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Abstract: A thermodynamic the influence of temperature on the logarithm of the considered quantity
is expressed by bifunctional functional terms (1/T, lnT). For this purpose, the Apelblat & Manzurola
(A&M) equation was used for extended model dissolution analysis of 12 aromatic hydrocarbons
in tetralin and decalin vs. temperature for saturated solutions. The A&M equation was found to
be thermodynamically compensatory in the sense of Enthalpy-Entropy-Compensation (EEC) while
limiting melting temperature Tm = ∆m H

∆mS . The coefficients for the functional terms A1 vs. A2 are a
linear relationship, with a slope called the compensation temperature Tc, as ratio of average enthalpy
to average entropy. From this dependence, it has been shown that the approximation of ∆cp = ∆mS is
justified, also assuming the average entropy. Regarding the term representing the activity coefficients,
modifications to the A&M equation were proposed by replacing the intercept and it was shown that
the new form correctly determines ∆m H. However, the condition is that the molar fraction of the
solute exceeds x > 0.5 moles. It has been shown that the simplest equation referred to van ’t Hoff’s
isobar also allows the simultaneous determination of enthalpy and entropy, but these quantities do
not always come down to melting temperature.

Keywords: solubility; aromatic hydrocarbons; enthalpy; entropy; activity; EEC

1. Introduction

In some areas of chemistry and chemical engineering, temperature-dependent quanti-
ties are expressed as the logarithm of that quantity to the reciprocal of absolute temperature.
In general, what we mean is a chemical or phase equilibrium constant. A relationship
containing temperature expressed in two functional terms, 1/T and ln (T), is often proposed.
A classic example is the Rankine-Kirchhoff-Dupré equation [1] describing saturation vapor
pressure vs. T, to which Romps attributes very high accuracy and usefulness [2].

The Arrhenius-Gutzmann equation is often modified in this way for changes in viscos-
ity with temperature [3,4].

Depending on the nature of the phenomenon, the variable (1/RT) is associated with
the activation energy or enthalpy, while the variable (±Rln [T]) can normalize the entropy.

Research of the dissolution process is of particular importance. This is due to the fact
that, on one hand, from the galaxy of equations, we can distinguish those in which enthalpy
dominates, only entropy, or both thermodynamic functions play comparable roles. On the
other hand, the thermodynamic category is activity, although for experimental purposes it
would be more preferable to use a solute mol fraction. The dissolution processes, due to
the wide modeling possibilities, are of particular interest for the substantive assessment
of the role of the bifunctional influence of temperature, especially since we can expect
thermodynamic compensation, known as Enthalpy-Entropy-Compensation effect (EEC).

From the brief analysis of the literature on the problem of solid phase dissolution
in various solvents, both weakly and moderately dissolving, one can see the gradual
development of theories ranging from simple to ideal, binary to real, multi-component
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solutions with complex interactions at the molecular level. For example, items can be
listed [5–9].

According to IUPAC [9] solubility is the analytical composition of a mixture or solution,
which is saturated with one of the components of the mixture or solution, expressed in
terms of the proportion of the designated component in the designated mixture or solution.

Generally, solubility models are derived from an equilibrium state in terms of [9]:

∆G∅(T, P)
RT

= −ln
a(β)

a(α)
, (1)

where the activity of the dissolved component is considered in its own phase (α) and
dissolved (β).

The standard Gibbs free energy statement on the right side of Equation (1) can be
used in many forms, also according to the Clarke-Glew concept [10] used in subsequent
works [11–14].

Equation (1) for constant pressure and saturated solutions can be written in detailed
form according to Clausius-Clapeyron:

ln(a) =
∫ Tm

T

∆m H
R

d
(

1
T

)
, P = const (2)

The activity of component (a) in a solution is strongly dependent on its activity
coefficients, whose numerical values depend on the adopted model [15].

In historical terms, the first approach to the problem is due to the equations: Margules
(1895), van Laar (1910) [16] and from 1964–Wilson [14,17–22], NRTL (Non-Random, Two-
Liquid) [20–22], UNIQUAC (Universal Quasi-Chemical) [15,19–24] and UNIFAC (UNI
QUAC Functional-group Activity Coefficients, 1975) [14] based on the UNIQUAC algo-
rithm or the latest ASOG (Analytical Solution of Groups, 1989) [25] using the Wilson
equation. We also meet even newer, less known, e.g., MOQUAC [26] or older VLE [21,25].

2. Equations Describing Saturated Solutions in Terms of Temperature

In the creation of solutions in the liquid-solid phase system, a more convenient starting
point for further considerations is a record in which thermodynamic functions for the fusion
of the melting point temperature are exposed, as indicated in Equation (1):

∆G(T) = −RTln(a) = ∆H − T∆S, (3)

Because for T = Tm
∆G(Tm) = 0, ln(a) = 0, (4)

then:
∆mS =

∆mH
Tm

, (5)

If the thermodynamic functions are constant in the temperature range T→ Tm, then
Equation (3) can be written as:

ln(a) = −∆mH
RT

+
∆mS

R
, (6)

It is known that for an individual component in solution:

a = x ∗ γ, (7)
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where x is the molar fraction in solution saturated with a solid (x = xsat
2 ) and the activity

coefficient γ (γ = γ2) also applies to the solid phase (which is often indexed in literature
by the number 2) then Equation (6) can be represented in the form:

ln(x) = −∆m H
RT

+
∆mS

R
− ln(γ), (8)

Inserting the Equation (5) into the form Equation (8) we get the Schröder equation,
which for the expression: ln(x ∗ γ) is an analogue of van ’t Hoff isobar:

ln(x) = −∆mH
R

(
1
T
− 1

Tm

)
− ln(γ), (9)

In Equation (3) it can also be assumed that thermodynamic functions are dependent
on temperature according to Kirchhoff dependence, for ∆cp = const and T < Tm

∆m H = ∆H + ∆cp

∫ Tm

T
dT, (10a)

∆mS = ∆S + ∆cp

∫ Tm

T
dT/T (10b)

After integration and substitution into Equation (3) using Equation (5) and after
ordering using Equation (7), we obtain the Hildebrand equation:

ln(x) = −∆m H
R

(
1
T
− 1

Tm

)
+

∆cp

R

[
Tm

T
− 1− ln

(
Tm

T

)]
− ln(γ), (11)

In Equation (11) assuming that for ∆cp = 0, we get Equation (9) again.
For ∆cp ≈ ∆mS and using Equation (5) we get Hildebrand-Scott equation:

ln(x) = −∆mS
R

ln
Tm

T
− ln(γ), (12)

Using Equation (5) in Equation (9) we get we get an alternative expression to
Equation (12) [27]:

ln(x) = −∆mS
R

(
Tm

T
− 1
)
− ln(γ), (13)

According to [23] the approximate relationship
(
∆cp ≈ ∆mS

)
too often deviates from

the identity.
In turn Equation (11) can be grouped differently:

ln(x) =
∆CpTm − ∆m H

RT
+

∆Cp

R
lnT +

∆mH − ∆CpTm(1 + lnTm)

RTm
− ln(γ), (14)

which according to [7] means at the same time with the proposal of Apelblat &
Manzurola (A&M) [28–33].

