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Abstract: To derive a latent trait (for instance ability) in a computer adaptive testing (CAT) framework,
the obtained results from a model must have a direct relationship to the examinees’ response to a
set of items presented. The set of items is previously calibrated to decide which item to present
to the examinee in the next evaluation question. Some useful models are more naturally based on
conditional probability in order to involve previously obtained hits/misses. In this paper, we integrate
an experimental part, obtaining the information related to the examinee’s academic performance,
with a theoretical contribution of maximum entropy. Some academic performance index functions
are built to support the experimental part and then explain under what conditions one can use
constrained prior distributions. Additionally, we highlight that heuristic prior distributions might not
properly work in all likely cases, and when to use personalized prior distributions instead. Finally, the
inclusion of the performance index functions, arising from current experimental studies and historical
records, are integrated into a theoretical part based on entropy maximization and its relationship
with a CAT process.

Keywords: entropy; CAT; Kullback–Leibler divergence; likelihood function; maximum a posteriori;
expectation a posteriori; Bayesian inference; performance index function; item response theory; item
characteristic curve

1. Introduction

When one wants to explain some relationship between latent traits of individuals,
for instance, unobservable characteristics or attributes and their manifestations (observed
outcomes, responses, or performance), then item response theory (IRT) becomes a valu-
able formal tool. IRT is a family of models to analyze and predict the behavior of the
involved variables, and their applications cover different assessment scenarios. Item ex-
posure control, item calibration, and automatic item generation are only some examples
of these scenarios and the involved variables. From a theoretical point of view, there are
several well-known models to analyze these topics and potentially helpful tools to propose
novelty solutions [1–5]. These models consider a set of items to define a measurement
instrument. One set of parameters specifies the item’s characteristics that depend on the
particular application. The results of the application of the measurement instrument pro-
vide information about the examinee’s latent trait. IRT assumes that the latent construct
values (e.g., stress, knowledge, attitudes values) and some items’ parameter values are
organized in an unobservable continuum as random variables. Thus, IRT helps to establish
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the position or value of the examinee’s latent trait on that continuum by considering the
items’ characteristics and the quality of responses to them [6,7].

Items with different presentation and answer formats, examinees, and examiners are
just a part of the assessment scenario. Particularly, computer adaptive testing (CAT) is an
area where the application of IRT is highly useful to automatize performance assessments.

In general, IRT and its application to CAT assume the existence of a pool of items that
by construction has finite cardinality. The CAT process supposes that, through experimen-
tation, the pool contains calibrated items (calibrated items pool or CIP), i.e., a previous
experiment provides information about the values of the items’ parameters that define its
corresponding characteristics.

The item calibration process entails a statistical analysis of the responses arising from
a set of test subjects, and the fitting of the experimental data to a sigmoidal cumulative
distribution function (CDF) model assigned to every item. This procedure defines the
corresponding item’s parameters and, therefore, the item characteristic curve (ICC) which
depends on the latent trait as ability. The parameters of an ICC have an interpretation
in terms of the item’s difficulty and the item’s discrimination capability, among others,
and they influence the determination of the value of the latent trait under analysis. There are
some well-known ICC models, such as 1PL, 2PL, and 3PL, although one can find 4PL and
5PL models, too. Naturally, 1PL (one-parameter logistic model) and 2PL (two-parameter
logistic model) are the simplest models since their parameters have a direct interpretation
and their relationships with the process of searching for the latent trait are clear.

Equation (1) defines the general structure for the 2PL model and gives the conditional
probability of correctly answering an item with known difficulty and discriminant:

P(θ|µ, α) =
1

1 + e−α(θ−µ)
, (1)

where the parameters µ and α represent, respectively, the item’s difficulty and the item’s
discriminant, and θ refers to the examinee’s ability.

An examinee participating in a CAT has to pass through three steps.

1. Assignment of an initial estimate of the examinee’s ability or the item’s difficulty, since
the system needs to know the characteristics of the first item in the evaluation process.

2. The system saves the examinee’s response, decides if the examinee gave a correct
answer or not, and builds the response pattern for this specific testing process.

3. The system considers the response pattern and the selected latent trait model to build
a likelihood function, intending to decide what proper item (calibrated) must come
next. There are several methods to do this, and here we apply the definition of the
prior distribution. After deciding what item comes next, the CAT procedure poses
this item to the examinee, and the testing returns to the second step again. Our main
contribution aims to solve some problems in this step.

A reliable estimate of the next question to be presented, for instance, through the con-
cept of the maximum likelihood function, requires at least two responses to the presented
items in the evaluation process. One of the items needs to have a right answer, and the
other an incorrect one. Only in this case, the likelihood function will have an extreme point
in the set of values of abilities and, therefore, a maximum value at this point.

Note that in the event that all the answers obtained were correct (or incorrect), the like-
lihood function is just a sigmoid (the ICC of the items) that does not have extreme points
in the domain of the examinee’s ability. Because of this reason, it becomes impossible to
compute the next estimation of the examinee’s ability.

To overcome the difficulty of estimating the next examinee’s ability by just using the
likelihood function, some authors have proposed different options:

1. The use of two fictitious items with high and low probabilities to ensure that the
examinee answers alternatively correctly and incorrectly to the items.
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2. The use of heuristic formulas to estimate the examinee’s latent trait until a maximum
likelihood makes it possible to estimate the value.

3. To define prior distributions until one can apply a likelihood function to estimate
the examinee’s ability. This proposal relates directly to the statement of the research
problem in this paper.

The first option has the inconvenience that the estimated latent trait value after apply-
ing the first non-fictitious item reaches very extreme values, and the second non-fictitious
item of the CAT process provides more information for that extreme value of ability. Thus,
the second non-fictitious item becomes less informative for the final ability value and it
does not contribute considerably to the test precision [8,9].

