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Abstract: This paper focuses on the ultimate limit theory of image compression. It proves that for
an image source, there exists a coding method with shapes that can achieve the entropy rate under
a certain condition where the shape-pixel ratio in the encoder/decoder is O(1/log t). Based on the
new finding, an image coding framework with shapes is proposed and proved to be asymptotically
optimal for stationary and ergodic processes. Moreover, the condition O(1/log t) of shape-pixel ratio
in the encoder/decoder has been confirmed in the image database MNIST, which illustrates the soft
compression with shape coding is a near-optimal scheme for lossless compression of images.
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1. Introduction and Overview

One of Shannon’s outstanding achievements in source coding is to pointing out the
ultimate data compression limit. This result has been widely and successfully applied in
stream data compression. However, for image compression, it is still a challenging issue.
This paper is an attempt to analyze the ultimate limit theory of image compression.

1.1. Preliminaries

Data compression is one of the basis of digital communications and helps to provide
efficient and low-cost communication services. Images are the most important and popular
medium in the current information age. Hence, image compression is naturally an indis-
pensable part of data compression [1]. Moreover, its coding efficiency directly affects the
objective quality of the communication network and the subjective experiences of users.

As a compression method with strict requirements, image lossless coding focuses on
reducing the required number of bits to represent an image without losing any quality. It
guarantees as large a reduction in the occupation of communication and storage resources as
possible under certain system or scenario constraints. In the area of big data, image lossless
coding may play a more significant role in applications in which errors are not allowed,
such as in intelligent medical treatment, digital libraries, semantic communications [2,3],
and metaverse in the future.

The entropy rate is an important metrics in information theory, which extends the
meaning of entropy from a random variable to a random process. It also characterizes the
generalized asymptotic equipartition property of a stochastic process. In this paper, we
shall employ entropy rate to explain the best achievable data compression. It is well-known
that the entropy rate of a stochastic process {Zi} is defined as

H(Z) = lim
t→∞

sup
1
t

H(Z1, Z2, . . . , Zt). (1)
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If the limit exists, then H(Z) is the per symbol entropy of the t random variables, reflecting
how the entropy of the sequence increases with t. Moreover, the entropy rate can also be
defined as

H′(Z) = lim
t→∞

H(Zt|Zt−1, Zt−2, . . . , Z1). (2)

H′(Z) is the conditional entropy of the last random variable given all previous random
variables. For a stationary stochastic process, the limits in Equations (1) and (2) exist and are
equal [4]. That is, H(Z) = H′(Z). In addition, for a stationary Markov chain, the entropy
rate is

H(Z) = H′(Z) = lim
t→∞

H(Zt|Zt−1, . . . , Z1) (3)

= lim
t→∞

H(Zt|Zt−1). (4)

The entropy rate is a long-term sequence metric. Even if the initial distribution of the
Markov chain is not a stable distribution, it will still tend to converge as in Equations (3)
and (4). Moreover, for a general ergodic source, the Shannon-McMillan-Breiman theorem
points to its asymptotic equipartition property. If {Zi} is a finite-valued stationary ergodic
process, then

− 1
t

log p(Z0, . . . , Zt−1)→ H(Z) with probability 1. (5)

This indicates the convergence relationship between the joint probability density and
entropy rate for the general ergodic process. Following a similar idea as that of the analysis
of entropy rate, we investigate the asymptotic property of shape-based coding for stationary
image ergodic processes.

1.2. Shape Coding

A digital image is composed of lots of pixels arranged in order. This form is fixed
and if the size of an image is determined, the number and arrangement mode of the
pixels is also determined. Shape coding extends the basic components of images from
pixels to shapes, which is a more flexible coding method and may efficiently utilize image
embedding structures. Additionally, it will no longer limit the number and position of
shapes. Shape coding has three main characteristics: (1) The image is formed by filling
shapes; (2) The position arrangement of shapes changes from a fixed mode to a random
variable; (3) The shape database and codebook are generated in a data-driven way, which
clearly contains more inherent features of image databases.