Omitting the signs in Equation (14), the mathematical formula is obtained in the form
of a three-parameter equation, when activity is determined by Equation (7):

ln(a) = Ao +
A1

T
+ A2 ln T, (15)

One equation bypassing the need to determine activity coefficients is that in
Buchowski et al., which by two parameters defines enthalpy of solution per mole of the
solute [29,32,34].

ln
(

1 + λ
1− x

x

)
= λ

∆H
R

(
1
T
− 1

Tm

)
, (16)



Entropy 2023, 25, 55 4 of 22

The Equation (16) was derived for compounds soluble through hydrogen bonding
and the equation constants are determined by nonlinear regression [34].

The enthalpy of solution is therefore equal to the sum of the enthalpy of fusion and
the enthalpy of mixing. However, since the enthalpy of mixing must equal zero for an ideal
solution, it follows that the enthalpy of solution must equal the enthalpy of fusion of the
solid at the given temperature [5].

3. Results
3.1. Objective of the Work

The development in the field of Clean Coal Technology, especially in the production of
carbon liquids from a carbonized solid phase, is associated with the need to extend research
on the solubility of aromatic compounds in selected non-electrolytes. The most important
are the compounds found in coke tar or low-temperature tar, and thermodynamic analyzes
of such systems in different solvents are necessary.

Summing up the possibilities of determining thermodynamic functions in the equilib-
rium dissolution process, it can be seen that:

• depending on the purpose of the study, ideal solutions are considered, where the
activity coefficient is omitted (ln (γ) = 0) [5,27,35–44] in many works, mainly for
pharmacy, the molar fraction x = xsat

2 on the left side of the Equation (11) is referred to
as CLFR (Crystal-Liquid Fugacity Ratio) [39,41,43,44],

• systems in which the activity coefficients ln (γ) > 0 [5–9,15–26] are very extensive,
usually point transition is omitted [45],

• for the A&M equation [28–33] it is worth considering how much it is possible to elimi-
nate the troublesome determination of activity coefficients, associating this equation
with Hildebrand’s theory.

The purpose of the work is to analyze the impact of knowledge of activity coeffi-
cients on the accuracy of determining basic thermodynamic functions at melting point
temperature for binary regular solutions. The problem results from the fact that for the
simplest experimental method, Equation (11) with possible additional physicochemical
elements [46,47] is used for known values of basic thermodynamic functions (enthalpy,
entropy, ∆c_P). Therefore, the question arises how knowledge of activity coefficients affects
the estimation of selected thermodynamic functions.

From several publications [6–8,18,21,45,46] in the field of dissolution of aromatic
compounds in similar solvents, the most physicochemical data were contained in [21]. The
dissolution of 12 aromatic compounds (including those containing N, S, O heteroatoms)
in tetralin and decalin (and their mixture) was studied. Complete studies were carried
out for: biphenyl, fluorene, phenanthrene, acenaphthene, naphthalene, dibenzofuran,
dibenzothiophene, thioxanthene, xanthene, carbazole, acridine and anthracene.

The aim of this study is to use these experimental data to demonstrate the thermody-
namic aspects of the A&M equation and to propose its modification in order to enrich it
with activity coefficients. It is assumed that the measured values are sufficient to determine
them. The Enthalpy-Entropy Effect (EEC) can play an important role in this.

3.2. The Thermodynamic Aspect of the A&M Equation

If the Equation (3) is presented in the form:

∆G
T

=
∆H
T
− ∆S, (17)

then according to the Gibbs-Helmholtz equation

[
∂
(

∆G
T

)
∂
(

1
T

) ]

P

= ∆H, (18)
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what means for Equations (15) and (1) as dln(a)
d 1

T
= −∆H/R

∆H = R(A2T − A1), (19)

in particular for T = Tm

∆mH = R(A2Tm − A1), (20)

The second thermodynamic function is expressed directly by the formula from
Equation (5), as:

∆mS = R
(

A2 −
A1

Tm

)
, (21)

By using Equation (3) again after differentiation we get:

(
∂∆G
∂T

)
P
= −∆S, (22)

what after writing:

− R
d

dT
[Tln(a)] = −∆S, (23)

leads to the equation:

∆S = R
[

ln(a)− A1

T
+ A2

]
, (24)

in which for T = Tm and for condition Equation (4) formula Equation (21) is reproduced.
By implementing the structure of the A&M equation according to Equation (15) in

Equations (18) and (23), expressions of thermodynamic functions depending on the basic
measured relationships and its coefficients are created. According to Equations (19) and (20),
the differences |∆H − ∆m H| can be seen as the relation between the enthalpy at temperature
T and the melting point temperature. In turn, entropy depends on the activity according
to Equation (24). These properties are not shown by other equations containing only one
functional element with respect to temperature.

The Gibbs free energy resulting from the Equations (19) and (24) is:

∆G = R(A2T − A1)− RT
[

ln(a)− A1

T
+ A2

]
= −RTln(a), (25)

and complies to Equation (3).
The components of Equation (25) may be used in the designation of the EEC:

R(A2T − A1) = RTm

[
ln(a)− A1

T
+ A2

]
+ βo, (26)

where for the system one compound in one solvent, the role of compensating temperature
is taken by Tm, a βo = 0, when according to Equation (4), T = Tm, ln(a) = ln1 = 0.