The second option has the inconvenience that in some circumstances the CAT process
does not converge, although when the increment (or decrement) of the latent trait value is
variable this phenomenon does not occur [8,9].

Finally, the third option has several inconveniences:

(i) A general use of prior information in educational assessment appears to be inhib-
ited solely by the assumption that including a priori information on test scores in
performance assessment may be unfair to students [10].

(ii) Assuming that regular evaluation practices include information provided by the exam-
inee (regarding past experiences) or collected from multiple sources in the assessment
procedure without specifying the type of the sources [10].

Additionally, there is not much information about the potential risks when prior
information is not perfectly accurate. Overconfidence in inaccurate prior information may
in fact increase test length and/or lead to severely biased final latent trait estimates. In this
event, then the system could, for example, select an incorrect starting point or introduce
bias in the trait estimation process, and provide items that do not match the participant’s
trait level [10]. On the other hand, the level trait does not depend solely on the examinee’s
performance but on the values of mean and variance that one assigns to the trait’s prior
distribution in the population [8].

From a theoretical point of view, depending on the established a priori distribution,
one can obtain a multimodal posterior so that the Bayesian MAP estimation might refer to
a local maximum [8].

Finally, in some cases, the Bayesian procedures provide estimation with a specific
regression toward the mean of the prior distribution of the latent trait. This phenomenon
can favor examinees with low levels and affect examinees with high ability [8].

There are several advantages and drawbacks of introducing information before starting
an adaptable evaluation process. The usual way of building prior distributions lends itself
to subjectivities, even though the benefits in the administration of the evaluation are
undoubted [11,12]. However, the subjectivity inherent in the prior distribution can be
minimized as long as reasonable evidence supports the distribution proposal [11].

In this work, we address the role that the entropy can play in the reduction of this sub-
jectivity in the construction of the prior distribution by using a set of proposed constraints
related to entropy. Any distribution must satisfy these constraints that consider, for instance,
its first and second moments and the academic framework such as, for example, school
dropout and failure, among others.

1.1. Problem Statement

The use of Bayesian statistical inference in the CAT process is delicate and has to
justify the application of essential components such as the prior distribution [13]. Differ-
ent theoretical and experimental techniques exist to determine the prior distribution to
initialize the CAT process. Some authors suggest that physical, mathematical, engineering,
expert opinion models, historical data under similar circumstances, or other reasonable
information can support the prior proposal [13]. Thus, we formally introduce the models
related to academic performance, for example, the failure rate, the dropout rate, the study
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habits index, and the subject comprehension index, among others, to further specify the
structure of the prior distribution by using the concept of entropy.

1.1.1. Preliminaries

The estimation of the ability of a test subject presents problems at the beginning of
the evaluation process when using the maximum likelihood method and when the exami-
nee responds correctly or incorrectly to all the test items. Several proposals solving this
problem have been published and there are some options based on Bayesian inference [14].
In particular, the MAP or EAP techniques use the concept of the prior distribution, with the
drawback that the definition of the structure of this distribution can lead to subjectivities.

1.1.2. Originality

Within the given context, there is not enough information about the best prior distribu-
tion to be selected. Due to the Bayesian nature, MAP or EAP techniques require previous
knowledge of the prior distribution, which contains initial statistical information about the
ability of the examined subject.

One typically uses a normal distribution [15–17], but there is no evidence that this is
necessarily correct since there is no reliable way to support the decision to opt for one prior
type of distribution over another. The initial choice of the a priori distribution is paramount
since it directly affects the calculation of the skill estimate and other parameters.

Furthermore, the structure of the psychometric model supporting the Bayesian infer-
ence process must be considered. An adequate structure selection provides an appropriate
interpretation of each item’s characteristics, predicts the consequences of using a psycho-
metric model with the selected characteristics, and ensures the relationship between these
options and the multimodality and bias characteristics in the a posteriori distribution that
finally helps to estimate the corresponding latent trait [18–21].

1.1.3. Impact

In order to solve the former problems, one must then propose the form of the prior
distribution through formal criteria to select good prior distributions. Some authors define
some non-formal criteria and give quite illustrative examples of how the selection of a priori
distribution affects the posterior distribution [22,23]. However, this research paper works
mainly with the concept of entropy and, in a first instance, with the definition proposed by
Shannon [24].

1.2. Article Structure

The paper is organized as follows: Section 2 focuses on a short hypothesis or conjecture
statement and the paper’s objectives. Section 3 contains a brief discussion about some
works on the importance of the prior distribution and the most common assumptions that
the researchers make on its structure. This part also discusses the role that entropy could
play in determining the a priori distribution and the previous work in this regard, but not
within the framework of a CAT.

Section 4 briefly describes the differences between the 1PL and 2PL latent trait models
and explains the meanings of the difficulty and discriminant parameters. Through these
models and definitions, the concepts of maximization a posteriori, or MAP, and expectation
a posteriori, or EAP, and their relationships with the prior distribution are introduced.

In addition, one recalls Shannon’s concept of entropy and states the ansatz (assump-
tions about the form of an unknown function, made to facilitate the solution of a problem)
that give rise to the proposed method for estimating the prior distribution. Section 5
illustrates our numerical experimentation results, and provides and discusses the findings
about the structures of the a priori distributions obtained through the proposed method.
Finally, Section 6 synthesizes the results from numerical experiments and remarks some
comments about the future work within the topic of the paper.
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2. Hypothesis or Conjecture Statement

The specification of the prior distribution is a problem that does not have a straight-
forward solution in a CAT process. Part of this is due to the lack of formal procedures to
get an analytical form of the distribution since there is no standard procedure on how the
required information, to start the CAT process, can be integrated into a methodology to get
an approximation to the model defining acceptable prior distributions.