Consider a binary digital image Z, whose length and width are M and N, respectively,
then the total number of pixels is t = M × N. Suppose this is divided into c(t) shapes
{s1, s2, . . . , sc(t)}, where si is the i-th shape. We used D to denote the shape database and
Fi(Si), i = 1, . . . , T to represent filling an image with shape Si at position (xi, yi) in the i-th
operation. The image with shape coding can be described as [5]

min
c(t)

∑
i=1

[l(si) + lp(xi, yi)] (6)

s.t. Z =
c(t)

∑
i=1

Fi(si), (7)

where l(si) and lp(xi, yi) represent the bit length of the shape si and its corresponding
location at (xi, yi), respectively. The constraint condition indicates that the binary image
Z can be reconstructed through c(t) filling operations, which is exactly the same as the
original image. On this premise, shape coding tries to reduce the cost required to represent
an image as much as possible.

The codebook plays an important role in shape coding. It reflects the statistical
characteristics and correlation of the data source. Figure 1 illustrates the structure of shape
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coding. It consists of two parts, namely the generation and use of the codebook. On
the one hand, one searches and matches the shape of images in the dataset through a
data-driven method. At the same time, the frequency statistical analysis is carried out to
generate a shape database. The codebook can also be used repeatedly in communication
and storage tasks to reduce the occupation of resources. The transmitter/compressor
encodes the original image with the codebook. After transmission or storage through the
channel/storage medium, the receiver/decompressor can decode the compressed file with
the same codebook. In this way, one can completely reconstruct the original image in
lossless mode.
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Figure 1. The structure of shape coding. It consists of two parts, namely the generation and use of the
codebook. The former makes use of the characteristics of the data source, while the latter improves
the compression efficiency.

1.3. Relations to Previous Work

The objective of this work is to present the performance limits from the perspective of
information theory, which is related to our previous works in [5–7]. An image-encoding
method through shapes and data-driven means can provide improvements in image
lossless compression. In some known databases, soft compression outperforms the most
popular methods, such as PNG, JPEG2000, and JPEG-LS. However, there is no theoretical
support for how shape-based soft compression methods can reach the ultimate performance
limit. That is, the gap between soft compression and its compression limit, namely the
entropy rate is not theoretically known. However, the entropy rate associated with the
asymptotic equipartition property analysis of images can help us design efficient encoding
and decoding algorithms from the perspective of Shannon’s information theory.

The earliest multi-pixel joint coding method can be traced back to symbol-based cod-
ing [8], which transmits or stores only the first instance of each pattern class, and thereafter
substitutes this exemplar for every subsequent occurrence of the symbols. This achieved
a degree of bandwidth reduction on a scan-digitized printed text. Fractal theory [9,10]
is also related to block-based coding. Fractal block coding approximates an original im-
age by relying on the assumption that image redundancy can be efficiently exploited
through self-transformability on a blockwise basis. However, soft compression generates
the shape database in a data-driven manner, to create the codebook used in the encoder
and decoder. Image processing-based data-driven methods such as [11–13] can explore
the essential features of images and even eliminate semantic redundancy. The use of side
information to assist data compression has also been used and analyzed by Kieffer [14]
and Kontoyiannis [15]. Verdú [16] provided upper and lower bounds for the optimal
guessing moments of a random variable by taking values on a finite set when the side
information may be available. Rychtáriková et al. [17] generalized the point information
gain and derived point information gain entropy, which may help analyze the entropy rate
of an image.

Another relevent example is the Lempel-Ziv coding schemes [18]. These proposed
the concept of compressibility. For every individual infinite sequence x, a quantity ρ(x) is
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defined. This is shown to be the asymptotically attainable lower bound on the compression
ratio that can be achieved for x be any finite-state encoder. Wyner [19] derived theorems
concerning the entropy of a stationary ergodic information source and used the results to
obtain insight into the workings of the Lempel-Ziv data compression algorithm.

The main contribution of this paper is that we will be able to present a sufficient
condition, which will allow for us to show that the performance limit of shape-based image
coding can be asymptotically achievable in terms of entropy rate.

