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Abstract: Cross-modal human pose estimation has a wide range of applications. Traditional image-
based pose estimation will not work well in poor light or darkness. Therefore, some sensors such as
LiDAR or Radio Frequency (RF) signals are now using to estimate human pose. However, it limits
the application that these methods require much high-priced professional equipment. To address
these challenges, we propose a new WiFi-based pose estimation method. Based on the Channel State
Information (CSI) of WiFi, a novel architecture CSI-former is proposed to innovatively realize the
integration of the multi-head attention in the WiFi-based pose estimation network. To evaluate the
performance of CSI-former, we establish a span-new dataset Wi-Pose. This dataset consists of 5 GHz
WiFi CSI, the corresponding images, and skeleton point annotations. The experimental results on
Wi-Pose demonstrate that CSI-former can significantly improve the performance in wireless pose
estimation and achieve more remarkable performance over traditional image-based pose estima-
tion. To better benefit future research on the WiFi-based pose estimation, Wi-Pose has been made
publicly available.

Keywords: pose estimation; multi-head attention; CSI; WiFi

1. Introduction

Pose estimation is a basic task of human behavior evaluation. It aims to analyze
important joints of human bodies such as limbs and faces through a series of multimedia
signals, and promote the recognition of human behaviors [1–10]. Nevertheless, traditional
image-based pose estimation methods [11–20] usually do not work well under partial
occlusion and poor lighting conditions. For example, the camera cannot collect clear and
easy-to-estimate human images in glare interference or complete darkness. In addition,
public concerns about privacy issues also limit the application of image-based pose estima-
tion. Thus, it is urgent to find a cross-modal method to realize pose estimation when it is
hard to capture human images.

In previous exploratory work, people have tried human pose estimation based on
multiple signals. Adib et al. [21] try to use radio signals to locate human bodies. However,
this method can only perform coarse-grained positioning analysis of human bodies, not
fine-grained behavior analysis. Another example is the use of radiofrequency [22] signals
for positioning and poses estimation of human bodies. However, this method requires the
establishment of a special radio frequency signal equipment that is uncommon in daily life.
Therefore, the high cost and the strict requirements for the installation environment of this
method limit its application.

Compared with the above sensors, WiFi equipment has the advantages of lower
costs and easy-to-layout. Therefore, using WiFi equipment for pose estimation is a good
choice. Traditional WiF devices work under the wireless transmission standard protocol
of the IEEE 802.11n [23]. Under the principle that human bodies consist of hierarchical
organizations with different dielectric parameters [24–26], it receives changing WiFi data
packet information through changing body poses in the WiFi signal field. Then, the received
wireless information is parsed into Channel State Information (CSI) with 30 sub-carrier
groups according to Orthogonal Frequency Division Multiplexing (OFDM) and serves
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as the original input of the network. In past research, people were constantly trying to
build better neural network models to extract more significant feature information from
CSI [27–33]. The work of Hao et al. [30] realized CSI-based gesture estimation. They tried
to find those features that are more sensitive to gesture actions from CSI, and successfully
established a well-performed gesture estimation model.

Motivated by the work of Hao et al. [30], we attempt to seek a reasonable method to
extract pose features from the sub-carries that are more sensitive to most poses. However,
the previous work [34] takes a 16-layers Resnet as the pose feature extractor and equally
extracts the pose feature on the 30 sub-carriers of CSI. It indicates that the network cannot
pay more attention to the information-rich sub-carries. Of course, this limits the perfor-
mance of the network. Recently, Transformer [35] has shown impressive performance in
various natural language processing [36,37] and computer vision tasks [38–42], due to its
powerful multi-head attention. Following the attention mechanism of Transformer, a new
Performer [43] is proposed to realize attention-based long sequence data analysis such
as protein modeling. Benefit from its Fast Attention Via positive Orthogonal Random
features approach (FAVOR+), Performer can linearly optimize traditional softmax attention
calculation. It indicates that Performer has an excellent attention mechanism and better
space utilization over traditional Transformer. Motivated by these advantages of Performer,
we attempt to incorporate an attention mechanism to extract more hidden pose features
from long sequence CSI. In addition, compared with traditional methods, we are committed
to making the information-rich sub-carries receive more attention.

Consequently, this paper addresses the above problems and attempts to design a novel
network for paying more attention to the information-rich sub-carries. To achieve this, a
novel multi-head attention-based network CSI-former is proposed for WiFi-based pose esti-
mation. The proposed CSI-former is built in a teacher–student manner: a teacher network
based on Alphapose and a student network based on Performer [43] and convolutional
neural network. The Alphapose-based teacher network is developed to generate skeleton
point annotation of the input human images. The skeleton point annotation is used as the
ground truth of the human poses to optimize the student network. In the student network,
an attention-based Encoder-Decoder structure is proposed to extract pose feature from CSI
and match it with the pose labels from the teacher network. Under the supervision of the
teacher network, the student network keeps self-optimized learning until it realizes pure
CSI-based pose estimation.

