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Abstract: The development of quantum technologies present important challenges such as the need
for fast and precise protocols for implementing quantum operations. Shortcuts to adiabaticity (STAs)
are a powerful tool for achieving these goals, as they enable us to perform an exactly adiabatic
evolution in finite time. In this paper, we present a shortcut to adiabaticity for the control of an
optomechanical cavity with two moving mirrors. Given reference trajectories for the mirrors, we find
analytical expressions that give us effective trajectories which implement an STA for the quantum
field inside the cavity. We then solve these equations numerically for different reference protocols,
such as expansions, contractions and rigid motions, thus confirming the successful implementation
of the STA and finding some general features of these effective trajectories.

Keywords: quantum control; shortcuts to adiabaticity; control theory; optomechanical cavity;
quantum technology

1. Introduction

Quantum technologies promise to revolutionize the way we communicate and process
information by giving us the ability to experimentally manipulate quantum states of
light and matter at the single-particle level [1–3]. To this end, it is necessary to isolate
these systems from the interaction with their surroundings in such a way that it might
be possible, for example, to cool atoms close to absolute zero or to maintain the fragile
quantum correlations between these systems. Likewise, this degree of control of quantum
systems also enables their use for more efficient information processing or as quantum
simulators of complex dynamics. In this context, it is necessary to understand different
aspects such as the system dynamics of many interacting quantum systems; the possible
decoherence processes that these devices may undergo, and the thermodynamics of systems
on these scales. A natural question has emerged about whether it is possible to use new
technologies to produce quantum machines. The novelty comes from the fact that these
small systems can exhibit quantum properties that could potentially be exploited to get
an advantage over classical machines or present new obstacles to their operation. These
questions constitute the backbone of a new area of physics that has come to be called
quantum thermodynamics, a fruitful crucible of research fields where the foundations of
physics, information science and statistical mechanics merge.

In most cases, a finite-time operation causes the emergence of coherence in the state of
the system that results in an efficiency loss [4–6]. However, in many cases, it is possible to
implement protocols named shortcuts to adiabaticity (STAs), that evolve the initial state
into the final state that would have been obtained with an adiabatic evolution, but in a
finite time [7–10]. STAs are powerful quantum control methods, allowing quick evolution
into target states of otherwise slow adiabatic dynamics. Such methods have widespread
applications in quantum technologies, and various shortcuts to adiabaticity protocols have
been demonstrated in closed systems. These protocols typically require a full control of the
quantum system and end up being extremely challenging from an experimental standpoint.
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Another area where an STA might be extremely useful is relativistic quantum informa-
tion (RQI). Fundamental questions have arisen on how the motion of different observers
affect shared quantum information and how to distribute and process it [11–17]. Recent
works have shown that the entanglement shared between two moving cavities is dimin-
ished as observers accelerate [12,13]. This is due to the fact that their motion causes a
nonadiabatic evolution of the quantum system that generates excitations that affect the
entanglement [18]. Hence, if one can find an STA that achieves a fast adiabatic evolution of
the field inside a moving cavity, it would be possible to exactly preserve the entanglement
solving a fundamental problem in RQI.

In previous works, STAs have been considered from a theoretical and/or an exper-
imental point of view for different physical systems: trapped ions [19], cold atoms [20],
ultracold Fermi gases [21], Bose–Einstein condensates in atom chips [22], etc. In Ref. [23],
we showed how to implement shortcuts to adiabaticity for the case of a massless scalar field
inside a cavity with a moving wall, in (1 + 1) dimensions. The approach was based on the
known solution to the problem that exploited the conformal symmetry, and the shortcuts
took place whenever the solution matched the adiabatic Wentzel–Kramers–Brillouin (WKB)
solution [24], i.e., when there was no dynamical Casimir effect (DCE) [25–29]. We obtained
a fundamental limit for the efficiency of an Otto cycle with the quantum field as a working
system, which depended on the maximum velocity that the mirror could attain. We also de-
scribed possible experimental realizations of the shortcuts using superconducting circuits.

In this paper, we generalize the results of [23] to the case of a quantum scalar field in a
one-dimensional optomechanical cavity with two moving mirrors. We show that, given
the trajectories for the left (Lref(t)) and right (Rref(t)) mirrors, we can find a shortcut to
adiabaticity ruled by the effective trajectories (Leff(t)) and (Reff(t)) that, when implemented
in finite time, result in the same state as if the original ones had been evolved adiabatically.
This protocol has the advantage that it can be easily implemented experimentally using
either an optomechanical cavity or superconducting circuits, since it does not require
additional exotic potentials. Moreover, the effective trajectory can be computed from
the original one quite simply, paving the way for more efficient quantum field thermal
machines. Besides its intrinsic interest, this generalization may have useful applications in
the area of RQI.