After transforming, we get the equation:

ln(a) = A1

(
1
T
− 1

Tm

)
+ A2

(
T

Tm
− 1
)

, (27)

By inserting the coefficient A2 in the expression
(

T
Tm
− 1
)
∼= ln T

Tm
, Equation (15) is

reproduced. Thus, Equation (27) connects the elements of Equations (9), (12) and (13).
In this way, it was proved that Equation (15) is also EEC, because it contains in its

meaning a straightforward linear relationship between enthalpy and entropy without
intercept, when we operate with activity.
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Thus, for Equation (15), enthalpies are expressed by Equation (20) and entropy by
formula Equation (21). Ratios: Equation (20)/Equation (21) = Tm, and approximate also
Equation (19)/Equation (24) = Tm (Figure 1) which is consistent with the basic formula
Equation (5). In the dissolution processes, an enthalpy invariant with respect to temper-
ature is assumed, i.e., d∆H

dT = 0. Meanwhile, in Equation (19) an additional functional
element appears, which means that d∆H

dT = RA2. The comparison of Equation (14) and
Equation (15) shows that RA2 = ∆cp, that is d∆H

dT = ∆cp which is according to Kirchhoff’s
law, Equation (10a). When A2 = 0, then in Equations (15) and (27) the term in which
entropy may appear disappears. There is a clear tendency to assign certain equations to
experimental results. When studies are conducted near melting temperature, this is either
∆cp ∼= 0 or/also Tm/T ∼= 1 and the Hildebrand Equation (11) is reduced to the van ’t Hoff
isobar, Equation (9).
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Figure 1. The EEC relationship for biphenyl in a saturated solution in tetralin for the coefficients
Equation (31): A1 = 1060.6 K, A2 = 9.764 using Equations (19) and (24) and Equations (20) and (21)
Tm = ∆H

∆S = ∆m H
∆mS .

Figure 1 shows an excerpt from further systematic analyzes in a typical EEC pattern.
The enthalpy is calculated by the formula Equation (19) and the entropy by the formula
Equation (24) for the coefficients: A1 = 1060.6 K, A2 = 9.764 (Equation (31)), in this case
Tm = 341.9 K and slope is 343.63 K.

The A&M equation represents the nature of the bifunctional relationship with temper-
ature and therefore partial correlations imply EEC.

The nature of EEC can be explained by the system of correlation of coefficients at
the functional members Equation (15) for more dissolved hydrocarbons in one solvent. It
should be remembered at this point that the considerations relate to the activity and not
the solute mol fraction.

3.3. Correlations Using Known Activity Coefficients

The correlation of activity coefficients according to the UNIQUAC model with model
S-H for l12 6= 0 indicates practical identity (see Figure 2).
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Then, 6 types of equations were analyzed in which x = xsat
2 , γ = γ2:

ln(x) = Ao + A1

(
1
T
− 1

Tm

)
+ A2 ln

(
T

Tm

)
, (28)

ln(x) = A1

(
1
T
− 1

Tm

)
+ A2 ln

(
T

Tm

)
, Ao ≡ 0 (29)

ln(x ∗ γ) = Ao + A1

(
1
T
− 1

Tm

)
+ A2 ln

(
T

Tm

)
, (30)

ln(x ∗ γ) = A1

(
1
T
− 1

Tm

)
+ A2 ln

(
T

Tm

)
, Ao ≡ 0 (31)

ln(x) = −∆m H
R

(
1
T
− 1

Tm

)
, intercept 6= 0 (32)

ln(x ∗ γ) = −∆mH
R

(
1
T
− 1

Tm

)
, intercept = 0, (33)

The relationship in the form Equation (11) was also analyzed, which is not discussed
in this paper due to the difficult-to-explain variable-sign discrepancies determined for ∆cP.

Activity coefficients were used for the model extended S-H. For all cases
Equations (28)–(31), determination coefficient for equations with intercept and without that
expression is R2, ρ2 > 0.999 except for systems with carbazole in tetralin, where R2, ρ2 > 0.99,
while for decalin systems only for dibenzofuran, carbazole, acridine R2, ρ2 ≥ 0.99 and in
other cases R2, ρ2 > 0.999. Equation analysis also Equations (32) and (33) showed to their
high significance (R2 > 0.99) except for system carbazole + tetralin (R2 = 0.97) according
to Equation (32) and anthracene + tetralin (ρ2 = 0.92) according to Equation (33), which
may be a surprise. For decalin solutions, deviations were observed for acridine in both
Equations (32) and (33) (R2 = ρ2 > 0.97).

From the point of view of the quality of equations, there is no doubt that these are
approaches relevant for very high probability. The process enthalpy at temperature Tm
was determined for 6 of the equations analyzed (Table A1, Appendix A).
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The determined coefficients of the Equations (28)–(31) were correlated in the form of
a linear relationship: A1 vs. A2 assuming 4 × 12 = 48 pairs of coefficients for tetralin and
identically for decalin. The graphical correlation image is shown in Figure 3. Figure 3c is
the combined set of all data.
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Figure 3. Correlation of A&M equation constants for considered solvents: (a) separately for tetralin,
(b) separately for decalin, (c) together for tetralin and decalin (A1 = 334.09A2 − 2953.6, r2 = 0.985,
N = 96).

Thus, a comparison of the obtained calculation results presented in Table A1, using
Equation (28) shows that for the criterion as the smallest difference in relation to ∆mH
known from the literature, they show equations in which the expression ln
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(x*γ) and
deviations from this remark (except for carbazole + decalin systems) do not exist. There are
several systems that point to absurd values several times exceeding literature values when
activity coefficients are not taken into account. This is especially visible for hydrocarbons
containing heteroatoms dissolved in decalin.

In addition however, assuming the evaluation of the results presented in Table A1,
according to other acceptance (or negation) criteria by compliance with melting tempera-
ture, Equations (28)–(31) for EEC determine the enthalpy and the associated entropy in Tm,
taking into account the influence of the solvent.

Figure 3 indicates that for the studied population, a linear correlation analysis of the
coefficients leads to the notation, where Tc is compensation temperature,

A1 = Tc A2 − β, (34)
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From the comparison of the coefficients in Equation (14), the structures of the coeffi-
cients Equation (34) follow:

A1 = Tm
∆cp

R
− ∆m H

R
, (35a)

A2 =
∆cp

R
, (35b)

which implies for relations Equation (14) from Equation (20),

Tm =
A1

A2
+

∆mH
RA2

, (36)

for each system one hydrocarbon–one solvent, A1, A2 = const.
Thus Equation (36) is a transformation of Equation (20).
Summing up all Equation (36) for individual hydrocarbons, and the variables are Tm

then we get the Equation (37),

Tc =
A1

A2
+

∆m H
RA2

= const, (37)

for many compounds dissolved in solvent, A1 vs. A2.
Equation (37) means, that in Equation (34) β = ∆m H

R , and the compensation tempera-
ture replaces the arithmetic mean of all melting temperatures. In both Equations (36) and (37)
for A1 = 0, the product of RA2 is related to the heat capacity, and in case of Equations (36) and (5)
with entropy. Thus, Equation (36) is related to individual hydrocarbons (Figure 1):

Tm =
∆m H
RA2

=
∆m H
∆mS

, for A1 = 0, (38)

Equation (37) applies to many compounds dissolved in solvent, and from the view
presented in Figure 3c it follows that the slope is:

Tc = ∆mH/RA2, for A1 = 0 (39)

and directly means:
Tc = ∆m H/∆mS, (40)

Equation (40) defines the thermodynamic aspect of the compensation temperature
analogously to the approach acc. to Equation (5) for the considered population of 12 hydro-
carbons in two solvents.