To demonstrate the performance of CSI-former, a reasonable and persuasive WiFi-
based dataset is necessary. As the basis of establishing the dataset, it is significant for us
to determine the WiFi frequency band. Most traditional CSI collection methods rely on a
2.4 GHz WiFi band. Nevertheless, the research of Yu et al. [44] demonstrates that compared
with 2.4 GHz, the 5 GHz signals have strong anti-interference and fewer interference
sources. Thus, we regard that 5 GHz WiFi is more suitable for a WiFi-based pose estimation
network. Based on this, 12 volunteers were invited to perform indoor activities while
collecting their images and CSI. Thus, a new WiFi-based pose estimation dataset named
Wi-Pose that is composed of images, skeleton point annotations, and CSI was constructed.
To the best of our knowledge, there is no such public dataset yet. The experimental results
on Wi-Pose demonstrate that CSI-former achieves excellent performance on WiFi-based
human pose estimation.

The contributions of this paper are summarized as follows:

1. We propose a novel architecture CSI-former that is composed of the attention mecha-
nism and traditional convolutional neural network for WiFi-based pose estimation.
To the best of our knowledge, CSI-former firstly realizes the effective integration
of the multi-head attention to the field of cross-modal human pose estimation and
significantly improves the performance.

2. Differ from most previous methods, we establish the WiFi-based human body pose
estimation dataset via a 5 GHz wireless WiFi signal and successfully demonstrate the
effectiveness of 5 GHz WiFi in cross-modal pose estimation.
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3. We successfully established the novel WiFi-based pose estimation dataset Wi-Pose that
is composed of 12 different actions such as bending, circling, crouching, pulling, run-
ning, walking, waving, etc. In addition, to ensure the rationality and persuasiveness
of Wi-Pose, the invited 12 volunteers have different heights and weights.

4. The proposed CSI-former has been evaluated on Wi-Pose and compared with the
traditional network. The results demonstrate that CSI-former achieves state-of-the-art
performance in WiFi-based pose estimation.

In summary, we propose a WiFi-based pose estimation algorithm CSI-former in this
paper to solve the performance defects and privacy problems of traditional image-based
human pose estimation methods. Moreover, we present the attention mechanism-based net-
work framework to improve the algorithm and achieve satisfactory performance. We also
publish the new dataset Wi-Pose at https://github.com/NjtechCVLab/Wi-PoseDataset,
accessed on 19 October 2022 to facilitate future research.

The rest of the article is organized as follows. We introduce the related work for human
pose estimation in Section 2. Section 3 describes the proposed CSI-former in detail. In
Section 4, we introduce the details and results of the experiment. Finally, we conclude in
Section 5 by highlighting the innovation of our work and discussing the future work.

2. Related Work
2.1. Video-Based Human Pose Estimation

Liu et al. [45] proposed a two-stream convolutional neural network architecture with
a spatiotemporal network. The network uses the camera to capture videos for human body
pose estimation. Each video is divided into two parts: a space part for describing static
information of the scene and the object, a time part for describing motion information of the
object and the camera. However, since the access of the two-stream convolutional network
to a temporal context is restricted, it is unsuitable for modeling long-time span structures.
Videos are one dimension higher than images. Therefore, some scholars optimize the
two-dimensional convolutional network into a three-dimensional convolutional network
for video image processing tasks.

Ji et al. [46] uses a 3D convolution kernel to extract spatiotemporal features of video
data and obtain motion information of the video stream. The model has achieved good per-
formance in the application scenarios of human behavior estimation in airport surveillance
videos. Nevertheless, it remains the disadvantage that the 3D convolutional network has a
large amount of calculation, which affects the algorithm efficiency. In the work of Wang
et al. [27,46], the Openpose model is used to estimate poses of human bodies in videos, and
spatiotemporal maps of the key points of human bodies are constructed. The spatiotempo-
ral map convolutional network (ST-GCN) aims to extract spatiotemporal features of human
bodies’ key points from continuous video frames. Then, the features are used for video
action classification to achieve better human motion estimation performance.

However, although these methods have achieved good results, they are still limited to
pure image-based pose estimation. It indicates that these methods will not work well in
poor light, so the application range is difficult to broaden.

2.2. Sensors-Based Human Pose Estimation

People are constantly exploring the cross-modal human body positioning. By the
gyroscope sensor in the bracelet, we can monitor a person’s steps and heartbeat. Cui
et al. [47] pointed out that they can detect the number of people and objects in a room
by using ultra-wideband radar. The number of people can be predicted by comparing
extracted effective information about the radar reflection wave on the obstacle with the
sensor data for detecting human bodies.