In the next Section we discuss that for a quantum field, STAs are not as simple as for
a nonrelativistic quantum system with a finite number of degrees of freedom. Section 3
is dedicated to the study of an optomechanical cavity with two moving mirrors and, in
Section 4, we show how to find STAs in these cavities. Section 5 is dedicated to the numerical
analysis of the STA for different reference trajectories such as a contraction, expansion
or a rigid motion of the cavity. In Section 6, we complete the work with a discussion of
our results.

2. STA in Quantum Field Theory

When a quantum field is subjected to time-dependent external conditions, the phe-
nomenon of particle creation seems unavoidable. However, as already mentioned, in some
particular situations this phenomenon can be avoided. We shall discuss some examples in
the following.

2.1. Electromagnetic Cavity: Single-Mode Approximation

Let us consider an electromagnetic cavity with time-dependent properties (vari-
able length and/or time-dependent electromagnetic properties). It is usual to describe
the physics inside the cavity using a single-mode approximation for the quantum elec-
tromagnetic field. The dynamics of the mode is that of a harmonic oscillator with a
time-dependent frequency

Q̈k + ω2
k(t)Qk = 0, (1)

where k is the index that identifies the mode. The frequency ωk(t) depends on time if, for
instance, the length of the cavity d(t) is time-dependent.



Entropy 2023, 25, 18 3 of 17

Assuming that the frequency is constant for t → ±∞, and that the mode is in the
ground state |0IN〉 for t→ −∞, in the case of a nonadiabatic evolution the electromagnetic
mode will be excited for t→ +∞, that is |〈0OUT |0IN〉| 6= 1. The Bogoliubov transformation
that connects the IN and OUT Fock spaces, when nontrivial, is an indication of particle
creation and describes the presence of photons inside the cavity.

The adiabatic WKB solution for the operator associated with the mode, Q̂k(t), can be
written in terms of annihilation and creation operators as

Q̂k(t) = â
e−i

∫ t
ωk ref(t′)dt′√

2ωk ref(t)
+ â† ei

∫ t
ωk ref(t′)dt′√

2ωk ref(t)
. (2)

This is an approximate solution for the oscillator with a reference frequency ω ref(t), valid
if it is slowly varying, but an exact solution of a system with an effective frequency [24]

ω2
k eff(t) = ω2

k ref +
1
2

(
ω̈k ref
ωk ref

− 3
2

(
ω̇k ref
ωk ref

)2
)

. (3)

From the effective frequency, one can read the effective time-dependent length of the cavity
dk eff(t) which leads to no particle creation, and therefore constitutes an STA. It is important
to remark that the evolution at intermediate times is in general nonadiabatic, but the system
returns to the initial state when the effective length becomes constant at t→ +∞. Particles
are created and subsequently absorbed.

The STA described above cannot be generalized beyond the single-mode approxima-
tion since the effective frequency and length are different for each mode, and therefore
it is not possible to avoid particle creation in all modes. Moreover, for this system, an
electromagnetic field inside a time-dependent cavity, the modes are coupled.

In the rest of the paper, we consider a physical system in which it is possible to
find a nontrivial STA for a full quantum field. By nontrivial we mean that, although
there is no particle creation at the end of the evolution, the dynamics is nonadiabatic at
intermediate times, that is, there is creation and absorption of particles. Before doing
this, we mention some examples of quantum fields in time-dependent backgrounds in
which there is no particle creation at all, that is, the modes of the fields are oscillators with
time-independent frequency.

2.2. Quantum Fields in Curved Space-Times

Assuming a Robertson–Walker metric

ds2 = a2(η)(−dη2 + dx2) , (4)

the modes of a free quantum scalar field satisfy [30,31]

χ̈k + (k2 + m2a2 + (ξ − 1/6)Ra2)χk = 0 , (5)

where m is the mass of the field, R the scalar curvature and ξ the coupling to the curvature.
We are describing the dynamical equations in terms of the conformal time η and a(η) is the
scale factor. The equations for the modes correspond to those of harmonic oscillators with
time-dependent frequency. As mentioned above, for each mode, one can find particular
evolutions of the scale factor such that there is no particle creation. However, as the time-
dependent frequency depends on the momentum k, it is not possible to find an STA for the
full quantum field, but only for a given mode.

There are some particular situations in which the frequency of all modes is time-
independent, for an arbitrary time dependence of the scale factor. This is the case when
there is conformal invariance m = 0 and ξ = 1/6. Another possibility is to consider a
massless field in a radiation-dominated universe, for which R = 0 (for another example in
the context of non-Abelian field theories see [32]).
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The relevance of conformal invariance can be reinforced by another example. Let us
consider now a massless quantum scalar field in an almost flat metric

ds2 = (ηµν + hµν)dxµdxν , (6)

with |hµν| � 1. The probability of pair creation reads [33]

P =
1

960π

∫
d4x[60(ξ − 1/6)R2 + CµνρσCµνρσ] , (7)

where Cµνρσ is the Weyl tensor. Once again, for a conformal field (ξ = 1/6) in a conformally
flat metric (Cµνρσ = 0), the pair creation probability vanishes.