1.4. Paper Outline

The rest of this paper is organized as follows. Section 2 contains our main results,
providing the asymptotic properties of shape-based image coding in terms of entropy
rate. Moreover, we indicates the relationship between the numbers of shapes and coding
performance. In Section 3, we present sample numerical results with concrete examples. In
Section 4, we offer some complementary remarks and conclude this paper.

2. The Asymptotic Properties of Image Sources Composed of Shapes

The encoding method with shapes can take advantage of the characteristics of the data
and simultaneously eliminate redundancy in the spatial and coding domains simultane-
ously. This section theoretically analyzes the performance of image coding with shapes.
It will show that when the numbers of shapes and pixels have a reciprocal logarithm
relationship, the average code length will asymptotically approach the entropy rate. To the
best of our knowledge, this is the first result on image compression in information theory.
The framework of this proof is similar to [4,19], but there are some important differences.

The average number of bits needed to represent the image Z with shapes are BZ.
Specifically,

BZ =
1
t

c(t)

∑
i=1

[l(si) + lp(xi, yi)] (8)

(a)
≤

c(t) log c(t) + ∑
c(t)
i=1 l(si)

t
(9)

(b)
≤ c(t) log c(t) + c(t) log |D|

t
(10)

where (a) and (b) follow from the fact that the uniform distribution has maximum entropy.
That is, ∑

c(t)
i=1 l(si) ≤ c(t) logD and ∑

c(t)
i=1 lp(xi, yi) ≤ c(t) log c(t). BZ is the average cost

of encoding Z, which reflects the coding requirements of bits. In the sequel, we use
Equation (10) instead of (8) to scale BZ.

Let {Zi}∞
i=−∞ be a strictly stationary ergodic process with finite states and zj

i ,

(zi, zi+1, . . . , zj). Due to the invariance of time, P(Zt|Zt−1
t−k ) is an ergodic process, where the

kth-order Markov approximation is used to make an approximation. We will then have

Qk(z−(k−1), . . . , z0, . . . , zt) , P(z0
−(k−1))

t

∏
j=1

P(zj|z
j−1
j−k), (11)

where z0
−(k−1) is the initial state. In this way, one can use the k-th order Markov entropy

rate to estimate the entropy rate of {Zi}. That is,
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−1
t

log Qk(Z1, Z2, . . . , Zt|Z0
−(k−1)) = −

1
t

log
t

∏
j=t

P(Zj|Z
j−1
j−k ) (12)

= −1
t

t

∑
j=1

log P(Zj|Z
j−1
j−k ) (13)

→ −E log P(Zj|Z
j−1
j−k ) (14)

= H(Zj|Z
j−1
j−k ). (15)

When k → ∞, the entropy rate of the kth-order Markov approximation converges to the
entropy rate of the original random process.

Suppose that zt
1 is decomposed into c(t) shapes s1, s2, . . . , sc(t). We define wi as the k

bits before si, where w1 = z0
−(k−1). Let clw denote the number of shapes whose size is l and

its previous state wi = w, w ∈ Z k.

Lemma 1. For {Zi}, the joint transition probability and shape size satisfy the following inequality

log Qk(z1, z2, . . . , zt|w1) ≤∑
l,w

clw log
α

clw
, (16)

where α is a constant.

Proof. Suppose that for fixed l and w, the sum of the transition probabilities is less than a
constant α, i.e.,

∑
i:|si |=l,wi=w

1
clw

P(si|wi) ≤ α. (17)

Then,

log Qk(z1, z2, . . . , zt|w1) = log Qk(s1, s2, . . . , sc|w1) (18)

(a)
=

c

∑
i=1

log P(si|wi) (19)

= ∑
l,w

∑
i:|si |=l,wi=w

log P(si|wi) (20)

= ∑
l,w

clw ∑
i:|si |=l,wi=w

1
clw

log P(si|wi) (21)

(b)
≤ ∑

l,w
clw log ∑

i:|si |=l,wi=w

1
clw

P(si|wi) (22)

≤∑
l,w

clw log
α

clw
(23)

where (a) follows from Equation (11) and (b) follows from Jensen’s inequality, thanks to the
convexity of log x for x > 0.