Khan et al. [48] proposed a human activity estimation method based on acceleration
sensors. In some cases, two identification schemes have been established. The first is a low-
level solution, which uses statistical signal functions and artificial neural networks (ANN)
to identify the current state of behavior, including static, transitional, or dynamic. The

https://github.com/NjtechCVLab/Wi-PoseDataset
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second is an advanced scheme, which uses autoregressive (AR) modeling of acceleration
signals, and then combines AR coefficients with the signal amplitude area and tilt angle to
form an enhanced feature vector. Then, through linear discriminant analysis and artificial
neural network, the obtained feature vectors are processed to realize estimation of specific
human activities.

2.3. WiFi-Based Human Pose Estimation

Wigest [28] performs pose estimation by analyzing rising and falling edges of the
signal change represented by the signal strength received by WiFi in different actions. For
a single access point and three access points, the estimation accuracy rates reach 87.5%
and 96%, respectively. Compared with received signal strength indicator (RSSI), CSI is a
fine-grained value at the physical layer. It provides channel estimation for each sub-carrier
of each transmission link and reflects the multipath effect caused by small-scale fading
and micro-motion. In the work of Wang et al. [29], the CSI-SPEED model proposed by
the CARM system quantifies the relationship between CSI amplitude changes and human
motion speed and provides a model basis for subsequent research. However, its behavior
extraction algorithm is imperfect, and the time complexity of this estimation method is high.

WiHear [27] utilizes CSI changes caused by lip movements with a special directional
antenna gain and introduces it into the contour of mouth movements by using the local
multipath effect and wavelet packet transform. It can solve the problem of micro-movement
detection and achieve a predefined range for words. The average detection accuracy of no
more than six words spoken by a single person is 91%, but it is not ideal in signal noise
reduction, so strong directional antennas can only be used to reduce noise and improve
estimation accuracy. Similarly, Wang et al. [49] proposed a Wi-Alarm system, which ignores
the data preprocessing process and uses the support vector machine (SVM) to directly
extract the original CSI amplitude mean and variance from human perception as features.
Although it can significantly save the calculation cost, the extracted features are not accurate
enough for original CSI data to be susceptible to interference from the external environment.
The CSI cannot be fully utilized under limited time-domain statistical features. It eventually
leads to a system crash and makes estimation accuracy restricted.

Overall, like most WiFi-based human body estimation networks, these methods can
only perform rough human body positioning or crowd counting [34,50–56], but still cannot
achieve a fine-grained estimation of the entire human body pose.

3. Methodology
3.1. Overview

CSI-former aims to realize WiFi-based pose estimation via a teacher–student network:
a teacher network estimates human pose in videos by Alphapose, a student network learns
human pose from CSI by Performer and convolutional neural network.

Alphapose: Alphapose refers to a traditional two-step frame network for image-based
human pose estimation. It achieves high-performance image-based pose estimation via the
human detection framework YOlOv3 [57] and the innovative regional multi-person poses
estimation framework RMPE [11]. Since Alphapose has shown excellent performance on
many public datasets, it is suitable for the teacher network of CSI-former. Thus, Alphapose
is used as the ground truth tagger of CSI-former to identify 18 skeleton key points (nose,
neck, shoulders, elbows, wrists, hips, knees, ankles, eyes, ears) from human images. Finally,
the output of Alphapose is used as the poses ground truth to train the student network.

CSI: Channel State Information (CSI) refers to wireless state information obtained via
Orthogonal Frequency Division Multiplexing (OFDM). OFDM converts the high-speed
serial data stream into 30 low-speed parallel sub-data streams by decomposing the original
channel into 30 mutually orthogonal sub-channels and modulates these sub-data streams
to the orthogonal sub-channels for propagation. Each sub-data stream is called a sub-
carrier. The amplitude and phase information of all sub-carriers constitute CSI. On this
basis, the open-source tools [23] can obtain CSI via characteristics of wireless multipath
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propagation and analyze its state changes to analyze the changes of the surrounding
environment. It indicates that pure CSI can also realize the pose estimation of surrounding
human movements.

The original CSI is captured by a three-antenna WiFi transmitter and a three-antenna
receiver. The transmitter continuously broadcasts WiFi signals to the outside. When human
bodies of different poses pass by, the receiver receives changed wireless signals and parses
them into a tensor of m × 30 × 3 × 3 size. Where m represents the number of WiFi packets
received, 30 represents the number of wireless sub-carriers, and 3 × 3 represents a 3 × 3
array composed of three transmitting antennas and three receiving antennas.

Unfortunately, it is impossible to annotate real human poses with pure CSI. Thus,
we use a camera parallel to the WiFi transmitting antenna to capture human pose images.
Then, the captured images are processed by Alphapose of the teacher network to generate
annotation information of human poses. Finally, under the supervision of the teacher work,
the student network learns pose estimation from CSI.