The EEC analysis for hydrocarbons without solvent is shown in Figure 4.
In particular, Figure 4b is a proof of the validity of Equation (38) with entered

Equation (39) when RA2 = ∆mS. Figure 4a is only a graphical representation of the
EEC relationship for pure hydrocarbons.

The analysis of Figure 3c shows that the slope as the coefficient A2 is variable-sign and
is within the maximum range A2 ∈ [−94;124], so the product (RA2) for these hydrocarbons
is well over the range [21] ∆cp = 1.4− 39.8 J(mol*K)−1, average 16.04 J(mol*K)−1.

According to [21] for the analyzed hydrocarbons ∆cp is below 40 J*(mol*K)−1, pure
solvents have much higher heat capacity, tetralin cp = 217.5 J*(mol*K)−1 (T = 298.15 K) [48]
and decalin cp = 229.17 J*(mol*K)−1 (T = 298.15 K) [49].

The use of this analysis authorizes the formulation of a conclusion about equality such
that ∆cp is a substitute for entropy [50], but it is correct for averaged values from a given
population.
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Figure 4. EEC diagram for 12 polynuclear aromatics at melting temperature, data from [21]
(a) typical relation ∆mH vs. ∆mS, (b) different approach, slop determines average entropy,
∆mS = 53.7 J*(mol*K)−1, in accordance with [40].

In the considered system of the solubility of 12 hydrocarbons, it was established that
with a good approximation, the apparent compensation temperature and the enthalpy
are arithmetic means of melting temperatures and individual enthalpies. In particular,
Equation (40) captures this effect.

If average temperature melting is reduced to Tc then we get the average entropy
acc. Equation (40): ∆mS = ∆m H/Tc = 24,556.2/334.09 = 73.5 J*(mol*K)−1 (equation under
Figure 3c, ∆m H = R ∗ intercept) and for data [21] we obtain ∆mS = 53.61 J*(mol*K)−1 or
∆mS = 1

12 ∑ ∆m H
Tm

=53.43 J*(mol*K)−1. The average value from two intakes: for hydrocar-
bons in coke oven tar (as it is in this paper) ∆mS = 57 J*(mol*K)−1, and the resulting from
Trouton rule ∆S = 88 J*(mol*K)−1 [39,44].

According to analyses [27,39,44] for entropy of 12 selected hydrocarbons tested in [17]
∆mS = 44.25–64.87 J*(mol*K)−1, with the average value equal to 53.35 J*(mol*K)−1 (very
high agreement with [39]) and the dispersion of EEC relations Equations (5) and (40), it
is worth interpreting as anthropomorphic entropy properties [51] without penetrating its
components.

Summarizing these considerations, it can be stated that:

1. The thermodynamic aspect of Equation (15) leads to EEC as shown in Figure 1, and at
the same time the A&M equation is itself compensated by Equation (27).

2. For this reason, the imperfection of Equation (31) for decalin and to a lesser extent
for tetralin can be explained by deviations from thermodynamic values at melting
temperature.

3. It has been theoretically shown that approximating ∆cp with entropy is justified, but
it is the average value of the population, understood as a set of only hydrocarbons,
without a solvent.

4. Linear correlation of the coefficients at the functional terms in Equation (15), A1
vs. A2 determines the mean values of the enthalpy and entropy of the analyzed
systems. Equation (40) determines the compensation temperature, except that the
thermodynamic quantities refer to the mean values of the population, analogously to
Equation (5), which determines melting temperature.

Thus, Equation (15) is richer in thermodynamic aspects, but further steps should be
guided by the modification of the replacement of the activity by the mole fraction (x) and
the determination of the activity coefficients using measured quantities (in terms of T, x).

3.4. Forms of Activity Coefficients in This Paper

The analysis of the subject shows the activity coefficients play an essential role in the
analysis of the solubility processes. They were introduced to Equations (30), (31) and (33)
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and it makes sense to analyze whether they can be replaced in a different way, for example,
by basic measured quantities, for the considered solutions in relation x vs. T.

For real, regular solutions with thermodynamic characteristics: SE = 0, VE = 0,
Vm = 0, GE = HE the measures of deviations is the excess thermodynamic potential
expressed by:

GE = RT ∑ xi ln γi, (41)

The quantities in Equation (41) can be determined by experimental or computational
approximation, but the expression (γ2 = γ) should be extracted from this equation and
used in Equation (11), for example.

For sparingly soluble systems, it is necessary to know the Hildebrand solubility
parameters δ [36–38].

For binary solutions (x1 + x2 ≡ 1) excess free Gibbs energy is expressed by the
formula of Schatchard & Hildebrand (S-H) [42,45,52–55]:

GE = x1x2

(
Vo

1 Vo
2

x1Vo
1 + x2Vo

2

)
(δ1 − δ2)

2, (42)

or in extended version S-H, l12 6= 0 [42]:

GE = x1x2

(
Vo

1 Vo
2

x1Vo
1 + x2Vo

2

)
[
(

δ1 − δ2)
2 + 2l12δ1δ2

]
, (43)

By expressing the number of moles in the place of Equation (41) instead of the mole
fraction, we get [16,23]:

nGE = RT ∑i ni ln(γi), xi =
ni
n

, T, P = const. (44)

making it easier to express molar excess Gibbs i-th component:

RTln(γi) = GE + n(
∂GE

∂ni
)

T,P,nj

, ni 6= nj (45)

After returning to the molar fraction scale again and for the dissolved solid phase, i.e.,
for i = 2, we get:

RTln(γ2) = GE +
∂GE

∂x2
−
(

x1
∂GE

∂x1
+ x2

∂GE

∂x2

)
, T = const (46)

which can be recast as:

RTln(γ2) = GE + x1

(
∂GE

∂x2
− ∂GE

∂x1

)
, (47)

Using Equation (43) and determining partial derivatives (T = const) we get:

RTln(γ2) = Vo
2 Φ2

1[
(

δ1 − δ2)
2 + 2l12δ1δ2

]
, where Φ1 = x1

V1

x1V1 + x2V2
(48)

Assuming the simplest variant of a regular and simple solution, i.e., in Equations (42)
and (43) we assume Vo

1 = Vo
2 = Vo :

GE = B ∗ x1x2, where B = Vo[
(

δ1 − δ2)
2 + 2l12δ1δ2

]
(49)
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After using Equation (49) in Equation (47) and after determining the partial derivatives,
we obtain the sought relationship for x2 = x, γ2 = γ:

ln(γ) =
B
R
(1− x)2

T
, (50)

Relationship: ln(γ) vs. (1−x)2

T for the version without intercept, is a directly propor-
tional straight line with a slope (B/R).

Table A2 presents the analysis of Equation (50) for the 12 hydrocarbons analyzed. In
all the 24 cases ρ2 >0.999, except for naphthalene in tetralin (ρ2 >0.998), and this means
the activity coefficients do meet the criteria for regular and simple solutions.

From the comparison of the constant B (according to Equation [49]) for tetralin and
decalin it clearly indicates the excess potential is clearly higher for decalin, and carbazole is
a clear deviation in both solvents.

In the light of the analyzed material, by combining Equation (15) for Ao = 0 with
an additional term of Equation (51), we obtain an extensive form of the A&M equation.
The procedure reflected in the literature regarding adding additional members [46,47] was
described in detail in the case of carbazole in 32 non-electrolytes and in water [46].

ln(x) = A1

(
1
T
− 1

Tm

)
+ A2 ln

(
T

Tm

)
− C

(1− x)2

T
, where C 6= B

R
, (51)

Correlations of Equation (51) are shown in Table A3, in which the enthalpy is also given
at melting temperature. The data are usable as previously, from formula Equation (20).

In several cases, unreliable values are obtainable. We find this results from too much
dilution of the solution, which means that this effect occurs when: x = x2 � 0.5.

This is the case with anthracene and also acridine in tetralin and anthracene, acridine,
thioxanthene and dibenzothiophene in decalin.

Because for regular solutions, GE = HE , because SE = 0, therefore Equation (43) can
be represented in the form:

HE = x1x2

(
Vo

1 Vo
2

x1Vo
1 + x2Vo

2

)
[
(

δ1 − δ2)
2 + 2l12δ1δ2

]
, SE = 0, (52)

and determine the excess enthalpy relationship vs. x = x2.
By determining the constant B from Equation (49) with Equation (52) and inserting

into Equation (50) we get:

HE =
x

1− x
RTln(γ), (53)

from which it follows that the excess enthalpy depends on the composition of the
saturated solution and the known activity coefficient. For small values of x, the relationship
Equation (53) is linear with respect to x, because HE ∼= xRTln(γ), and for higher values it
is curvilinear.

The example is illustrated in Figure 5, which shows the solubility of anthracene in
tetralin for which Equation (53) does not give correct results and carbazole in decalin,
where the expected result compliance was observed.

The maximum value is per mole fraction x1 = x2 = 1
2 (x1 ∗ x2 = 1

4 ) according to the
data in Table A3 and Equation (49) for regular solutions GE = HE maximum enthalpy
changes are from HE = 0 to HE = 921.76*R/4 = 1.92 kJ*mol−1 (carbazole in decalin) so they
are endothermic and small in relation to ∆mH (∆m H � HE).

Attention was paid to the excess enthalpy of solutions. This size is not too large in
relation to ∆m H but it is variable and does not affect the essence of equations (coefficient
of determination, level of significance), but on the enthalpy values determined at melting
temperature.
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For this reason, HE can be omitted, but their basic nature is due to variability to a
varying degree depending on the value of the molar fraction of the substance dissolved at
a given temperature to the state of saturation. If we use Equation (51), it is necessary to de-
termine temperature curves with the maximum molar content of the dissolved component
x = x2 � 0.5.

Entropy 2023, 25, x FOR PEER REVIEW 12 of 22 
 

 

In several cases, unreliable values are obtainable. We find this results from too much 
dilution of the solution, which means that this effect occurs when:  𝑥 =  𝑥 ≪ 0.5. 

This is the case with anthracene and also acridine in tetralin and anthracene, acri-
dine, thioxanthene and dibenzothiophene in decalin. 

Because for regular solutions, 𝐺 =  𝐻  , because 𝑆 = 0, therefore Equation (43) 
can be represented in the form: 𝐻 =  𝑥 𝑥  [(𝛿 − 𝛿 ) +  2𝑙 𝛿 𝛿 ], 𝑆 = 0, (52) 

and determine the excess enthalpy relationship vs. 𝑥 =  𝑥 . 
By determining the constant B from Equation (49) with Equation (52) and inserting 

into Equation (50) we get: 𝐻 =  𝑅𝑇𝑙𝑛(𝛾), (53) 

from which it follows that the excess enthalpy depends on the composition of the 
saturated solution and the known activity coefficient. For small values of x, the relation-
ship Equation (53) is linear with respect to x, because 𝐻 ≅  𝑥𝑅𝑇𝑙𝑛(𝛾), and for higher 
values it is curvilinear. 

The example is illustrated in Figure 5, which shows the solubility of anthracene in 
tetralin for which Equation (53) does not give correct results and carbazole in decalin, 
where the expected result compliance was observed. 

  

Figure 5. Comparison of excess enthalpy 𝐻  relative to the mole fraction according to Equations 
(52) and (53): (a) anthracene in tetralin, high dilution, 𝑥 =  𝑥  ≤ 0.0433, for Equation (52): 𝑉 = 
136.9 cm3 mol−1, 𝛿  = 19.514 Jcm , 𝑉 = 158.1 cm3/mol, 𝛿  = 19.871 Jcm , 𝑙  = 5.871*10−3; 
(b) carbazole in decalin, for the Equation (52) 𝑉 = 155.5 cm3 mol−1, 𝛿  = 17.711 Jcm , 𝑉 =143.0 cm3 mol−1, 𝛿  = 23.452 Jcm , 𝑙  = 2.45*10−2, red lines concern Equation (53), points were 
calculated on the basis of Equation (52), the equations given in the graphs are approximations with 
respect to x2. 