There are some subtle points in these examples. On the one hand, particle creation
vanishes when one chooses the conformal vacuum as the vacuum state of the system. For
Robertson–Walker metrics, this corresponds to the choice of the mode functions

χk =
1√
2k

e−ikη , (8)

that solve Equation (4) when m = 0 and ξ = 1/6. This choice is natural if the metric
is asymptotically flat for η → −∞. The mean value of the energy–momentum tensor
vanishes in that region. Even with this choice, it is known that conformal invariance is
broken at the quantum level, producing a nonvanishing trace for the mean value of the
energy–momentum tensor (that is traceless for a conformal field at the classical level).
While each mode of the quantum field evolves in a trivial way, the mean value of the
energy–momentum tensor may depend on time during the evolution. This dependence
is, however, local in the metric and its derivatives, and therefore, the energy–momentum
tensor returns to its vanishing value if the scale factor tends to a constant for η → +∞.

From the previous discussion, we see that for a quantum field, STAs are not as simple
as for a quantum system with a finite number of degrees of freedom. The renormalization,
which is unavoidable even for free fields in external backgrounds, is an additional ingredi-
ent that should be taken into account. On the other hand, we also see that while conformal
invariance simplifies the dynamical equations for the modes, its quantum anomaly may
introduce nontrivial effects. We see all these aspects at work in the optomechanical cavity
with moving mirrors.

3. The Optomechanical Cavity

The system we are now considering is a scalar field, Φ(x, t), inside a cavity formed
by two moving mirrors to the left and right whose position are given by L(t) and R(t),
respectively (see Figure 1). The evolution of the field is determined by the wave equation
inside the cavity

(∂2
x − ∂2

t )Φ(x, t) = 0, (9)

and Dirichlet boundary conditions on each mirror

Φ(L(t), t) = Φ(R(t), t) = 0. (10)
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Ф(𝑥, 𝑡)

𝑥

Figure 1. Schematics of the one dimensional cavity with a scalar quantum field Φ(x, t) inside and
two moving mirrors with trajectories L(t) and R(t). The red and green curves illustrate two modes
of the field in the cavity.

It is important to remark that we are considering units where c = h̄ = kB = 1, which
we use throughout the rest of the paper. It is known that the time evolution of the field is
solved by expanding the field in modes

Φ(x, t) =
∞

∑
k=1

[
akψk(x, t) + a†

k ψ∗k (x, t)
]
, (11)

such that the modes are given by [34]

ψk(x, t) =
i√

4πk
[e−ikπG(t+x) + eikπF(t−x)], (12)

where F(z) and G(z) are functions determined by Moore’s equations

G(t + L(t))− F(t− L(t)) = 0 (13)

G(t + R(t))− F(t− R(t)) = 2. (14)

The functions F(z) and G(z) implement the conformal transformation

t̄ + x̄ = G(t + x) t̄− x̄ = F(t− x) (15)

such that in the new coordinates, the left and right mirrors are static at x̄L = 0 and x̄R = 1.
Finding the evolution of the field given the motion of the mirrors is therefore reduced

to solving Moore’s equations. Once this is achieved, the renormalized energy density of
the field can be found [34]

〈Ttt(x, t)〉ren = fG(t + x) + fF(t− x), (16)

where

fG = − 1
24π

[
G′′′

G′
− 3

2

(
G′′

G′

)2
]
+

(G′)2

2

[
− π

24
+ Z(Td0)

]
fF = − 1

24π

[
F′′′

F′
− 3

2

(
F′′

F′

)2
]
+

(F′)2

2

[
− π

24
+ Z(Td0)

]
, (17)
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and d0 = |R0 − L0| is the initial length of the cavity. We are considering the state of the
field to be initially in a thermal state at temperature T, and Z(Td0) is related to the initial
mean energy

Z(Td0) =
∞

∑
n=1

nπ

exp
(

nπ
Td0

)
− 1

. (18)

The expression for the renormalized energy–momentum tensor above can be obtained using
the standard approach based on point-splitting regularization (see for instance [35]). It can
also be derived using the conformal anomaly associated with the conformal transformation
Equation (15) [30,31].

Finally, it is important to note that for a static cavity with L(t) = 0, R(t) = d0, we have
F(z) = G(z) = z/d0, and the renormalized energy density reduces to the static Casimir
energy density. The phenomenon of particle creation appears when F(z) and G(z) are
nonlinear functions.