2.1. Hypothesis Statement

If there is no formal procedure to determine prior distributions to initialize the CAT
process, and Shannon’s entropy plays the role of the objective function depending on
the a priori information distribution, which is subject to constraints of normality, mean
values, and variance of the ability, in addition to the satisfaction of academic performance
constraints considering failure, study habits, subject comprehension, and dropout rates
of the course of interest, among others, then the formal finding of a prior distribution to
initialize a CAT process is possible.

2.2. Objectives

Our general objective is to build informative prior distribution functions by con-
sidering the maximization of Shannon’s entropy as a cost function that depends on the
distribution of a priori information, subject to normality, mean, variance, and academic
performance constraints, to obtain formal prior distribution expressions. The specific
objectives are the following:

1. To propose an ansatz about the school performance of the examinees, considering
that they must be random functions depending on the random variable defined by
the latent trait θ and some specific parameters, through the analysis of qualitative
results obtained by various authors and, with these results, subsequently introduce
distribution constraints based on the proposed assumptions.

2. To build an objective function to maximize entropy by considering the definition of
entropy and the proposed ansatz in objective 1, and to obtain a methodology building
and applying prior distributions in the CAT process.

3. To obtain experimental results numerically by simulating the behavior of the CAT
process, to later make comparisons of the advantages and disadvantages of different
scenarios that use prior distribution estimations.

3. State of the Art

The determination of the a priori distribution is experimental or through consultation
with experts. However, regarding the role that entropy can play in searching for an adequate
prior distribution, one can find a few research works on the topic. In this sense, to know
how the a priori distribution behaves, one needs prior knowledge of the properties that
it may have (the normality of the distribution is the simplest example of this knowledge,
but there may be some other properties that are possible to know beforehand) [25,26].

The concept of prior distribution plays a fundamental role in Bayesian inference, so
experimental determination of how to obtain these distributions and what theoretical
methods should be to get something similar are paramount. To build a prior distribution, it
is first necessary to specify representative random variables. In this sense, there are several
possibilities that this paper introduces.

In the first instance, one assumes that the prior distributions must be related to the
parameters of the selected psychometric model and the examinee’s latent trait variable to
evaluate as proposed in [27–30] through the experimental construction of the corresponding
prior distributions.

Additionally, one can consult experts in the knowledge domain to evaluate in order
to obtain an opinion about the form or structure that the a priori distribution should
have [28,30].
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Despite not being connected to CAT systems, one can find in the literature some
theoretical attempts to determine the structure of the prior distribution using the concept
of entropy [26]. In addition to possibly getting the expert’s opinion, no known procedure
integrates the results of the experimental process which, with a theoretical basis, can specify
the characteristics or conditions under which one can obtain adequate prior distributions;
that is, leading to unbiased posterior distributions, without multimodality, and to reliable
latent trait estimates [18–21].

From a theoretical point of view, some contributions have dealt with the topic of
informative and non-informative prior distributions, and they apply these definitions as
academic examples to show the effects that the a priori distribution has over the a posteriori
distribution [31].

In practice, heuristic distribution applications are analyzed when they are not sup-
ported by experimental data. In fact, some authors state that the practical consequences of
using a prior distribution can depend on data. A heuristic distribution, such as the uniform
or the normal with zero mean and unitary variance, can lead to nonsense inferences even
when it has a large sample size. Currently, the study of prior distributions becomes relevant
to analyze problems inside the frontiers of applied statistics [32,33].

In this sense, our paper integrates the experimental part of obtaining information
related to the examinee’s academic performance into the theory of maximum entropy.
The structure of the academic performance index functions supports this experimental part,
which, as an additional result, explains under what conditions one can use heuristics priors.
Additionally, the paper remarks that the heuristic prior distributions could not properly
work in all the cases and that one must consider personalized prior distributions instead.
Finally, the inclusion of the performance index functions, arising from current experimental
studies and historical records, are integrated into a theoretical part based on the entropy
maximization and its relationship with a CAT process.

4. Modeling Initialization of the Evaluation Process

Geometrically, the characteristic curve of an item with difficulty µ1 differs from another
associated with an item with difficulty µ2 by a simple shift to the left or right on the domain
of the ICC, which is given by the latent trait values, depending on whether µ1 < µ2 or
µ2 < µ1, respectively, as shown in Figure 1. On the other hand, the 2PL latent trait model
has a correspondence rule given by Equation (1), where the parameter α represents the
discriminatory capacity of the item; that is, how well it differentiates between examinees
who have a latent trait greater than difficulty µ and those who have an ability less than µ.
In this case, the graphs of two items differ not only by the displacement produced by the
difficulty parameter µ but also by the function’s increasing rate, which is proportional to
the parameter α (see Figure 1).

After the CAT system poses the first item to the examinee and obtains the answer, then
the next step selects a second item within the CIP with characteristics depending on whether
the answer is correct or incorrect. After answering the second item, the system selects
the third item depending on the answers given to the first two items, whose response’s
configurations are in the following set:

{(correct, correct), (correct, incorrect), (incorrect, correct), (incorrect, incorrect)},

and so on until the evaluation process of an examinee ends.
When an examinee has answered n items, the number of configurations of n Bernoulli-

like trials that are elements in the derived set is 2n. In each case, a sui generis trajectory leads
to the estimated value of the latent trait θ associated with the specific examinee. Naturally,
in this case, the items are dichotomous.
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µ1 µ2
0

1

latent trait θ/logits

P
(θ
|µ

,α
)

P(θ|µ1, α = 1)
P(θ|µ1 + ∆µ, α = 1)

P(θ|µ1, α + ∆α)

Figure 1. Effect of the difficulty value µ and the discriminant value α of an ICC in the case of the 1PL
and 2PL latent trait models.