3.2. Attention-Guided DeNoising

Inevitably, it tends to generate noise due to environmental influences during the collec-
tion of CSI. Under the impact of noise, the performance of the CSI-based pose estimation is
bound to be restricted without effective denoising methods. For exploring denoising meth-
ods, it is significant to analyze the original CSI. As shown in Figure 1a, it records the images
of a volunteer that performs actions after standing still for about 1.5 s. Figure 1b records the
corresponding CSI at the timestamp. Since the work of Wang et al. [58] demonstrates that
the effect of noise on different sub-carriers is highly correlated, it can be seen in Figure 1b
that the amplitudes of all sub-carriers are changing very similarly at the same time when
the volunteer is stationary. Nevertheless, when the volunteer performs actions, different
sub-carriers have inconsistent changes in amplitude. It indicates that these essential pose
feature information in CSI cannot be concealed by noise.

Moreover, Wang et al. [58] also demonstrate that traditional low-pass filters or median
filters tend to achieve less-than-satisfactory performance in CSI denoising. As shown in
Figure 1, we use the Butterworth low-pass filter that has a sampling rate of 1000 samples per
second, and the ten-point median filter to denoise the CSI of Figure 1b respectively. It can
be seen that compared to the original CSI, the CSI after filtering becomes very smooth. In
addition, even during volunteer activities, the amplitude change of CSI is almost negligible
in every small range. It indicates that the hidden pose features of CSI are filtered too.
Undoubtedly, it will bring difficulties to the feature extraction of the network.

Inspired by the fact that the pose features cannot be concealed by noise and traditional
filters have a poor performance in CSI denoising. It is reasonable to design a new network
that can greatly dilute the influence of noise by paying more attention to the pose features.
To this end, we propose an attention-guided denoising method (ADN) by CSI-former.
Specifically, during the network training, the proposed CSI-former allocates more attention
of the network to the sub-carriers that are more sensitive to poses through the parameter
updating of the multi-head attention allocation algorithm. As Figure 1e shows, CSI-former
pays more attention to these most sensitive sub-carriers that have more pose features and
ignores the other sub-carriers with fewer features but much noise. Through the effective
distribution of the attention, more pose features are extracted and noise is diluted. Since
the sub-carriers are orthogonal to each other and all contain pose features, CSI-former can
efficiently allocate attention without losing information.
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Figure 1. (a) records the images of a volunteer from stationary to running to stationary. (b) records
the corresponding CSI of (a) in the time stamp. (c,d) represents the CSI after Butterworth low-pass
filter and ten-pint median filter respectively. The highlighted parts of (e) are sub-carriers with richer
features and more worthy of attention. The gray parts are sub-carriers that CSI-former tends to pay
less attention to.

In addition to ADN, we use multi-frame CSI to align a single-frame image to further
dilute the possible impact of noise. In the system settings, the sampling rate of CSI is
100 Hz and the camera’s imaging frequency is 20 Hz. Through the synchronization of
timestamps, every five CSI frames are aligned to one image frame. That is, for human body
pose annotation information in each image frame, there is a corresponding CSI tensor with
the size of 5 × 30 × 3 × 3.

3.3. Teacher Network: Alphapose

As the teacher network of CSI-former, Alphapose includes a two-step framework. First,
a human body detector is used to form a human body detection box via the input images.
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After that, a pose estimation network will estimate the pose in the box. The pose skeleton
points are finally output as annotation of the teacher network to the student network.

The collected data includes pose images It (·) and CSI Ct (·), aligned by timestamp
t ∈ (0, m). The original pose images It (·) are processed through the teacher network
Alphapose to obtain pose annotation Pt (·), which is a 3× 18 matrix composed of 18 skeleton
key points coordinates (x, y) and their confidence c:

Pt(x, y, c)(3×18) = Alphapose(It(·)), t ∈ (0, m). (1)

With the original pose annotation Pt (·) from the teacher network, the student network
needs to realize regression learning of 18 skeleton points of the human body. However,
many previous works have demonstrated that it is easy to overfit and lose generalization
by simply returning to 18 skeleton points [59]. Therefore, it is necessary to add the skeleton-
point adjacency matrix (SAM) as the regular term. As shown in Figure 2, SAM consists
of a 3 × 18 × 18 matrix (x′i,j, y′i,j, c′i,j), (i, j ∈ [1, 2, 3 · · · , 18]), where (x, y, c) represents
coordinates of skeleton points and theirs confidence. Thus, SAM is a matrix obtained by
two-dimensional expansion of (xi, yi, ci), i ∈ [1, 2, 3 · · · , 18] in which x and y generation
rules are the same:

x′i,j =
{

xi − xj, i 6= j;
xi, i = j.

c′i,j =
{

ci × cj, i 6= j;
ci, i = j.

(2)
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Figure 2. The Alphapose-based teacher network is a two-step framework to analyze the input image
and extract 18 skeleton point coordinates to form the SAM. The student network CSI-former is
composed of the attention mechanism and convolutional neural network to extract a pose estimation
matrix that is adapted to the SAM size from the CSI. Under the supervision of the teacher network,
the student network continuously optimizes learning until it achieves the ability of CSI-based
pose estimation.