The maximum value is per mole fraction 𝑥 = 𝑥  =  (𝑥 ∗ 𝑥  = ) according to the 
data in Table A3 and Equation (49) for regular solutions 𝐺 = 𝐻  maximum enthalpy 
changes are from 𝐻 = 0 to 𝐻  = 921.76*R/4 = 1.92 kJ*mol−1 (carbazole in decalin) so 
they are endothermic and small in relation to ∆ 𝐻 (∆ 𝐻 ≫  𝐻 ). 

Attention was paid to the excess enthalpy of solutions. This size is not too large in 
relation to ∆ 𝐻 but it is variable and does not affect the essence of equations (coefficient 
of determination, level of significance), but on the enthalpy values determined at melting 
temperature. 

For this reason, 𝐻   can be omitted, but their basic nature is due to variability to a 
varying degree depending on the value of the molar fraction of the substance dissolved at 

HE = 705,46·x2
ρ² = 0,999

0

5

10

15

20

25

30

35

40

0.00 0.01 0.02 0.03 0.04 0.05 0.06

HE
, J

·m
ol

-1

x2

a)

HE = -7571,8·x2
2 + 7885.2·x2

ρ² = 0,9999

0

500

1 000

1 500

2 000

2 500

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
E , 

J·
m

ol
-1

x2

b)

Figure 5. Comparison of excess enthalpy HE relative to the mole fraction according to
Equations (52) and (53): (a) anthracene in tetralin, high dilution, x = x2 ≤ 0.0433, for Equation (52):
Vo

1 = 136.9 cm3 mol−1, δ1 = 19.514
√

Jcm−3, Vo
2 = 158.1 cm3/mol, δ2 = 19.871

√
Jcm−3,

l12 = 5.871*10−3; (b) carbazole in decalin, for the Equation (52) Vo
1 = 155.5 cm3 mol−1,

δ1 = 17.711
√

Jcm−3, Vo
2 = 143.0 cm3 mol−1, δ2 = 23.452

√
Jcm−3, l12 = 2.45*10−2, red lines con-

cern Equation (53), points were calculated on the basis of Equation (52), the equations given in the
graphs are approximations with respect to x2.

4. Discussion

Pan et al. [56] according to Krug [57] . . . “The compensation temperature is the
temperature at which enthalpy variations precisely cancel entropy variations such that the
rate or equilibrium constants are completely invariant.” In the case of research on solubility,
a problem arises inspired by Freed [58], in which form a van ’t Hoff plot can be employed
using the derived thermodynamic forms.

The statement about the equilibrium constant’s relative to the temperature of compen-
sation requires commentary.

According to Equation (26), the role of such temperature for individual chemical
compounds is fulfilled by Tm and according to Equation (25), ∆G ≡ 0. Therefore, it remains
to consider the relationship of this temperature with the compensation temperature Tc.

Let’s assume that in Equation (3) we determine Gibbs free energy at the temperature
Tc and substitute the EEC linear relationship defined by Starikov [51,59]:

∆H = Tc ∆S + Const, (54)

We obtain
∆G(Tc) = (Tc ∆S + Const)− Tc ∆S, (55)

and in the absence of an intercept in Equations (54) and (55)

∆G(Tc) = Const or 0, (56)

which means that the intercept in Equation (54) is an enthalpy that can be exchanged
because it has an energy dimension, i.e., it is Gibbs free energy at Tc.

The common point allows us to write:

∆G(Tc) = ∆mH1 − Tc∆mS1 = ∆m H2 − Tc∆mS2 = · · · , (57)
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and after summing and using Equation (40) we get the result according to Equation (56):

∆G(Tc) = ∆m H − Tc∆mS, (58)

Thus, it has been shown that EEC appears as an approach to the problem directly
when we use the A&M equation for an individual chemical compound-solvent system,
while in the general population common point is at melting temperature.

Grant et al. state that the non-linearity of van ’t Hoff’s isobar (ln(x) ∝ 1/T) requires
the use of three-parameter equations [60] that are also consistent with the chemical processes
of thermal dissociation of the solid phase [61].

The question remains, however, to what extent model Equations (6) or (8) enable the
determination of entropy. This is important because there are works proposing such a
methodology.

Krug et al. propose the method described in [62], readily used for various systems in
further works, including [12,30,40,50,63,64].

For the assumption γ = 1, a = x reasoning can be presented as a system of successive
equations:

[
∂ ln(x)

∂
(

1
T −

1
Th

) ]
P

= −∆H
R

, (59)

∆G = −RTh ∗ intercept (60)

∆S =
∆H − ∆G

Th
(61)

where Th is the mean harmonic temperature, the intercept in Equation (60) is shaped in
the system of functional scales ln(x) vs. ( 1

T −
1

Th
), and Equation (61) is a special notation of

Equation (3). Formally, thermodynamic functions relate to the temperature indicated by
the index, but are constant in the considered temperature range.

By writing down Equation (59) for the experimental data and the “intercept” compo-
nents resulting from the least squares method, we get:

ln(x) = −∆H
R

(
1
T
− 1

Th

)
+ [

∑ ln(x)
N

−
(
−∆H

R

)
∗

∑
(

1
T −

1
Th

)
N

], (62)

The last term in square brackets in Equation (62) is close to 0 (10−7–10−8), so the final
form is as follows:

ln(x) = −∆H
R

(
1
T
− 1

Th

)
+

ln ∏ x
N

(63)

Thus, Equation (61) is in a form with a mathematical structure typical of entropy:

∆S =
∆H
Th

+ Rln(x), where ln(x)=
ln ∏ x

N
(64)

It can be shown the identical form to that in Equation (64) can be obtained when we
assume Equations (6) or (8), i.e., as: intercept = ∆S

R . This directly means that the intercept
in these equations contains the desired entropy. For ease of use, in Equation (6) on the
right we will extract the entropy in front of the expression and use Equation (5) to get
Equation (13) for the activity version.

Using both Equations (6), (8) and (64) for both cases, the determined data are shown
in Figure 6.
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Figure 6. EEC according to the van ’t Hoff equation with the coordinate [ 1
Tm

; 0] and with the deter-
mined entropy for Equation (63) in form Equation (59), Equation (64) and (a) for Equation (8) and
γ = 1, a = x, (b) for Equation (6) and activity (a). Blue colors refers to carbazole and anthracene in
both solvents.