One of the main characteristics of a CAT is that the test should have the smallest
possible number of items and still estimate the value of the specific ability, i.e., the selection
of the n items in a particular sequence is not arbitrary. Given the response sequence for the
first n− 1 items, it is possible to estimate the (n− 1)-th value of the latent trait θ, which
has the symbolic representation θn−1.

By knowing this estimate of the latent trait at iteration (n− 1)-th, the CIP provides the
next most informative item [8,34,35]. Fortunately, the Fisher’s information index gives a
criterion to select the most informative one (see Equation (2)),

I(θ) =

(
d
dθ P(θ|~p)

)2

P(θ|~p)Q(θ|~p) , (2)

where ~p is the vector of parameters defining the structure of the latent trait model corre-
spondence rule and Q(θ|~p) = 1− P(θ|~p). For the 1PL and 2PL models, I(θ) is given by
Equations (3) and (4), respectively.

I(θ) = P(θ|µ)Q(θ|µ), (3)

I(θ) = αP(θ|µ, α)Q(θ|µ, α). (4)

Under the condition of independence and identical distribution of the items in the CIP,
it is possible to build a likelihood function with the first (n− 1) ICCs that the CAT system
has applied up to the current answered items. In the best case, this likelihood function will
have extreme points in the domain given by the latent feature values, implying that the
likelihood function has at least one maximum [20,36].

However, the worst-case scenario is that all the first (n− 1) items have a correct answer
or all have a wrong answer. If one of these situations occurs, then building a likelihood
function with a maximum, at least, is impossible. How does one determine the estimate of
the latent trait value, in this case, to continue with the adaptive testing process?

There are several solution proposals to this problem, but a natural one [37] involves
statistical information before the start of the evaluation process by using a Bayesian pro-
cedure. The idea is to use a prior distribution with which it is possible to use Bayesian
argumentation to obtain estimates of the latent trait. Algorithm 1 provides a simple outline
of this process.
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Algorithm 1 Outline of the computerized adaptive assessment process.

1: procedure EVALUATIONPROCESS
2: item1 ← select the first item with parameters ~p1
3: top: response← reply to item i− th, 1 ≤ i
4: θ ← estimate latent trait based on the pattern of first responses to the i items
5: if pattern is all correct or incorrect then
6: return use prior distribution and Bayes
7: else
8: return use Maximum Likelihood estimation
9: itemi+1 ← select item with a higher Fisher information in the Items Pool

10: goto top

Note that the selection of the first item in step 2 of Algorithm 1 can proceed in at least
one of two possible manners, namely

1. To calculate an estimate of the latent trait θ before starting the evaluation process
and, with this estimate, to determine the item with the maximum Fisher information
within the CIP [37].

2. To compute an estimate of the parameters of the first item (difficulty, discriminant,
guessing, etc.) following some of the methods in [37].

Step 5 is central to the Algorithm 1 since Bayes’ Theorem requires a prior distribution.
Bayes’ theorem involves the use of a prior distribution to calculate the so-called

posterior distribution. However, selecting an a priori distribution is not trivial, and one
must ensure that this distribution provides the highest amount of information about each
of the examinees.

The following steps are essential to the understanding of our methodology:

1. To know the relationships among the a posteriori probabilities, the prior probability
and the likelihood function.

2. Find the a priori probability and its closest dependence on an academic framework.
3. The analysis of discrete and continuous cases (the latter being of greater interest).

Regarding the first step, and given in Equation (5),

p(θ|~p) = L(~p|θ)
p(~p)

· p(θ), (5)

we note that the likelihood function L(~p|θ) is the product of the item characteristic curves
that arise throughout a specific individual evaluation pattern result. In this case, p(θ)
directly gives the prior distribution.

Thus, the prior distribution is a function of the latent ability or trait θ. Finally, the tran-
sition from the discrete case to the continuous one is provided by:

S(p) = −
∫ +∞

−∞
p(x) log p(x)dx, (6)

which may be subject to constraints of the form∫ +∞

−∞
f (x)p(x)dx = 〈 f (X)〉, (7)

where 〈 f (X)〉 is the expectation of the random variable defined as f (X), where X is a
random variable whose values x′s define the population of interest. Equation (7) provides
the general form of the constraints.

At this stage of the CAT process, the prior distribution p(θ) and the likelihood function
L(~p|θ) are available to compute the posterior distribution p(θ|~u) through Equation (5).
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Once one calculates the posterior distribution, then estimates the next latent trait value,
there are two possibilities:

• Determine the extreme point in the domain of the posterior distribution and compute
the maximum value of the distribution at this extreme value.

• Determine the mean value of the latent trait population along the whole domain of
the posterior distribution.

In order to sketch how the informative prior distribution can be related to the academic
framework of the examinees, we propose several ansatzes.

Ansatz for Different Indices of Student Performance as a Function of the Ability θ

Some works use the concept of entropy [38] as an alternative for the construction of
informative prior distributions. In this paper we introduce the maximum entropy through
the application of optimization techniques to maximize the information that the entropy
will yield concerning the specific examinee.

In addition to the distribution normality constraint, the latent trait mean and variance
specifications, we analyze the contribution of special examinees’ academic performance
constraints to properly determine the population distribution through entropy maximiza-
tion. In this sense, we apply the concept of an index (a random variable), depending on the
ability θ.