4. STA for the Field

In this case, it is particularly challenging to find an STA since the only parameters that
we can control and that affect the time evolution of the field are the positions of the left and
right walls, L(t) and R(t), respectively. However, we achieve this by finding the adiabatic
Moore functions which correspond to the infinitely slow evolution of the field for reference
trajectories Lref(t) and Rref(t). Then, we look for effective trajectories Leff(t) and Reff(t)
such that they give rise to the adiabatic Moore functions previously found. The effective
trajectories obtained produce an adiabatic evolution of the field in finite time, hence they
constitute a shortcut to adiabaticity.

4.1. Adiabatic Evolution of the Field

We start by looking for functions F and G that satisfy Equations (13) and (14). We can
take the derivative of the above set of equations

G′[t + L(t)]
[
1 + L̇(t)

]
− F′[t− L(t)]

[
1− L̇(t)

]
= 0 (19)

G′[t + L(t)]
[
1 + Ṙ(t)

]
− F′[t− R(t)]

[
1− Ṙ(t)

]
= 0 (20)

and define
A(z) := F′(z) (21)

B(z) := G′(z). (22)

Then, it is easy to rewrite the previous equations as

B[t + L]
[
1 + L̇

]
− A[t− L]

[
1− L̇

]
= 0 (23)

B[t + R]
[
1 + Ṙ

]
− A[t− R]

[
1− Ṙ

]
= 0. (24)

Further, we can expand the functions in a Taylor series

B[t + x] = ∑
n

dnB(t)
dtn

xn

n!
(25)

A[t + x] = ∑
n

dn A(t)
dtn

xn

n!
(26)

which results in the following equations up to the third order

[
B +

dB(t)
dt

L +
1
2

d2B(t)
dt2 L2 +

1
3!

d3B(t)
dt3 L3

][
1 + L̇

]
−
[

A− dA(t)
dt

L +
1
2

d2 A(t)
dt2 L2 − 1

3!
d3 A(t)

dt3 L3
][

1− L̇
]
= 0 (27)
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[
B +

dB(t)
dt

R +
1
2

d2B(t)
dt2 R2 +

1
3!

d3B(t)
dt3 R3

][
1 + Ṙ

]
−
[

A− dA(t)
dt

L +
1
2

d2 A(t)
dt2 L2 − 1

3!
d3 A(t)

dt3 L3
][

1− Ṙ
]
= 0. (28)

These can be rewritten as

B− A + ((B + A)L)′ +
1
2

(
(B′ − A′)L2

)′
+

1
6

(
(B′′ + A′′)L3

)′
= 0 (29)

B− A + ((B + A)R)′ +
1
2

(
(B′ − A′)R2

)′
+

1
6

(
(B′′ + A′′)R3

)′
= 0, (30)

by discarding the terms B′′′L′, A′′′L′, B′′′R′ and A′′′R′ because they involve third derivatives
of time. At this point, we can expand these functions in different timescales

A = A0 + A1 + A2 + A3 + . . . (31)

B = B0 + B1 + B2 + B3 + . . . (32)

where the subindices indicate how many temporal derivatives are involved in each contri-
bution. Using this expansion, the previous equation results for order 0 in

A0 = B0 (33)

For the first order, we have
B1 − A1 + (2A0L)′ = 0 (34)

B1 − A1 + (2A0R)′ = 0 (35)

and therefore
(2A0(R− L))′ = 0 =⇒ A0 =

1
R− L

. (36)

With this result, B1 − A1 can be calculated by replacing it in the previous equations.
The second order gives

B2 − A2 + ((A1 + B1)L)′ = 0 (37)

B2 − A2 + ((A1 + B1)R)′ = 0, (38)

where we have used that A0 = B0. Subtracting, we obtain

[(A1 + B1)(L− R)]′ = 0 =⇒ A1 + B1 =
k

L− R
, (39)

where k is some constant. However, we must note that, by definition, A1 and B1 should
have one and only one time derivative. Therefore

k = 0 =⇒ A1 = −B1. (40)

Replacing this result in the equation for B1 − A1, we find that

A1 = −B1 = (A0R)′ =
(

R
R− L

)′
=

(
1
2

R + L
R− L

)′
. (41)

The Moore functions are then given by

F(t) =
∫

dtA(t) =
∫

dtA0(t) +
∫

dtA1(t) +
∫

dtA2(t) + .... (42)
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G(t) =
∫

dtB(t) =
∫

dtB0(t) +
∫

dtB1(t) +
∫

dtB2(t) + ...., (43)

where Aj(t) and Bj(t) include j time derivatives. If the timescale in which the mirror moves
is given by τ then

∫
dtAj(t) ∝ τ j−1, and in the adiabatic limit (τ → ∞), only the first two

terms are relevant. Therefore, the adiabatic Moore functions for a cavity with two moving
mirrors are given by

Fad(t) =
∫

dt
1

R(t)− L(t)
+

1
2

R(t) + L(t)
R(t)− L(t)

(44)

Gad(t) =
∫

dt
1

R(t)− L(t)
− 1

2
R(t) + L(t)
R(t)− L(t)

. (45)

Following this procedure, one can also compute the higher adiabatic orders, gener-
alizing to the case of two mirrors the results in Ref. [25]. However, the above results are
enough for our purposes.