Lemma 1 links the conditional probability Qk(z1, z2, . . . , zt|w1) to clw, connecting the
concepts before and after decomposing {Zi}. We will continue to explore the quantitative
relationship between shapes and pixels.

Lemma 2. For {Zi}, the number and size of its shapes meet the following relationship

∑
l,w

clw log
c

clw
≤ kc + (t + c) log(1 +

c
t
) + c log

t
c

(24)
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Proof. For simplicity, we use c to represent c(t). Let plw =
clw
c

, then ∑
l,w

plw = 1. We define

two random variables U and V such that

Pr(U = l, V = w) = plw. (25)

The mean of U is the average length of each shape, i.e., E(U) =
t
c

. A random variable
with a geometric distribution has maximum entropy when the mean of a discrete random
variable is fixed. Thus, we have,

H(U)
(a)
≤ t

c
log

t
c
− (

t
c
− 1) log(

t
c
− 1) (26)

(b)
≤ (

t
c
+ 1) log(

t
c
+ 1)− t

c
log

t
c

(27)

= log
t
c
+ (

t
c
+ 1) log(

c
t
+ 1), (28)

where (a) is the entropy of a random variable with a geometric distribution and (b) follows
that the function f (x) = x log x − (x − 1) log(x − 1) is monotonically increasing when
x ≥ 1. On the other hand, H(V) ≤ log |Z|k = k. Thus,

∑
l,w

clw log
c

clw
= c ∑

l,w
plw log

1
plw

(29)

= cH(U, V) (30)

≤ cH(U) + cH(V) (31)

≤ c[log
t
c
+ (

t
c
+ 1) log(

c
t
+ 1)] + kc (32)

= kc + (t + c) log(1 +
c
t
) + c log

t
c

, (33)

which completes the proof.

Based on these two lemmas, we will further analyze the condition under which the
entropy rate can be reached asymptotically.

Theorem 3. When the numbers of shapes and pixels meet the reciprocal relation of the logarithm,
then the average encoding length will asymptotically approximate the entropy rate. That is,

If
c(t)

t
= O( 1

log t
) (34)

then

lim
t→∞

l(Z1, Z2, . . . , Zt)

t
= H(Z). (35)

Proof. From Lemma 1, one can write

log Qk(z1, z2, . . . , zt|w1) ≤∑
l,w

clw log
α

clw
(36)

= −∑
l,w

clw log
c · clw
c · α (37)

= −c log c−∑
l,w

clw log
clw
cα

(38)
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For simplicity, we use Q to represent Qk(z1, z2, . . . , zt|w1). Thus,

c
t

log c ≤ −1
t

log Q− 1
t ∑

l,w
clw log

clw
cα

(39)

From Lemma 2, it follows that

−1
t ∑

l,w
clw log

clw
cα

=
1
t ∑

l,w
clw log

c
clw

+
c
t

log α (40)

≤ 1
t
[kc + (t + c) log(1 +

c
t
) + c log

t
c
] +

c
t

log α (41)

=
c
t
(k + log α) +

c
t

log
t
c
+ (1 +

c
t
) log(1 +

c
t
). (42)

When c
t = O( 1

log t ) and t→ ∞, the three terms in the right hand side of Equation (42)
will all tend towards to 0. Combining Equations (39) and (42), we obtain

− 1
t ∑

l,w
clw log

clw
cα
→ 0, when t→ ∞. (43)

Then,

lim
t→∞

sup
c(t) log c

t
≤ lim

t→∞
−1

t
log Qk(Z1, Z2, . . . , Zt|Z0

−(k−1)) (44)

→ H(Z). (45)

The asymptotic property of the second term in the right hand side of Equation (10),

lim
t→∞

c(t) log |D|
t

= 0. (46)

Thus,

lim
t→∞

l(Z1, Z2, . . . , Zt)

t
= lim

t→∞
(

c(t) log c
t

+
c(t) log |D|

t
) (47)

= lim
t→∞

c(t) log c
t

(48)

= H(Z). (49)

This shows that when c(t) and t meet the condition in Equation (34), the average
coding length of {Zi} will asymptotically approximate the entropy rate H(Z).