Figure 6 shows the formation of EEC for the population, with carbazoles and an-
thracene being distinct in both solvents. The evidence supporting such an effect was
adopted as the criterion for determining the melting temperature according to Equation (5).
The obtained data were grouped according to solvents—for tetralin, only cases deviat-
ing from the difference between temperatures ±1 K were shown, while for decalin, only
positive ones according to the same findings (Table A4).

The A&M equation was used instead of Equation (11) for the considerations cited here
to expose the dimensionless simplex relations (T/Tm) as an argument to the written-out
function Equation (1). In particular, the coordinate [ 1

Tm
; 0] is of great importance.

The A&M equation as Equations (15) and (31), together with Equations (20) and (21) as
autonomously correlating thermodynamic functions through EEC, have an advantage over
the approach Equation (6), but it is extremely important to respond to the need-to-know
activity.

It is known that the simplest method of experimental determination of activity coeffi-
cients is the assumption of specific values of thermodynamic functions, such as ∆mH, or
∆mS and ∆cP and the use of Equation (11). Development of methods for determining these
coefficients using UNIQUAC, UNIFAC or ASOG methods where only solubility curves
ln(x) vs. temperature and the necessary physicochemical constants enrich the knowledge
of thermodynamic properties of the tested systems. However, the question arises whether
the reverse direction will allow us to determine selected thermodynamic functions. While
the problem of determining basic thermodynamic functions is well-recognized, ignoring
the coefficients of activity, it is interesting to connect the basics, captured by various forms
of equations, with the part enabling the use of activity coefficients. Unprecedented forms
of equations have been proposed due to the lack of knowledge of these coefficients, e.g.,
Equations (30), (31) or (33). As the example (Figure 5) shows, the analyzed regular solutions
are not simple because Vo

1 6= Vo
2 , but this fact does not affect the quality of the correlation.

To obtain the correct enthalpy values ∆mH for analysis, use data on the largest possible
share of dissolved solid phase, at least above the molar fraction > 0.5.

Equation (53) is restricted by right boundary conditions Equation (4) when T → Tm.
This is due to the fact that for solutions that are too diluted, the activity coefficients

are the highest, exceeding the frequently adopted value y = 1.
One more detail should be noted. In the analysis of the physical dissolution process,

the priority importance of enthalpy over entropy is emphasized, which is expressed here
by Equation (5). In contrast, Starikov et al. define the acronym EEC as Entropy-Enthalpy-
Compensation [59,65–67], ascribing entropy to the source of this effect.
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5. Conclusions

1. On the example of the thermodynamic analysis of the Apelblat & Manzurola equation,
included in the Equations (15) and (28)–(33), it has been shown that expressing the
absolute temperature through bifunctional ( 1

T , lnT) members is an alternative to the
simultaneous determination of enthalpy and entropy. The ratio of this determines
the melting temperature, in accordance with Equation (5), as Tm = ∆m H/∆mS =
∆H/∆S = const, where the thermodynamic functions are temperature dependent
(Figure 1). Thus, it has been shown that the structure of the A&M equation is itself
thermodynamically compensated by EEC. Combined use of bifunctional functional
members with respect to temperature is thermodynamically justified and brings new
information in this regard.

2. It has been shown that the simplest Equations (6) or (8) also allow for the simultaneous
determination of enthalpy and entropy. Details of the transformation are included
in Equations (59)–(64) but these quantities do not always come down to melting
temperature in isoequilibrium state according to (Tm).

3. It has been shown that approximation ∆cP by entropy is justified, but it is an average
value from the population, understood as a set of hydrocarbons (without solvent).
Linear correlation of coefficients with functional terms in Equation (15), A1 vs. A2
determines the average values of enthalpy and entropy of the analyzed systems
(Figure 3c).

4. Saturated solutions of 12 polynuclear aromatic hydrocarbons, including those con-
taining heteroatoms (N, S, O) in tetralin and decalin, have been described with A&M
Equation (15). The end of the dissolution process is recognized by melting point
temperature, i.e., for pure solute (without solvent) x = xsat

2 ≡ 1. Equations (28)–(31)
contain three or two factors and the dependent variable is in the form of concen-
trations or activities. A very good linear correlation was found for the equation
coefficients Equation (15) at the functional members, expressed by Equation (37).
In this way, Equation (40) defines the thermodynamic aspect of the compensation
temperature—analogically acc. to Equation (5). It is the ratio of average enthalpy
to entropy values in the analyzed population, for the considered population of
12 hydrocarbons in two solvents. As shown in Tables A1–A3 and these calcula-
tions, the total numerical variability of molar enthalpy is 16.5–29.4 kJ*mol−1 (in [21]:
16.8–28.6 kJ*mol−1). The discussion presented for these equations indicates high
compatibility of molar enthalpy with literature data [14,17,23].

5. It has been proposed to extend the Apelblat & Manzurola equation in the form of
Equation (51) after eliminating intercept and inserting in its place a characteristic
segment for the coefficient of activity for regular and simple solutions Equation (50).
Since in several cases unbelievable values were obtained, it was found that this is the
result of too much dilution of the solution (Figure 5), which practically means that
this effect occurs when: x = xsat

2 � 0.5. It should be noted that there are no ideal
conditions for this premise (Vo

1 6= Vo
2 ) but this fact does not affect the quality of the

correlation.
6. On the basis of simplified forms for regular and simple solutions, a significant problem

is the variability in binary solutions of excess Gibbs free energy depending on the
molar fraction of the solute. This applies to the acceptance of the adoption of such
solutions, which are correct in the notation Equation (49), i.e., considerations based on
the simplest approach in the Hildebrand theory.

Computational Techniques

Calculations were carried out in the MS Excel using the REGLINP function taking
accordingly determinations coefficient: r2—two-parameter linear correlation, R2—multiple
correlation, ρ2—correlation (linear, multiple) without intercept. At the same time, in the
correlation calculations, the coordinate was added [ 1

Tm
; ln(a) = 0] or [ 1

Tm
; ln(x) = 0].
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Symbols
a activity [-],
Ao, A1, A2, B, C coefficients in Equations (15) and (49)–(51), A1 and C in K, B in J*mol−1,
∆ cp, cp difference between its solid and liquid heat capacities—and heat capacities,

J*(mol*K)−1,
∆ G, GE molar Gibbs free energy and excess Gibbs free energy, J*mol−1,
∆ H, HE molar enthalpy and excess enthalpy, J*mol−1,
l12 extended regular solution model binary parameter in S-H Equation (43) [-],
n number of moles,
N amount of data,
P pressure, Pa,
R 8.315 J*(mol*K)−1, absolute gas constant,
R2, r2 andρ2 determinations coefficient of multiple, linear or without intercept [-],
∆ S, SE molar entropy and excess entropy, J*(mol*K)−1,
T absolute temperature, K,
V volume, cm3 mol−1,
Vm mixing volume, cm3 mol−1,
x solute mol fraction [-],
β, βo constant in Equation (34), K and in Equation (26), Jmol−1,
γ activity coefficient [-],
λ constant in Equation (16) [-],
δ solubility parameter,

√
Jcm−3,

Subscripts
1—solvent, 2—solute, c—compensation, h—harmonic mean, m—melting point, i-th component,
j-th component, i 6= j.