4.2. Shortcut to Adiabaticity

Given the reference trajectories for the right, Rref(t), and left, Lref(t), mirrors, it is
possible to find effective trajectories, Reff(t) and Leff(t), such that the evolution of the field
from start to finish is exactly the adiabatic evolution for the reference trajectories.

A way to find such effective trajectories is to select them such that the Moore functions
for the field are those of the adiabatic evolution produced by the reference ones, that is

Gad(t + Leff(t))− Fad(t− Leff(t)) = 0 (46)

Gad(t + Reff(t))− Fad(t− Reff(t)) = 2, (47)

where Gad(t) and Fad(t) are given by Equation (44) with L(t) = Lref(t) and R(t) = Rref(t).
Thus, knowing the reference trajectories, we can solve Equations (46) and (47) indepen-
dently to find effective trajectories that evolve the field in a way that exactly matches the
adiabatic evolution for the reference trajectories.

4.3. Limit of Effective Trajectories

We would like to obtain some analytical understanding of the effective trajectories
that produce the STAs. In order to do this, we exactly solve the Moore equations for the
case where the reference trajectories are given by an instantaneous motion

Rref(t) = R0θ(−t) + R f θ(t) (48)

Lref(t) = L0θ(−t) + L f θ(t). (49)

We are looking for the limit effective trajectories Llim(t) and Rlim(t) such that

Gad(t + Llim(t))− Fad(t− Llim(t)) = 0 (50)

Gad(t + Rlim(t))− Fad(t− Rlim(t)) = 2. (51)

For these reference trajectories the adiabatic Moore functions are given by

Fad(t) =
t + L0

R0 − L0
θ(−t) +

t + L f

R f − L f
θ(t) (52)

Gad(t) =
t− L0

R0 − L0
θ(−t) +

t− L f

R f − L f
θ(t), (53)
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which means that the Moore functions are linear functions before and after t = 0. We can
use this result to analyze the Moore equations one by one. If t < −R0, then

t− Reff(t) < 0, t + Reff(t) < 0 (54)

and the solution is
Rlim(t < −R0) = R0. (55)

In addition, if t > R f , then

t− Rlim(t) > 0, t + Rlim(t) > 0 (56)

and the solution is
Rlim(t > R f ) = R f . (57)

However, if −R0 < t < R f , then

t + R(t) > 0, t− R(t) < 0 (58)

and the Moore equation is given by

(t + Rlim(t))− L f

R f − L f
− (t− Rlim(t)) + L0

R0 − L0
= 2. (59)

Solving this equation for Rlim(t), we get

Rlim(t) =
2(R0 − L0)(R f − L f ) + L f (R0 − L0) + L0(R f − L f )

(R0 − L0) + (R f − L f )

− t
(R0 − L0)− (R f − L f )

(R0 − L0) + (R f − L f )
= Rc + vlimt. (60)

Similarly, we have Llim(t < −L0) = L0, Llim(t > L f ) = L f and

Llim(−L0 < t < LF) =
L f (R0 − L0) + L0(R f − L f )

(R0 − L0) + (R f − L f )
+ vlimt. (61)

In simple words, the limit effective trajectories, at early and late times, coincide with
the constant position from the reference trajectory. For intermediate time values, say
between these initial and final positions, the motion of the limit trajectories is simply a
uniform motion with the same velocity, vlim, for the left and right mirrors. This velocity
is determined only by the initial and final lengths of the cavity, being negative for a
contraction, positive for an expansion and zero if the cavity moves rigidly.

In addition, it is possible to notice that, in general, these trajectories are not continuous
functions. This is related to the fact that if the reference motion occurs in a timescale τ,
there exists a critical τc (which depends on the precise reference motion) for which the
effective trajectories cease to be physically achievable since the speed should be greater
than the speed of light at some time.

However, by enforcing continuity for the functions,

R0 = Rlim(−R0), R f = Rlim(R f ), (62)

L0 = Llim(−L0), L f = Llim(L f ), (63)

we find that if L f R0 = L0R f , the limit trajectories are actually continuous. Two simple
cases where this is verified is either when there is a trivial reference motion (that is L0 = L f
and R0 = R f ) or in the case when one of the walls is at rest at the origin, L0 = L f = 0, and
the other moves freely.
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5. Numerical Analysis of the STA

We now consider a particular set of reference trajectories for which we find the asso-
ciated effective trajectories by numerically solving Equations (46) and (47). We consider
different types of motions for the mirrors, such as a contraction, an expansion and a rigid
translation, and we compare the results of the obtained trajectories and energies between
the reference and effective trajectories.