By defining entropy as a cost function, entropy maximization considers that this func-
tion is subject to a list of constraints other than the constraints based on normality and first
and second moments. The additional elements of the list of restrictions include the dropout
rate, the failure rate, and the habits of study rates from one or more courses belonging to
an examinee’s record. Additionally, one can consider the index of understanding of topics
that an examinee has in a historical academic record.

To relate study habits rate and its relationship to an ability function, several au-
thors [39–43] have identified some factors between good habits and excellent academic
achievement:

1. Attend classes regularly.
2. Take notes while teaching.
3. Concentrate on studying.
4. Study with a view to gaining meaning, not storing facts.
5. Prepare a schedule.
6. Follow the schedule.
7. Have appropriate rest periods.
8. Facing problems considering the home environment and planning.
9. Facing the challenges posed by the school environment.
10. Keep a daily update of the work done.

The statistical results in [39] confirm that the study habits index is indeed an increasing
function of ability, as illustrated in Figure 2a. By applying methodologies such as those
indicated by the authors in [44,45], one can adequately prepare a questionnaire including
questions related to the preceding list.

On the other hand, a lack of academic and social skills leads to the student being
unable to process the information transmitted by the instructor [46]. Then, we can infer
that the understanding of topics is related to the student’s ability, as Figure 2b illustrates.

By means of Figure 2a, we state that the study habits index behaves sigmoidally
depending on the examinee’s ability with the following correspondence rule

f (θ) = Bh +
1− Bh

1 + bhe−ahθ
, 0 < ah. (8)
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Meanwhile, Figure 2b states that the rate of topic comprehension by students also has
a sigmoidal behavior as follows

g(θ) = Bc +
1− Bc

1 + bce−acθ
, 0 < ac. (9)

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4
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1

θ/logits

f(
θ)

(a)

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

θ/logits

g(
θ)

(b)
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(c)

−4 −3 −2 −1 0 1 2 3 4
0
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θ/logits
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)

(d)

Figure 2. Assumed behavior for some of the indices that can be included as constraints for the
determination of the prior distribution by means of entropy. (a) Study habit index f as a function of
ability θ. (b) Subject comprehension index g as a function of ability θ. (c) Course dropout rate F as a
function of ability θ. (d) Course failure rate G as a function of ability θ.

In order to be rational, we consider the good study habits rate in conjunction with the
students’ failure rate as a function of the ability θ as follows:

1. For a randomly selected group of students, determine their abilities θ1, θ2, . . . , θn.
2. For each of the selected examinees, as indicated in the former point 1, investigate the

total number of failed subjects throughout their academic history.
3. With the assigned ability, the quotient of the total number of failed subjects and the

total number of subjects taken or studied (considering even repetitions or recursing)
define the failure rate for a specific examinee.

The third step is reinforced by the results published in [47], where they claim that
low levels of ability tend to cause dropout from a course, if not from the school itself.
The failure rate has an identical behavior and, for all these reasons, Figure 2c and Figure 2d,
respectively, postulate that the dropout (F(θ)) and failure (G(θ)) from a course decrease
exponentially with the ability of the student. The following correspondence rules illustrate
these functions:

F(θ) = 1− 1− Bd

1 + bde−adθ
, 0 < ad, (10)

G(θ) = 1− 1− Br

1 + bre−arθ
, 0 < ar. (11)
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In all cases, note that the ability θ is a random variable and that the functions f , g, F,
and G are, therefore, random variables. In summary, the graphs in Figure 2 are the results
of ansatzes here proposed to illustrate the behaviors of the random variables f , g, F, and G.

Taking into account the postulated index functions and Equations (6) and (7), the La-
grangian L to optimize, is given by Equation (12).

L(p(·)) = −
∫ +∞

−∞
p(θ) log p(θ)dθ + λ0

(∫ +∞

−∞
p(θ)dθ − 1

)
+ λ1

(∫ +∞

−∞
θp(θ)dθ − θ̂p

)
+ λ2

(∫ +∞

−∞

(
θ − θ̂p

)2
p(θ)dθ − σ̂2

p

)
+ λ3

(∫ +∞

−∞

(
Bh +

1− Bh

1 + bhe−ahθ

)
p(θ)dθ − Ch

)
(12)

+ λ4

(∫ +∞

−∞

(
Bc +

1− Bc

1 + bce−acθ

)
p(θ)dθ − Cc

)
+ λ5

(∫ +∞

−∞

(
1− 1− Bd

1 + bde−adθ

)
p(θ)dθ − Cd

)
+ λ6

(∫ +∞

−∞

(
1− 1− Br

1 + bre−arθ

)
p(θ)dθ − Cr

)
,

where Table A1 in Appendix A provides the meaning of the symbols appearing in
the equations.

Without loss of generality and for reasons of simplicity, one only considers the con-
straint referring to the course failure rate G(θ) so that the maximization of entropy solves
the set of non-linear equations defined by Equations (13)–(16) through:

∫ +∞

−∞
e
−1+λ0+λ1θ+λ2(θ−θ̂p)2+λ6

(
1− 1−Br

1+bre−arθ

)
dθ − 1 = 0, (13)∫ +∞

−∞
θe
−1+λ0+λ1θ+λ2(θ−θ̂p)2+λ6

(
1− 1−Br

1+bre−arθ

)
dθ − θ̂p = 0, (14)∫ +∞

−∞
(θ − θ̂p)

2e
−1+λ0+λ1θ+λ2(θ−θ̂p)2+λ6

(
1− 1−Br

1+bre−arθ

)
dθ − σ̂2

p = 0, (15)∫ +∞

−∞

(
1− 1− Br

1 + bre−arθ

)
e
−1+λ0+λ1θ+λ2(θ−θ̂p)2+λ7

(
1− 1−Br

1+bre−arθ

)
dθ − Cr = 0. (16)

Note that Equation (6), both for the discrete (with summatory symbol instead of
integral) and continuous cases can be considered as a measure of the misinformation
(un-informativeness) that the prior distribution p(θ) provides about how the latent trait θ
distributes [38,48]. This result is also supported by a research paper [48] where they state
that the entropy maximization due to the constrained non-uniform prior distribution being
equivalent to minimizing the distance between this distribution and an unconstrained
uniform a priori distribution with no other constraint than a normalization process.