SAM enhances the generalization ability of the network via taking relative displace-
ment between skeleton points as an additional constraint. However, it also greatly increases
the number of parameters that the network needs to return, and most of the attention is
still needs to be paid to the regression of SAM diagonal value. Therefore, the application of
the attention mechanism can significantly enhance the performance of the entire network.
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Inspired by the SAM, the original pose annotation Pt (·) will be expanded to obtain a
label matrix with a size of 3 × 18 × 18 as the poses ground truth, which is called Gt (·):

Gt(x′, y′, c′)(3×18×18) = SAM(Pt(·)) (3)

Apart from images, the parsed CSI Ct (·) is a tensor with a size of 30 × 3 × 3. Since the
image sampling rate and the CSI sampling rate is 20 Hz and 100 Hz respectively, every five
Ct (·) will be aligned with one Gt (·) through alignment of the time stream. Thus, original
WiFi data Wt (·) with a size of 5 × 30 × 3 × 3 for the student network is obtained:

Wt(·)( f rames×30×3×3) =
t+4

∑
k=t

Ck(·), f rames = 5 (4)

3.4. Student Network : CSI-Former

The student network is composed of Performer and Convolutional Neural Network.
The multi-head attention mechanism makes the student network improve the ability
to extract pose features from CSI while learning annotations from the teacher network.
Therefore, the student network includes three parts: encoder, feature extractor, and decoder.

Encoder: The encoder is developed to encode the original input Wt to adapt to feature
extraction. First, the input Wt ∈ R5×30×3×3 data size is reshaped to R150×3×3, which makes
it correspond to data dimension of the teacher network so that makes convenient for
network learning:

Wt(·)(5×30×3×3) →W ′t (·)(150×3×3) (5)

Then, the encoder directly uses bilinear interpolation to perform preliminary up-
sampling on it, and expand it to R150×18×18:

Wt(·)(150×18×18) = Bilinear(W ′t (·)) (6)

The encoder can not only magnify the features of original data for easy extraction
but also make it well adapted to the size of 18 skeleton points annotation from the
teacher network.

Attention-Based Feature Extractor: Powerful feature extractor can better extract the
feature information in the encoded data. Traditional feature extractors are composed of
convolutional neural networks or pure ResNet [60]. However, these architectures always
perform the same analysis on all input data instead of paying more attention to the more
useful information, which limits the performance of the network.

Unlike the traditional methods, CSI-former uses a multi-layer composite attention-
based Performer as the feature extractor (PAFE). The PAFE can make the student network
pay more attention to those information-rich CSI inputs to realize efficient feature extraction.
In addition, considering that the network needs to pay more attention to diagonal elements
while taking into account non-diagonal elements when learning SAM, the PAFE can help
realize reasonable distribution of attention. After a series of parameter stripping comparison
tests, a stack of 12-layers Performer was finally selected. After the encoding matrix Wt ∈
R150×18×18 was extracted by Performer, the feature matrix Ft ∈ R150×18×18 with the same
size as the encoding matrix is output:

Ft(·)(150×18×18) = PAFE(Wt(·)(150×18×18)) (7)

Decoder: The decoder is developed to decode the extracted feature matrix Ft (·)
to match label information Gt (·). To achieve this, CSI-former uses the convolutional
neural network with a two-layers architecture to be the decoder. The feature matrix
Ft ∈ R150×18×18 will go through a convolutional layer firstly. In the layer, the 3 × 3
convolution kernel is used to initially release characteristic information as Ft ∈ R32×18×18,
which is followed by the BatchNorm layer and the ReLu layer. Then, the decoder selects a
1 × 1 convolution kernel to completely releases characteristic information St ∈ R2×18×18,
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which contains pose coordinate information estimated by the student network. Finally, L2
norm loss calculation is performed under the supervision of the teacher network:

St(x, y′)(2×18×18) = Decoder(Ft(·))

Loss = L2(Gt(x′, y′, c′)(3×18×18), St(x, y′)(2×18×18))
(8)

Finally, the gradient backpropagation is used to continuously optimize the student
network until CSI-former can independently estimate human poses. It should be noted that
the trained CSI-former can estimate any individual pose without an entire pose sequence.
That is, CSI-former is trained by every single pose rather than ranking different poses.

3.5. Loss Calculation

Since CSI-former implements regression learning, the L2 norm loss function which is
commonly used in regression learning is suitable for the network [61]. The loss function
needs to calculate loss between the output St(·) of the student network and the ground
truth Gt(·). In addition, the confidence information ci of Gt(·) indicates its relevance to real
poses, so it is necessary to take it into account when defining loss function. Finally, the loss
function is defined as follows:

L =
17

∑
i=0

Gci ∗
(
‖Sxi −Gxi‖2

2 + ‖S
yi −Gyi‖2

2

)
, (9)

where ‖ · ‖2
2 represents L2 loss calculation; Gxi , Gyi and Sxi , Syi represents the ground truth

and model prediction value of the i-th pose respectively. Gci represents confidence of the
i-th skeleton point.

