
2.00
8.00

32.00

⟨⟩

Figure A9. Cont.
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Figure A9. Average number 〈C〉 of opinion clusters after t = 103 time steps for various exponents of
the distance scaling function α and various numbers of available opinions K in the system. The noise
discrimination threshold θ = 25. The system contains L2 = 412 actors. The results are averaged over
R = 100 independent system realizations.
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Figure A10. Average number 〈C〉 of opinion clusters after t = 103 time steps for various exponents of
the distance scaling function α and various numbers of available opinions K in the system. The noise
discrimination threshold θ = 50. The system contains L2 = 412 actors. The results are averaged over
R = 100 independent system realizations.
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Figure A11. The histograms of frequencies f of the number Φ of surviving opinions after = 103 time
steps and for various values of the distance scaling function exponent α and various values of the
number of available opinions K. The system contains L2 = 412 actors. The noise discrimination level
θ = 12 and the results are averaged over R = 100 independent simulations.
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Figure A12. The histograms of frequencies f of the number Φ of surviving opinions after = 103 time
steps and for various values of the distance scaling function exponent α and various values of the
number of available opinions K. The system contains L2 = 412 actors. The noise discrimination level
θ = 25 and the results are averaged over R = 100 independent simulations.
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Figure A13. The histograms of frequencies f of the number Φ of surviving opinions after = 103 time
steps and for various values of the distance scaling function exponent α and various values of the
number of available opinions K. The system contains L2 = 412 actors. The noise discrimination level
θ = 50 and the results are averaged over R = 100 independent simulations.

Appendix B. Average Number of Clusters

Average number 〈C〉 of opinion clusters after t = 103 time steps for various exponents
of the distance scaling function α and various numbers K of opinions available in the
system. Noise discrimination threshold θ = 12 (Figure A8), θ = 25 (Figure A9), θ = 50
(Figure A10). The system contains L2 = 412 actors. The results are averaged over R = 100
independent system realisations.

Appendix C. The Number of Surviving Opinions

Histograms of the frequencies f of the number Φ of surviving opinions after = 103

time steps and for various values of the distance scaling function exponent α and various
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values of the number of available opinions K. The system contains L2 = 412 actors. The
noise discrimination level θ = 12 (Figure A11), θ = 25 (Figure A12), θ = 50 (Figure A13)
and the results are averaged over R = 100 independent simulations.

References
1. Galam, S. Opinion Dynamics and Unifying Principles: A Global Unifying Frame. Entropy 2022, 24, 1201. [CrossRef]
2. Kozitsin, I. A general framework to link theory and empirics in opinion formation models. Sci. Rep. 2022, 12, 5543. [CrossRef]
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