5. Results

Algorithm 2 illustrates our general procedure to select the a priori distribution. Line
1 of the algorithm assigns an initial estimation of the latent trait average θ̂p and variance
average σ̂2

p . Additionally, the performance index function structures are defined as closely
related to the experimental procedures (academic) already mentioned. Finally, lines 5 to
8 find the conditions to properly select an a priori distribution satisfying the normaliza-
tion, ability’s average value, variance’s average value, and average values of expected
performance index functions.

There are assumptions or inconveniences that appear when one applies a MAP or
EAP technique at the initialization of the CAT process, considering that one does not
know something about the prior distribution when the CAT system provides the first item.
However, fortunately, there are several ways to solve this problem [8,35,49]. In this work,
one proposes an initial ability equal to the value θ̂p given to the constraint in Equation (14).
Thus we can apply Algorithm 3 to simulate the CAT process.
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Algorithm 2 Diagram of the prior distribution search process.

1: procedure SEARCHPRIOR
2: θ∗p ← θ̂p . assign average of given skill in restriction (14)
3: σ2∗

p ← σ̂2
p . assigns expected variance in constraint (15)

4: ~p← defines index parameters used in constraints
5: top:
6: s← solve system of nonlinear equations defined by constraints
7: if unsatisfied constraints then
8: goto top
9: return~l . returns Lagrange multipliers

Algorithm 3 Scheme of the CAT process using Bayesian estimation with prior distribution.

1: procedure ADAPTABLEEVALUATIONPROCESSWITHPRIOR
2: responses← []
3: θ∗ ← θ̂p . allocates average of given skill in constraint (14)
4: p(θ)← determine prior distribution maximizing entropy with constraints
5: top:
6: i← max

Pool
{I(θ∗)}

7: r ← reply to item i, 1 ≤ i
8: responses← concat(responses, r) . update response history
9: L(~p|θ)← determines the likelihood function as a product of ICCs

10: if responses are all correct or incorrect then . uses Bayesian inference
11: p(θ|~p)← L(~p|θ)p(θ)
12: p(θ|~p)← kp(θ|~p) . normalizes posterior distribution

13: θ∗ ←
∫ +∞

−∞
θp(θ|~p)dθ . compute average skill with new distribution

14: p(θ)← p(θ|~p)
15: else
16: θ∗ ← use Maximum Likelihood estimation as usual
17: goto top.
18: return θ∗

After running a sequence of simulations under the directions of Algorithm 3, one
obtains as examples the corresponding CAT processes that Figures 3–5 show. Table 1
gives some numerical results, whereas the third experiment shows the complete running.
The following list synthesizes the obtained results of the corresponding simulation process.

1. After several iterations, the CAT system always tends to the maximum Fisher’s
information index, regardless of the intermediate value of the estimated ability θ.
Thus, the final selected item has a difficulty µ (see Figures 3–5).

2. When the study habits index function discriminates well and plays the role of one
constraint in entropy maximization, one can expect a bimodal a priori distribution as
acceptable (see Figure 3)

3. A possible behavior in the initialization of the CAT process when the discriminating
power of the study habits index function is not high or low can be found in Figure 4.
Note that the a priori distribution shows some non-null skewness.

4. A failure rate with a lower discrimination index provides an initial prior distribution
with almost null skewness. So, in practice, when one takes a normal or Gaussian
prior distribution N (θ; µ, σ) with a high variance σ2 [50] or a uniform distribution
U (a, b), a � b, one also assumes that the examinees’ failure records are the same.
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Figure 3. Starting of the CAT for the first experiment. Table 1 shows the expected and computed
parameters from entropy maximization and the simulation process.
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Figure 4. Starting of the CAT for the second experiment. Table 1 shows the expected and computed
parameters from entropy maximization and the simulation process.
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Figure 5. Starting of the CAT for the third experiment. Table 1 shows the expected and computed
parameters from entropy maximization and the simulation process.

Table 1. Results of numerical experimentation. The parameters values of the Start Parameters
column assume that they come from estimations and/or experiments. The parameters values of
the prior properties column assume that they come from the computation of the corresponding
integral expression containing the computed prior distribution (first terms in left-hand sides of
Equations (13)–(16)). The numerical experimentation of a running for a CAT in Experiment 3 assumes
the existence of a pool of 1000 calibrated items.