4. Experiments
4.1. Data Collection

To establish a rational and persuasive data set under real scenarios, we invited 12 vol-
unteers of different heights and weights to perform multi-action activities indoors while
simultaneously using WiFi devices and cameras to capture their wireless status information
and images. Each volunteer did 12 different actions (bend, circle, crouch, jump, pull, push,
run, sit down, stand up, throw, walk, wave) under guidance. Each action has a period of
five seconds and repeats ten times. Since we cannot control the sampling time to exactly
5 s, the actual duration of each action is between 5 and 6 s. Moreover, our camera sampling
rate is set to 20 Hz, thus the number of images per action is as follows:

Nmin = 12× 5× 10× 20 = 12000,

Nmax = 12× 6× 10× 20 = 14400,
(10)

We aligned and split the collected videos and CSI through time stamps, and put each video
frame and its corresponding CSI data in a formatted file. Therefore, there are about 12,000
to 14,400 data for each action. The data number of Wi-Pose is 166,600 and the specific
number of each action is shown in Figure 3. After analysis and sorting, the Wi-Pose that is
composed of human images, its corresponding CSI, and skeleton point annotations was
finally established.

For data division in the experiment, 80% of the collected data were used for the
training set and the remaining 20% for the testing set. The number of the training set and
the testing set are 132,847 and 33,753, respectively.
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Figure 3. Wi-Pose includes 12 actions with a total of 166,600 data, and the amount of data for each
action is roughly equal. We analyze and organize the collected raw data, and remove some data with
unclear images or inaccurate skeleton points. Wi-Pose is finally composed of the remaining clear
images, its corresponding CSI, and skeleton point annotation.

4.2. Model Evaluation

For evaluating the model, the percentage of correct key points (PCK) is one of the most
persuasive evaluation algorithms for human pose key point detection models. It evaluates
the CSI-former by calculating the ratio of the normalized distance between 18 detected
key points and their corresponding ground truth that is less than the set threshold. The
reference of normalized distance is developed via the torso diameter as follows:

TDk =
2

√(
GRSx

k − GLHx
k

)2
+
(

G
RSy
k − G

LHy
k

)2
, (11)

where TDk is the diameter of the k-th body’s torso, GRS
k and GLH

k are the ground truth
of the k-th body’s right shoulder and left Hip coordinates respectively. The calculated
Euclidean distance between these two points is approximated as torso diameter. The
specific algorithm of PCK is as follows:

PCKki
@aj =

1
N

N

∑
i=1

δ

(
‖Si

k − Gi
k‖

2
2

TDk
≤ aj

)
, (12)

where aj is the j-th threshold of the algorithm, and the above formula PCKki
@aj represents

the PCK value of the i-th skeleton key point of the k-th human pose under the threshold,
i = [1, 2, · · · , 18]. The value of δ(·) refers to a boolean value whose value is one when
the inequality in parentheses is true and otherwise zero. Si

k and Gi
k respectively represent

the coordinates of the i-th joint point of the k-th person identified by the model and the
ground truth of the joint point. After the normalization calculation and the discrimination
of δ(·), the model finally obtains the average predicted PCK of each skeleton point of the
testing set.

The threshold of PCK is usually set between 5 and 50. It should be noted that different
thresholds are the evaluation standard of the model at different scales. Therefore, in this
paper, we set the thresholds to various values between 5 and 50 to demonstrate the perfor-
mance of our model from different evaluation scales. The larger the threshold is, the wider
the error margin of skeleton point estimation is allowed. Thus, increasing the threshold may
lead to higher PCK. However, lower thresholds represent more strict evaluation criteria,
meaning lower thresholds can better demonstrate the model’s performance.

4.3. Implementation Details

CSI-former is implemented by Pytorch 1.7 and optimized by Adam optimizer. The
batch size and epochs-number are eight and 50, respectively. The initial learning rate is set
to 0.005 and is halved every ten epochs in the first 20 epochs and halved every 15 epochs
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in the last 30 epochs. We usually choose the model weights of the epoch which has the
minimum loss. The epoch with minimum loss is generally between 45 to 50. The specific
training details of the loss and the PCK are shown in Figure 4.

(a) Loss—epoch

(b) PCK@5—epoch

Figure 4. CSI-former stops training when the loss converges and the PCK reaches the highest level.
This goal can usually be achieved by training 50 epochs. Thus, CSI-former has been trained for a total
of 50 epochs. The trend graph of loss and PCK during training is shown in (a) and (b) respectively.

4.4. Ablation Study

In this section, we perform a series of ablation studies to analyze the impact of
Performer layers on the performance of CSI-former. Under the strictly same training
condition, four, eight, and twelve Performer layers were developed respectively to the
feature extractor of CSI-former. The final result shown in Table 1 indicates that CSI-former
with more layers of Performer tends to achieve higher PCK@5 on almost all skeleton
points estimation. It demonstrates that under the same conditions, the more layers of
Performer, the better performance of CSI-former. Thus, CSI-former is finally proposed
via 12 layers stacked attention-based Performer. To further investigate the performance
of CSI-former, we calculate the PCK of each skeleton point estimated via CSI-former by
different thresholds of five, ten, twenty, thirty, forty, fifty, respectively. As shown in Table 2,
it indicates CSI-former achieves excellent performance on the estimation of human poses.