Before proceeding, we need to establish a magnitude to decide whether an STA has been
achieved and measure how far we are from one. Hence, we define the adiabaticity coefficient

Q(t) :=
E(t)

Ead(t)
, (64)

where E(t) is the total energy in the cavity

E(t) =
∫ R(t)

L(t)
dx〈T00(x, t)〉ren, (65)

while the adiabatic energy is given by

Ead(t) = −
π

24d
+

Z(TL0)

d
, (66)

where d = |R(t)− L(t)| is the length of the cavity. Notice that the adiabaticity parameter
equals one if the field evolves in an adiabatic manner. However, due to the static Casimir
energy (the first term of Ead), Q can either be lower than one for low temperatures or bigger
than one for high temperatures, if the cavity is static.

Once the effective trajectories are obtained, the Moore functions are given by Equation (44).
The energy and adiabaticity coefficients can then be calculated using Equations (16) and (65).
However, it is useful to contrast these results with the energy and adiabaticity parameters
corresponding to the original reference trajectories. In order to do this, we need to obtain
the functions F(t) and G(t) by numerically solving Moore’s Equations (13) and (14). We
dedicate the next section to develop an algorithm for solving this system of coupled
functional equations.

5.1. Algorithm for Moore’s Equations

In the following, we derive an algorithm for solving Moore’s equations for F(z)
and G(z) which can be used for arbitrary trajectories L(t) and R(t) of the mirrors. This
algorithm is a generalization of the one used for a single moving mirror in Ref. [36].

In order to find G(z1), we look for t1 such that

z1 = t1 + R(t1), (67)

which can be done simply by solving an algebraic equation. Then, from Equation (14) we
know that

G(t1 + R(t1)) = F(t1 − R(t1)) + 2 (68)

and, solving for t∗1 , such that

t1 − R(t1) = t∗1 − L(t∗1), (69)

we find, using Equation (13),

F(t∗1 − L(t∗1)) = G(t∗1 + L(t∗1)) (70)

=⇒ G(t1 + R(t1)) = F(t∗1 − L(t∗1)) + 2 = G(t∗1 + L(t∗1)) + 2. (71)
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Hence, given
z2 := t∗1 + L(t∗1), (72)

we have
G(z1) = G(z2) + 2. (73)

If we assume z2 to be our starting point and iterating this n times, we obtain

G(z1) = G(zn+1) + 2n. (74)

Note that if L(t) < R(t) for all t, then

t1 − R(t1) = t∗1 − L(t∗1) =⇒ t1 − t∗1 = R(t1)− L(t∗1) > 0 =⇒ t1 > t∗1 (75)

t∗1 + L(t∗1) = t2 + R(t2) =⇒ t∗1 − t2 = R(t2)− L(t∗1) > =⇒ t1 > t∗1 > t2, (76)

which in turn means that z1 > z2 > ... > zn. This means we have reduced the original
problem of finding the value of the function for a given time to knowing it at a previous
temporal value. We can iterate this procedure going back in time until G(zn) is known,
which eventually happens since we know the solution for static mirrors (Equation (53)).
Analogously, for the other Moore function, if we wish to find F(w1), we can search for a t1
such that

w1 = t1 − L(t1). (77)

By means of Moore’s Equation (13), we know that

F(t1 − L(t1)) = G(t1 + L(t1)). (78)

If we solve for t̃1
t̃1 + R(t̃1) = t1 + L(t1), (79)

we obtain
G(t̃1 + R(t̃1)) = 2 + F(t̃1 − R(t̃1)) (80)

=⇒ F(t1 − L(t1)) = G(t1 + L(t1)) = G(t̃1 + R(t̃1)) = 2 + F(t̃1 − R(t̃1)) (81)

F(w1) = 2 + F(t̃1 − R(t̃1)). (82)

Finally, defining
w2 := t̃1 − R(t̃1) (83)

we can express the value of the function at point w1 in terms of the value of the function
at w2

F(w1) = 2 + F(w2). (84)

In general, by iterating, we get

F(w1) = 2n + F(wn+1), (85)

and, once more, if we go back enough times, we eventually reach the point where the
mirrors are static and the function F(zn) can be evaluated using Equation (52). In the end,
we obtain an iterative algorithm to evaluate Moore’s functions F(z) and G(z) at any point.