Superscripts
α, β—phase, o—pure component, sat—saturation, ∅—standard condition, —-average.
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Appendix A

Table A1. The process enthalpy comparison at temperature Tm for 6 equations.

Compound ∆mH, kJ*mol−1

Tetralin Decalin (Mix Cis and Trans)

Equation
(28)

Equation
(29)

Equation
(30)

Equation
(31)

Equation
(32)

Equation
(33)

Equation
(28)

Equation
(29)

Equation
(30)

Equation
(31)

Equation
(32)

Equation
(33)

Biphenyl 16.75–16.80 [18,21,27] 21.20 19.43 19.84 18.94 18.94 17.70 29.74 18.28 20.11 19.81 31.31 17.72
Fluorene 19.60 [21,27] 23.59 20.81 21.56 19.90 21.00 20.88 33.81 24.85 14.79 16.07 21.00 19.38

Phenanthrene 16.50 [21,27] 17.03 17.87 14.65 16.97 19.66 16.80 44.4 19.28 13.73 13.28 36.54 16.62
Acenaphthene 21.50 [21,27] 23.59 22.08 22.41 21.51 22.33 21.11 31.35 25.62 18.22 19.11 30.39 21.15
Naphthalene 18.24–18.98 [21,27] 18.13 19.13 16.41 18.88 19.60 18.20 27.27 22.49 14.79 17.03 27.93 18.11
Dibenzofuran 18.60 [18,21] 19.33 19.01 18.13 18.58 20.95 18.43 28.43 16.37 19.07 16.05 20.10 18.24

Dibenzothiophene 21.00–21.60 [18,21,27] 27.77 24.18 21.95 21.87 23.03 20.13 61.42 34.47 20.70 20.04 38.25 20.08
Thioxanthene 26.10 [18,21] 29.27 28.97 24.87 26.49 26.55 25.23 56.71 44.93 32.62 24.13 34.83 25.36

Xanthene 19.20 [18,21] 32.45 23.45 27.29 21.58 20.76 18.72 26.59 25.62 2.95 15.66 37.58 18.60
Carbazole 27.20 [18,21] 107.95 68.27 61.47 34.94 43.92 26.70 56.62 55.84 8.22 8.86 48.28 56.19
Acridine 19.70 [18,21] 32.65 24.91 21.39 20.17 22.87 18.27 101.26 50.29 23.68 8.70 46.60 17.25

Anthracene 28.60–29.40 [18,21,27] 20.13 33.69 17.65 30.34 26.20 28.03 41.27 48.43 28.92 27.62 28.53 28.16

Red—Equation for variable ln(x*γ). Green—Acceptance.
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Table A2. Estimation coefficients of Equation (50), ln(γ) = B
R
(1−x)2

T .

Compound
Tetralin Decalin (Mix Cis and Trans)

B
R ±Stand. Error ρ2 B

R ±Stand. Error ρ2

Biphenyl 67.273 0.404 0.99982 265.74 1.164 0.99992
Fluorene 52.060 0.456 0.999539 293.355 0.965 0.99995

Phenantrene 90.942 1.023 0.99999 351.706 0.128 1.000
Acetnaphtene 39.024 0.175 0.99990 209.313 1.841 0.99961
Naphthalene 62.601 0.537 0.99971 233.473 3.938 0.99830

Dibenzofurene 82.111 0.302 0.99995 289.377 1.401 0.99991
Dibenzotiophene 115.099 1.225 0.99955 380.684 3.782 0.99951
Thioxanthene 74.174 0.726 0.99952 356.456 0.137 1.000

Xanthene 106.751 1.073 0.99950 367.627 1.234 0.99994
Carbazole 708.621 2.776 0.99995 921.758 2.422 0.99992
Acridine 183.991 1.689 0.99958 660.202 1.003 0.99999

Anthracene 88.299 0.154 0.99999 428.099 0.095 1.000

Table A3. Estimating coefficients of Equation (51).

Compound ∆mH, kJ*mol−1
Tetralin Decalin (Mix Cis and Trans)

∆mH, kJ*mol−1 ρ2 ∆mH, kJ*mol−1 ρ2

Biphenyl 16.75–16.80 18.12 1.000 16.61 0.99998
Fluorene 19.60 17.82 0.99998 17.35 0.99993

Phenantrene 16.50 18.49 1.000 13.04 0.99999
Acetnaphtene 21.50 20.59 0.99999 20.34 0.99993
Naphthalene 18.24–18.98 19.20 0.99997 19.34 0.99994

Dibenzofurene 18.60 16.92 0.99994 16.94 0.99999
Dibenzotiophene 21.00–21.60 20.68 0.99999 16.75 * 0.99999

Thioxanthene 26.10 27.33 0.99999 −10.44 * 0.99999
Xanthene 19.20 17.48 0.99691 22.51 0.99987
Carbazole 27.20 26.12 0.99691 28.19 0.998832
Acridine 19.70 13.78 * 0.99997 −3.58 * 0.99930

Anthracene 28.60–29.40 −7.53 * 1.000 31.64 * 0.99999

* Not acceptable because x = x2 << 0.5.

Table A4. Determined melting temperature considered as deviating from the real values for
tetralin (-), and for decalin as correct (+) according to the criterion of temperature difference ± 1 K
(T = tetralin, D = decalin).

Compound Tm, K Tm acc. ln(a), K Tm acc. ln(x), K Solvent T or D

xantene 373.7 376.1 374.8 T (-)
carbazole 519.2 - 523.8 T (-)

anthracene 489.5 491.4 492.4 T (-)
biphenyl 342.6 342.0 - D (+)

dibenzofurene 355.7 355.4 354.7 D (+)
dibenzotiophene 371.4 371.3 370.4 D (+)

acridine 384.2 - 384.2 D (+)
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