Table 1. Comparisons between different Perormer layers in CSI-former. The bold value of each row
is the optimal value.

Skeleton-Point
PCK@5

Layers = 4 Layers = 8 Layers = 12

Nose 0.4870 0.5598 0.5615
Neck 0.5106 0.5915 0.5910

RShoulder 0.4993 0.5747 0.5787
RElbow 0.3668 0.4318 0.4387
RWrist 0.2795 0.3504 0.3534

LShoulder 0.4515 0.5455 0.5432
LElbow 0.3171 0.4338 0.4484
LWrist 0.2876 0.3742 0.4041
RHip 0.4976 0.5955 0.6171
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Table 1. Cont.

Skeleton-Point
PCK@5

Layers = 4 Layers = 8 Layers = 12

RKnee 0.5785 0.6649 0.7093
RAnkle 0.5971 0.7139 0.7422

LHip 0.4700 0.5890 0.6050
LKnee 0.5430 0.6509 0.6674
LAnkle 0.5276 0.6619 0.6904
REye 0.4872 0.5661 0.5918
LEye 0.3440 0.5023 0.5240
REar 0.4983 0.5749 0.6027
LEar 0.2150 0.2456 0.2391

Average 0.4421 0.5348 0.5505

Table 2. 12 Performer layers are used. The capitalized L and R refer to Left and Right, respectively.
The bold value of each row is the optimal value.

Skeleton-Point PCK@5 PCK@10 PCK@20 PCK@30 PCK@40 PCK@50

Nose 0.5615 0.6543 0.7403 0.7857 0.8193 0.8421
Neck 0.5910 0.6839 0.7706 0.8177 0.8481 0.8708

RShoulder 0.5787 0.6769 0.7618 0.8097 0.8411 0.8663
RElbow 0.4387 0.5583 0.6729 0.7353 0.7791 0.8120
RWrist 0.3534 0.4709 0.5960 0.6660 0.7149 0.7547

LShoulder 0.5432 0.6533 0.7583 0.8122 0.8436 0.8679
LElbow 0.4484 0.5611 0.6756 0.7436 0.7908 0.8254
LWrist 0.4041 0.5145 0.6247 0.6967 0.7462 0.7807
RHip 0.6171 0.7119 0.8001 0.8452 0.8730 0.8920

RKnee 0.7093 0.7905 0.8606 0.8930 0.9163 0.9322
RAnkle 0.7422 0.8108 0.8606 0.8902 0.9060 0.9174

LHip 0.6050 0.7118 0.7943 0.8398 0.8682 0.8881
LKnee 0.6674 0.7644 0.8364 0.8710 0.8932 0.9080
LAnkle 0.6904 0.7583 0.8166 0.8475 0.8685 0.7807
REye 0.5918 0.6772 0.7550 0.8021 0.8316 0.8453
LEye 0.5240 0.6188 0.7145 0.7687 0.8089 0.8357
REar 0.6027 0.6902 0.7668 0.8108 0.8444 0.8643
LEar 0.2391 0.2944 0.3874 0.4610 0.5169 0.5560

Average 0.5505 0.6445 0.7329 0.7831 0.8172 0.8417

4.5. Model Comparison

CSI-former uses 12-layers superimposed Performer as the feature extractor of the
network. In order to prove the effectiveness of the multi-head attention mechanism,
we compared the effects of CSI-former with pose estimation network using 16-layers
superimposed Resnet as the feature extractor. After training models under the same
experimental condition, we evaluated the two models with the same testing set. As shown
in Table 3, it records the PCK@5 of 12 skeleton points in the testing set that are estimated by
CSI-former and Resnet respectively. It is obvious that CSI-former achieves more superior
performance over the Resnet on the estimation of ten different skeleton points and achieves
a 2.7% increase in average PCK. The experimental result demonstrates that the multi-
head attention mechanism significantly improves the pose estimation performance of
the network.

Additionally, Figure 5 separately records the difference between the PCK results by
CSI-former and Resnet for 18 skeleton points of different actions. It can be seen that
the estimation performance of skeleton points of most actions (such as bend, jump, and
run) has been greatly improved by CSI-former over Resnet. It indicates that through the
biased allocation of attention by ADN, CSI-former significantly improves the estimation
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performance of most poses at the cost of reducing the accuracy of some poses. In other
words, CSI-former successfully pays more attention to those sub-carriers that are sensitive
to most actions and pays less attention to these subcarriers that are sensitive to individual
actions to improve the overall predictive ability of the model.

Table 3. Comparisons between attention-based and attention-free methods. The bold value of each
row is the optimal value.