Theorem 3 sets up a bridge between the shapes and the entropy rate for image sources
with ergodic properties. This theoretically indicates what order of magnitude we should
use to obtain the shapes and pixels. When one encodes images with shapes, the average
cost will asymptotically tend toward the entropy rate if the numbers of shapes and pixels
satisfy the reciprocal relation of the logarithm. Moreover, this provides new insights into
the design of image compression algorithms in theory.

3. Numerical Analysis

Section 2 points out the asymptotic property of encoding methods based on shapes.
When c(t)

t → O(
1

log t ), the average encoding length will asymptotically approximate the
entropy rate. This indicates the relationship between the shape-pixel number ratio and
coding performance. In this section, we present some numerical results to illustrate that for
each ergodic process of an image source, if c(t)

t → O(
1

log t ) as t → ∞, one can obtain the
result of Equation (35).



Entropy 2023, 25, 48 8 of 10

Table 1 reveals the numerical results on the MNIST datasets. This includes encoding
results Ravg and 1

t c(t) log t in ten categories with the soft compression algorithm [5]. What
can be clearly seen in this table is that 1

t c(t) log t < 1 for all classes. This is on the order of
O(1), which is consistent with the assumption in Theorem 3.

Table 1. The numerical analysis of shapes and pixels on MNIST dataset (Ravg is the average compres-
sion ratio).

Class 0 1 2 3 4 5 6 7 8 9

Ravg 2.84 6.02 3.17 3.20 3.77 3.40 3.20 4.05 2.81 3.52
1
t c(t) log t 0.200 0.080 0.178 0.175 0.149 0.163 0.175 0.136 0.202 0.157

We focused on simulated images as an alternative analysis. We used the birth and
death processes of two states to simulate a stationary ergodic process. For each case, 5000
{Zi} with M = 100, N = 100 were generated, respectively. We encoded {Zi} with fixed
size shapes and observed the effect of c(t)

t on coding performance.
Figure 2 illustrates the shape coding working mechanism of the image source. This

indicates the performance of the encoding method with shapes, in bits per pixel (bpp).
Cases 1–5 represent different parameters of the infinitesimal generator matrix of the birth-
death process, illustrating the relationship between coding performance and c(t)

t . In differ-
ent cases, the change trend of these curves is the same. The bpp decreases with the increase
in shape size (i.e., the shape-pixel number ratio decreases), which reflects the gain brought
by shape. Moreover, as the shape-pixel number ratio continues to decrease, bpp enters the
smoothing region. This also shows that the reduction in the number ratio will not always
improve the encoding performance. This is due to the fineness of the model itself, which
does not take advantage of the additional statistical information of larger shapes. Note that,
the numerical difference between the curves is essentially the difference of the entropy rate.

0.20.40.60.81.0
Shape-Pixel Number Ratio
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0.4

0.5

0.6

0.7

0.8

0.9

1.0

Bi
ts
 P
er
 P
ixe

l

BPP for Image Compression with Shapes

case 5
case 4
case 3
case 2
case 1

Figure 2. The performance of encoding method with shapes, in bits per pixel (bpp).

4. Concluding Remarks

In this paper, we investigated the performance limit of shape-based image compres-
sion. Our works answered the open problem regarding the relationship between image
decomposition and lossless compression, which reflects the performance variation in gen-
eral. Specifically, when the numbers of shapes and pixels have a reciprocal relation to the
logarithm relation, the average code length will asymptotically approach the entropy rate.

For image coding algorithms, one should pay full attention to the superiority of shapes
in image processing. Likewise, it is necessary to take advantage of the characteristics of the
image dataset. Through shapes and data-driven means, one can use the high-dimensional
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information of images to help with coding. Moreover, the asymptotic analysis of the
entropy rate can also be extended to gray images and multi-component images, with
some adjustments.

Finally, it is noted that this paper focuses on the source part, without considering the
natural robustness of images in the communication process. In a future work, we will
explore the theory of joint source-channel image coding in the finite block length regime.
It is noted that image lossless compression, especially, soft compression, may become an
important block for semantic information communications, and even play some roles in
the new developments of metaverse-type services in the future.
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