5.2. Reference Trajectories

We performed a numerical analysis and compared the reference trajectories with
their effective trajectories. We also computed the adiabaticity parameter for different
temperatures. In order to do this, we needed a well-defined continuous energy density
for the field. Since 〈Ttt(x, t)〉ren involves third derivatives of the Moore functions, which
in turn involve third derivatives of the reference trajectories, we chose these reference
trajectories to have continuous derivatives up to the third order. We considered the motion
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of the wall to be restricted to a finite-time interval. In order to fulfill these conditions, we
chose the reference trajectories to be

Lref(t) = (L f − L0)δ(t/τ) + L0 (86)

Rref(t) = R0[1− εδ(t/τ)] (87)

where δ(x) = 35x4 − 84x5 + 70x6 − 20x7 satisfies δ(0) = δ′(0) = δ′′(0) = δ′′′(0) = δ′(1) =
δ′′(1) = δ′′′(1) = 0 and δ(1) = 1.

In the following sections, we use these trajectories to analyze different types of motions,
such as a contraction, expansion and rigid motion, their effective trajectories and whether
they achieve an STA.

5.3. Contraction

We first analyzed a symmetric contraction of the cavity, meaning that both mirrors
performed the same reference motion at the same time, but in opposite directions. We
represented this by considering the reference functions Equations (86) and (87) and solving
numerically Equations (46) and (47) for the effective trajectories, Reff(t) and Leff(t).

In Figure 2a, we show the reference and corresponding effective trajectories for the
left (dashed lines) and right mirrors (solid lines) in a symmetric contraction. We note that
the effective trajectory for the right mirror starts moving first close to t = −R0, while the
left mirror moves at later times near t = −L0, as pointed out by our analysis for the limit
trajectories. If we look at Reff, we also note the local minimum and maximum around these
points develop into discontinuities for very small τ. This can also be seen in Figure 3, where
we compare the effective trajectories for an asymmetric contraction with τ/R0 = 0.4 and the
limit effective trajectories analytically (Equations (60) and (61)). Therein, the discontinuities
are more evident. It is also noticeable that the right trajectory converges faster than the left
one and that the slope of the curve, i.e., the velocity, is negative, which is consistent with
our analytical results.

In Figure 2b, we show the resulting Moore functions for the reference and effective
trajectories. In the case of the effective trajectory, the functions are linear at the early and
late times. On the other hand, Moore’s functions for the reference trajectory are linear plus
an oscillation at late times, which is the manifestation of particle creation.
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Figure 2. (a) Reference and corresponding effective trajectories for the left and right mirrors in the case
of a symmetric contraction. (b) Resulting Moore’s functions for reference and effective trajectories.
The parameters used for this calculation were τ/R0 = 1.2, ε = 0.3, L0/R0 = 0, L f /R0 = 0.3 and
R f /R0 = 0.7.
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Figure 3. (a) Effective and limit trajectories for the left mirror for an asymmetric contraction. (b) Ef-
fective and limit effective trajectories for the right mirror. The parameters used for this calculation
were τ/R0 = 0.4, ε = −0.3, L0/R0 = 0, L f /R0 = 0.5 and R f /R0 = 1.3.

Further, we analyzed the adiabaticity parameter for different initial temperatures as
shown in Figure 4. We note that the adiabaticity parameter is initially one. However, for
both the reference and effective trajectories at later times, the reference trajectory is very
far from unity, while the effective trajectory returns to one, indicating that an adiabatic
evolution has been achieved by reabsorbing the emitted photons. It is also noticeable that
as the temperature increases, the curves become smoother.
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Figure 4. Adiabaticity parameter for a symmetric contraction for three different temperatures:
(a) TR0 = 0, (b) TR0 = 1 and (c) TR0 = 5. The parameters used for this calculation were τ/R0 = 1.2,
ε = 0.3, L0/R0 = 0 and L f /R0 = 0.3, R f /R0 = 0.7.

5.4. Expansion

We then analyzed our proposed STA for a reference trajectory given by a symmet-
ric expansion of the cavity. To achieve this, we used the reference trajectories given by
Equations (86) and (87) with ε < 0 and L f = εR0.

In Figure 5a, we show the reference and corresponding effective trajectories for the
left (dashed lines) and right (solid lines) mirrors in a symmetric expansion. We notice that
the effective trajectory of the right mirror has a local minimum and maximum close to
the point where a discontinuity will develop for τ → 0, which is in agreement with the
limit effective trajectories calculated. On the other hand, the effective trajectory of the right
mirror is very similar to the reference one. This is because, as we have previously seen, the
convergence of the effective trajectory of the left mirror to the limit is slower. The Moore
functions, however, have a similar behavior to that of the previous case.
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Figure 5. (a) Reference and corresponding effective trajectories for the left and right mirrors in the
case of a symmetric expansion. (b) Resulting Moore functions for reference and effective trajectories.
The parameters used for this calculation were τ/R0 = 1.2, ε = −0.3, L0/R0 = 0, L f /R0 = −0.3 and
R f /R0 = 1.3.