Experiment Start Parameters prior properties Lagrange’s multipliers

1 θ∗p σ∗2p ar br Br C∗r normality θ σ2 Cr skewness λ1 λ2 λ3 λ4

1 4 1 1 0 0.6 1.18 0.98 3.99 0.47 3.66 −6.60 2.12 −0.40 13.74

Experiment Start Parameters Properties prior Lagrange’s multipliers

2 θ∗p σ∗2p ar br Br C∗r normality θ σ2 Cr skewness λ1 λ2 λ3 λ4

1 4 0.6 0.25 0.125 0.6 1.20 0.96 3.99 0.34 −2.00 −1.34 0.16 −0.19 3.62

Experiment Start Parameters Properties prior Lagrange’s multipliers

3 θ∗p σ∗2p ar br Br C∗r normality θ σ2 Cr skewness λ1 λ2 λ3 λ4

3 1 0.05 0.025 0.25 0.3 1.00 3.00 1.00 0.27 −0.04 −3.49 0.00 −0.5 13.46

1000 difficulties in items Pool

iteration θ∗p µ∗p normality map eap

1 3 2.9978 1.00411027 2.99 3.00159777

2 3.3222 3.3207 1.00 3.32 3.32218745

3 3.8357 3.8430 1.00 3.82 3.83572950

4 4.3893 3.9851 1.00 4.36 4.38926317

5 4.8986 3.9851 1.00 4.85 4.89863112

6 5.3412 3.9851 1.00 5.29 5.34123495

7 5.7224 3.9851 1.00 5.67 5.72237081

There are several fine details to work out when one uses a priori distributions [51];
however, in this paper, we provide a unified approach to derive prior distributions with a
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less subjective selection of the distribution when the initialization of the CAT process uses
Bayesian estimation [52,53].

There is a large number of research papers published about the advantages and
drawbacks on the use of a priori distributions topic, but the techniques used there are based
on heuristics to build the Bayesian inference procedure within the initialization of the CAT
process in some special cases [51,54].

In order to compare likely differences between the results of heuristic techniques and
our methodology, a useful tool to be used is the Kullback–Leibler (KL) divergence index.
This index measures the divergence of the expected amount of extra information required
to obtain population samples that follow the prior distribution p(θ) when using population
samples that follow a distribution q(θ) [55].

The KL divergence measure is defined by Equation (17).

DKL(p(θ)||q(θ) =
∫ +∞

−∞
p(θ) ln

p(θ)
q(θ)

dθ. (17)

In this sense, the information is more ordered when one applies the prior distribution
obtained with our method than with the popular unconstrained heuristic distributions.
One should expect this result since the introduction of constraints orders the information
under analysis. In this manner, p(θ) represents a “realistic” data distribution or a precisely
calculated theoretical distribution and the typical distribution q(θ) represents a description
or approximation of p(θ) (see [55]).

Through Table 1, a correspondence rule for the a priori distribution p(θ) can be defined
such as Table 2 illustrates. Therefore, the two measures given by Equations (18) and (19)
considering the normal and uniform distributions, respectively, can be calculated.

DKL(p(θ)||N (θ; µ, σ)) =
∫ +∞

−∞
p(θ) ln

p(θ)
N (θ; µ, σ)

dθ, (18)

DKL(p(θ)||U (θ; a, b)) =
∫ +∞

−∞
p(θ) ln

p(θ)
U (θ; a, b)

dθ. (19)

Table 2. A priori distributions distances with respect to heuristics ones for every experiment in
Table 1.

Experiment p(θ) q(θ) KL Distance

1 e
−1+λ1+λ2θ+λ3(θ−θ∗p)

2
+λ4

(
1− 1−Br

1+bre−arθ

)
N (θ; 1, 2) 3.5402

U (θ; 1− 2.225, 1 + 2.225) 0.73339

2 e
−1+λ1+λ2θ+λ3(θ−θ∗p)

2
+λ4

(
1− 1−Br

1+bre−arθ

)
N (θ; 1, 2) 2.4119

U (θ; 1− 2.385, 1 + 2.385) 0.077474

3 e
−1+λ1+λ2θ+λ3(θ−θ∗p)

2
+λ4

(
1− 1−Br

1+bre−arθ

)
N (θ; 3, 1) 0.069902

U (θ; 3− 1.7375, 3 + 1.7375) 0.084054

From Table 2, note that the distance given by the KL divergence in the first experiment
when comparing the prior distribution with the Gaussian distribution N (θ; µ, σ) suggests
that to analyze the population with this last distribution, one should expect an amount
of 3.5402 extra information to include the data population related to the first distribution.
Figure 6a–c compare the three distributions for every experiment in Table 2, and show their
respective KL measures.
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Figure 6. KL distance between each of the initial prior distributions p(θ) from each experiment
and the classic distributions N (θ; µ, σ) and U (θ; a, b). (a) First experiment: p(θ) vs. N (θ; 1, 2) and
U (θ; a, b). (b) Second experiment: p(θ) vs. N (θ; 1, 2) and U (θ; a, b). (c) Third experiment: p(θ) vs.
N (θ; 3, 1) and U (θ; a, b).

In the first experiment, when one compares the distribution U (θ; 1− 2.225, 1 + 2.225),
the a priori distribution p(θ) also has a KL divergence equal to 0.73339. On the other hand,
for the second experiment, KL divergences become equal to 2.4119 and 0.077474 when
one, respectively, approximates through N (θ; 1, 2) and U (θ, 1− 2.385, 1 + 2.385). Finally,
for the third experiment, the KL divergences equal to 0.069902 and 0.084054 when one,
respectively, approximates through N (θ; 3, 1) and U (θ; 3− 1.7375, 3 + 1.7375).

Intervals (a, b) for every uniform distribution are calculated by looking for the lower
distance between the corresponding p(θ) and U (θ; a, b) distributions. Note that the third
experiment results agree with the heuristic suggestion of using the normal, or uniform
distributions, as good approximations to the prior distribution. So, the alternative is
acceptable when the course failure index function does not discriminate well.

6. Conclusions

In this paper, we demonstrate that through the theory of entropy maximization, a given
set of constraints, and under numerical experimentation, the computation of an a priori
distribution to initialize a CAT process by using Bayesian inference can be carried out.
Furthermore, the examinee’s performance index functions define the constraints, and they
complement the usual distribution constraints (normality, first and second moment, etc.).

We also show that through the entropy theory, the selection of appropriate constraints
summarizes experimental data through the specification of index functions related to study
habits, comprehension levels, course dropout, and lecture failure.