Skeleton-Point
PCK@5

Resnet CSI-Former

Nose 0.5271 0.5615
Neck 0.5539 0.5910

RShoulder 0.5525 0.5787
RElbow 0.4099 0.4387
RWrist 0.3234 0.3534

LShoulder 0.4910 0.5432
LElbow 0.3818 0.4484
LWrist 0.3546 0.4041
RHip 0.5760 0.6171

RKnee 0.6880 0.7093
RAnkle 0.7263 0.7422

LHip 0.5875 0.6050
LKnee 0.6850 0.6674
LAnkle 0.6706 0.6904
REye 0.5715 0.5918
LEye 0.5273 0.5240
REar 0.5620 0.6027
LEar 0.2275 0.2391

Average 0.5231 0.5505

-0.1

-0.05

0

0.05

0.1

0.15

bend cirlcle crouch jump pull push run sit down stand up throw walk wave

PCK@5

Nose Neck RShoulder RElbow RWrist LShoulder LElbow LWrist RHip

RKnee RAnkle LHip LKnee LAnkle REye LEye REar LEar

-0.1

-0.05

0

0.05

0.1

0.15

Figure 5. For each action, the vertical axis records the per-joint changes in the PCK@5 results of
the proposed CSI-former relative to Resnet. The positive value means that CSI-former’s prediction
accuracy for the skeleton joint is higher than Resnet.

4.6. Experimental Result

To observe the performance of CSI-former more directly, we estimate the poses of
the testing set via CSI-former. Then, the estimated poses of CSI-former are drawn on the
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original images and compared with the pose estimation of the Alphapose-based teacher net-
work, as shown in Figure 6. It can be observed that CSI-former achieves better performance
over Alphapose on some skeleton points estimation. Additionally, we record the poses of
volunteers with different heights and weights estimated by CSI-former in Figure 7. The
experimental results demonstrate that the attention mechanism can significantly improve
the performance of the WiFi-based pose estimation network and CSI-former achieves a
superior pose estimation performance.

(a)Image (b)Alphapose (c)CSI-former

Figure 6. (a) records the original human images of three volunteers. (b,c) records the pose estimation
results of the three original human images by Alphapose and CSI-former, respectively. Each pose
estimation draws 18 key skeleton points of the human body and connects these skeleton points in the
order of the human body on the original image. It should be noted that the estimation of CSI-former
on some skeleton points is better than Alphapose.
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(a)

(b)

(c)

wave circle bend bend wave

sit down pull push push wave

sit down pull crouch crouch jump

Actions

Actions

Actions

Real Pose

Pose

Estimation

Real Pose

Pose

Estimation

Real Pose

Pose

Estimation

Image Type

Image Type

Image Type

Figure 7. Wi-Pose includes different actions of persons with different heights and weights. (a–c) are
three groups of images of volunteers selected randomly. The first row of each group shows the real
poses of the volunteers, and the corresponding second row shows the pose estimation results of
CSI-former. The results demonstrate that CSI-former achieves superior performance on WiFi-based
pose estimation.

4.7. Result Discussion

As shown in the above sections, we finalized CSI-former through a series of ablation
studies. We compare CSI-former with existing Resnet-based networks in Table 3, and
CSI-former achieves higher PCK. As seen in Figures 6 and 7, CSI-former has achieved
satisfactory performance on WiFi-based human pose estimation.

Nevertheless, due to the constraints of time cost and experimental environment, CSI-
former is trained by 12 activities performed by 12 volunteers. It indicates that the pose
estimation results may have deviations when CSI-former is applied to other complex
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activities. Thus, we will expand more poses in more environments to our dataset Wi-Pose
in future research. Since there is no publicly available dataset for WiFi-based human pose
estimation currently, we have published Wi-Pose to facilitate future research. Moreover,
we will continue to study new algorithms to improve CSI-former and enable it to estimate
multi-person poses.

5. Conclusions

In this paper, we propose a WiFi-based pose estimation network CSI-former. Com-
pared to traditional image-based pose estimation methods, CSI-former overcomes the
disadvantages of cameras that cannot work in the dark and glare by using WiFi. Moreover,
the WiFi-based method can solve the privacy concerns in human pose estimation well.

We design the architecture of CSI-former by 12 layers of Performer with multi-head
attention to make the network pay more attention to the information that includes more
pose features. The experimental results in Table 3 show that the PCK@5 of CSI-former
achieves 0.5505, which is higher than the existing Resnet-based method whose PCK@5 is
0.5231. It demonstrates that CSI-former has better pose estimation performance than the
existing Resnet-based method.

In addition, we successfully establish a novel WiFi-based human pose estimation
dataset Wi-Pose and have published Wi-Pose to promote future research. CSI-former
achieves state-of-the-art performance on Wi-Pose. Our future work will focus on further im-
proving the structure of CSI-former to obtain better WiFi-based pose estimation capabilities.
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