In Figure 6, we present the adiabaticity parameter for a symmetric expansion for three
different temperatures. In this case, the adiabaticity parameter again confirms that we have
obtained an STA, as it is equal to one for late times for the effective trajectories. We can
also see that the effect of the temperature on this parameter is to smooth the curve as the
temperature increases. The STA allows us to save more energy for higher temperatures.

-1 0 1 2

t/R
0

0.4

0.6

0.8

1

1.2

1.4

Q
eff

Q
ref

(a)

-1 0 1 2

t/R
0

0

2

4

6
Q

eff

Q
ref

(b)

-1 0 1 2

t/R
0

1

1.1

1.2
Q

eff

Q
ref

(c)

Figure 6. Adiabaticity parameter for a symmetric expansion for three different temperatures:
(a) TR0 = 0, (b)TR0 = 1 and (c) TR0 = 5. The parameters used for this calculation were τ/R0 = 1.2,
ε = −0.3, L0/R0 = 0, L f /R0 = −0.3 and R f /R0 = 1.3.

5.5. Rigid Motion

The final type of reference trajectory that we considered was a rigid translation. To
achieve this, we used the reference trajectories given by Equations (86) and (87) with ε < 0
and L f = −εR0. There were several motivations for this from the fact that the limit effective
trajectories were qualitatively different from fundamental questions on relativistic quantum
information tasks.

In Figure 7, we show the reference and corresponding effective trajectories for the
left (dashed lines) and right (solid lines) mirrors in a rigid translation. We can see that the
effective trajectory of the left mirror is very similar to the reference trajectory. However,
the effective trajectory for the right mirror is extremely different from the other two cases
studied previously. We observe that the right mirror moves half of the way while the left
one is static, then it stops, and the left mirror moves and stops, and then it moves again
up to the final position. Although this motion can look strange at first sight, it is very well
described by the limit effective trajectory in Figure 8, which predicts that the speed of the
motion should be zero for a reference trajectory that does not change the length of the
cavity. The Moore functions also have a similar behavior as in the previous cases.
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Figure 7. (a) Reference and corresponding effective trajectories for the left and right mirrors in the
case of a rigid translation. (b) Resulting Moore functions for reference and effective trajectories.
The parameters used for this calculation were τ/R0 = 1.2, ε = −0.3, L0/R0 = 0 and L f /R0 = 0.3
R f /R0 = 1.3.
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Figure 8. (a) Effective and limit trajectories for the left mirror for a rigid motion. (b) Effective and
limit trajectories for the right mirror for a rigid motion. The parameters used for this calculation were
τ/R0 = 0.4, ε = −0.4, L0/R0 = 0, L f /R0 = 0.4 and R f /R0 = 1.3 .

Finally, we studied the adiabaticity parameter for the reference rigid motion as shown
in Figure 9. We see that the effective trajectories given by Equations (86) and (87) result in a
successful shortcut to adiabaticity, since for late times, Qeff = 1. The energy saved by using
this motion protocol is greatly enhanced for high temperatures for the initial state of the
quantum field.
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Figure 9. Adiabaticity parameter for a rigid translation for three different temperatures: (a) TR0 = 0,
(b) TR0 = 1 and (c) TR0 = 5. The parameters used for this calculation were τ/R0 = 1.2, ε = −0.3,
L0/R0 = 0, L f /R0 = 0.3 and R f /R0 = 1.3.
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6. Discussion

As technology improves and quantum systems can be operated at smaller timescales,
it becomes increasingly important to consider the nonadiabatic effects of these operations
and to develop new ways of mitigating of even avoiding them entirely. With this motivation
in mind, in this manuscript we found a shortcut to adiabaticity for a scalar quantum field
in a one-dimensional cavity with two moving mirrors. This allowed an extremely efficient
way to manipulate microwave resonators very rapidly. Moreover, our results gave an
explicit protocol to find STAs for any initial and final state of the mirrors, which can be
implemented in an experimental setup by choosing adequately effective trajectories for the
mirrors calculated from a given reference trajectory.

We analytically analyzed the properties of these effective trajectories and found that
the limit effective trajectories, for infinitely fast reference trajectories, are in general not
continuous functions, which signaled that there was a critical timescale beyond which the
resulting shortcut ceased to be physical, since the mirror should not move faster than the
speed of light.

In addition, we solved numerically the effective trajectories for three different types of
reference motions: a contraction, an expansion and a rigid translation of the cavity. Our
numerical analysis confirmed the analytical results, showing that our protocol successfully
implemented a shortcut to adiabaticity and that the effective trajectories were very well
described by the limit effective trajectories found analytically.

These findings call for further studies that analyze in more depth the experimental
implementation in superconducting circuits or optomechanical cavities. It would also
be interesting to better understand the instantaneous energetic cost of this STA and their
utilization in more efficient quantum heat engines.
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