A given set of constraints can produce a set of acceptable or unacceptable a priori
distributions, so one needs to look for a stop criterion in searching for the optimal set
of parameters that defines the distributions through entropy maximization. To define
the stop criterion, we verify how the estimated set of distribution parameters and those
that define the constraints are close enough to the expected values used in the constraints
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definition. Thus, the most appropriate distribution is chosen and, under the assumption of
responding correctly to the first items in the testing process, we can verify its latent trait
prediction capability.

Index functions playing the role of constraints with acceptable discrimination proper-
ties produce a priori distributions with bimodality, as one can expect, so that the obtained
distribution estimates reasonable latent trait values along the simulation of the CAT process.

In summary, entropy maximization can be used inside the frame of a CAT to derive
more generalized a priori distributions through constraint specifications related to index
functions. This method can provide a unified approach to derive a priori distributions for
initializing the CAT process through a Bayesian inference procedure.

Author Contributions: Conceptualization, J.S.-C.; Methodology, J.S.-C. and V.L.-M.; Software, J.S.-C.
and L.R.M.-M.; Validation, J.S.-C.; Formal analysis, J.S.-C. and V.L.-M.; Investigation, V.L.-M., L.R.M.-
M., A.A.-R. and J.C.R.-F.; Resources, A.A.-R.; Data curation, J.C.R.-F.; Writing—original draft, V.L.-M.;
Writing—review & editing, V.L.-M.; Visualization, A.A.-R. and J.C.R.-F.; Supervision, V.L.-M. All the
authors have equally contributed and worked in this paper. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like, through these lines, to really thank the anonymous
reviewers and the journal’s staff for their valuable support to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

1PL One-Parameter Logistic
2PL Two-Parameter Logistic
CAT Computer Adaptive Testing
CIP Calibrated Item Pool
EAP Expectation a posteriori
IRT Item Response Theory
ICC Item Characteristic Curve
KL Kullback–Leibler
MAP maximum a posteriori
w.r.to with respect to

Appendix A. Table of Symbols

Table A1. Summary of all the symbols used in the paper, their location and meaning.

Symbol Meaning Pages Where the
Symbol Appears

e Base of the natural logarithm 2

θ
Examinee’s ability or latent trait to be estimated in
the CAT process 2–6, 10, 12–16

θi Examinee’s ability at i-th iteration 6

µ
Item’s difficulty playing the role of a parameter in
the definition of the ICC that the CDF P defines 2, 5, 6, 15, 16

µi, i = 1, 2, . . . Difficulty of item i 5

α
Item’s discriminant playing the role of a parameter
in the definition of the ICC that the PDF P defines 5, 6, 13, 14
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Table A1. Cont.

Symbol Meaning Pages Where the
Symbol Appears

P

Conditional cumulative distribution function for
computing the probability that the examinee with
ability θ gives a correct answer to an item, given
that the item’s difficulty is µ and (possibly) the
discriminant is α

2, 5, 6

Q

It is equal to 1− P; in other words, it represents the
probability that the examinee with ability θ gives
an incorrect answer to an item, given that the item’s
difficulty is µ and (possibly) the discriminant is α

6

∆µ Increment of item’s difficulty 6

∆α Increment of item’s discriminant 5

n = 1, 2, . . . Number of items at iteration n, or n-th iteration,
in the CAT process 6

I

Fisher’s information, as a function of the exami-
nee’s ability θ, is useful to compute the amount of
information that a given item provides about the θ
estimate by knowing the current value of θ

6

~p Vector of parameters (item’s difficulty, item’s dis-
criminant, etc.) that defines the model P 6, 12

p

If p depends on θ, then it represents a prior dis-
tribution; otherwise, if p depends on θ given the
vector of parameters ~p, then it represents a posteri-
ori distribution

7, 16

L

Likelihood function depends on the vector of pa-
rameters ~p given the examinee’s ability θ, L(~pi, i =

1, 2, . . . , n|θ) ∝
n

∏
i=1

Pk
i (θ|~pi)Qn−k

i (θ|~pi), where k rep-

resents the number of correct answers that an ex-
aminee gives to n items

7

f , g, F, G Performance indexes are functions of a random
variable X 7

S Entropy 7

L Lagrangian 8, 11

λ Lagrange multiplier 8, 11

Bi, bi, ai,
where

i = h, c, d, r

Parameters defining performance index func-
tion: study habit, subject comprehension, course
dropout rate, and course failure rate, respectively

10

θ̂p

Initial estimation of the latent trait θ, just before
starting the CAT process, the subindex p comes
from the word prior

11, 12

σ̂2
p

Initial estimation of the variance σ2 of the distribu-
tion of the latent trait θ, the subindex p comes from
the word prior

11, 12

s It contains the solution to entropy maximization
under the given constraints 12

~l
Vector of Lagrange multipliers after satisfying en-
tropy maximization under given constraints 12
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Table A1. Cont.

Symbol Meaning Pages Where the
Symbol Appears

θ∗

Initial estimation of the latent trait θ, just before
starting the CAT process, or expectation a posteri-
ori of the latent trait along the CAT process, or the
extreme point of the ability values θ, along the CAT
process, where the a posteriori distribution has a
maximum

12, 13

U Uniform distribution 13, 15, 16

N Normal distribution 13, 15, 16

a, b with a < b lower and upper bounds, respectively, that define
the uniform distribution 15, 16

σ2, σ
Variance and standard deviation estimation, respec-
tively, for a priori distribution 13, 15

Cr
Estimation of the course failure rate average by
means of the estimated a priori distribution 11, 13

C∗r
Course failure rate estimation coming from the ex-
perimental results for obtaining the course failure
rate index function

11, 13
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