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Abstract: We deal with multidimensional regularized systems of equations for the one-velocity
and one-temperature inert gas mixture dynamics consisting of the balance equations for the mass of
components and the momentum and total energy of the mixture, with diffusion fluxes between the
components as well as the viscosity and heat conductivity terms. The regularizations are kinetically
motivated and aimed at constructing conditionally stable symmetric in space discretizations without
limiters. We consider a new combined form of regularizing velocities containing the total pressure of
the mixture. To confirm the physical correctness of the regularized systems, we derive the balance
equation for the mixture entropy with the non-negative entropy production, under generalized
assumptions on the diffusion fluxes. To confirm nice regularizing properties, we derive the systems of
equations linearized at constant solutions and provide the existence, uniqueness and L2-dissipativity
of weak solutions to an initial-boundary problem for them. For the original systems, we also
discuss the related Petrovskii parabolicity property and its important corollaries. In addition, in
the one-dimensional case, we also present the special three-point and symmetric finite-difference
discretization in space of the regularized systems and prove that it inherits the entropy correctness
property. We also give results of numerical experiments confirming that the discretization is able to
simulate well various dynamic problems of contact between two different gases.

Keywords: regularized equations for one-velocity and one-temperature gas mixture dynamics;
entropy balance equation; linearization; three-point symmetric spatial discretization; discrete entropy
balance equation
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1. Introduction

Multicomponent compressible gas mixture dynamics is an important field in science
and engineering, and a number of systems of partial differential equations (PDEs) were
developed to describe phenomena of such type, see, in particular, references [1–3] and
references therein.

Numerical methods serve as the most powerful tool to solve and simulate such
systems of quasilinear PDEs. Originally, various numerical methods were designed to solve
the compressible single-component gas dynamics systems of PDEs, and vast literature is
devoted to this subject, see, in particular, references [4–6] and references therein.

Preliminary regularization of equations is an important and frequently used approach
in constructing numerical methods for solving various scientific problems. In compu-
tational physics, those regularizations that have a physical basis are usually preferred.
Such numerical methods are also used in computational gas dynamics. These include
explicit in time conditionally stable and symmetric in space finite-difference and finite
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volume methods without limiters based on the discretization of regularized, or the so-called
quasi-gas-dynamic (QGD), equations of gas dynamics. It is well known that, without reg-
ularization, methods of such type are unstable. These QGD equations were originally
constructed on the basis of the Bhatnagar–Gross–Krook model kinetic equations, see mono-
graphs [7–9]. They can be rewritten in the form akin to compressible Navier–Stokes–Fourier
equations with artificial coefficients of viscosity and heat conductivity and additional sec-
ond order terms in space representing the regularizing velocity, viscous stress and heat flux,
with a small parameter τ > 0. These equations can also be obtained on the basis of com-
pressible Navier–Stokes–Fourier equations using formal procedures of time averaging and
expansion [10–12]. Numerical methods based on the QGD equations have been successfully
tested in practice for almost 40 years, including complex applied problems; see an extensive
bibliography in the above monographs and numerous subsequent works, among which we
highlight only a few works devoted to 3D turbulence and magnetohydrodynamics prob-
lems and the inclusion of such methods in the well known open source software package
OpenFOAM [13–16]. Note that τ is taken proportional to the characteristic spatial mesh
step in numerical methods. The QGD equations were proved to be physically correct, in the
sense that they imply the correct entropy balance equation, i.e., with a non-negative entropy
production. Some mathematical regularizing properties of the QGD equations were also
confirmed, including their Petrovskii parabolicity, in contrast to the Euler equations and
compressible Navier–Stokes–Fourier equations, which have hyperbolic and composite
hyperbolic–parabolic types, respectively, as well as L2-dissipativity of the QGD equations
linearized on constant and equilibrium solutions [17,18]. Recall that the important question
of correct setting of boundary conditions is closely related to the type of a system of PDEs,
and this setting is usually the most complicated in the hyperbolic case and the simplest in
the parabolic case. In addition, conditional stability theorems were proved in the linearized
statement for the above mentioned difference methods based on the QGD equations [19–21].
Notice also a quasi-hydrodynamic (QHD) regularization which can be considered as a
simplification of the QGD one applicable to some subsonic or transonic flows [8,9].

There are other regularizations of the gas dynamics equations, which were also studied
mathematically and aimed at constructing new numerical methods; in particular, see three
approaches [22–25] and [26,27]. In all the approaches, much attention is paid to the entropy
correctness of regularized equations. Among the listed approaches, the last one based on
the so-called bi-velocity hydrodynamics [28,29], is closest to the QGD approach in structure
of equations, although they are far from being the same. Alternative approaches also
demonstrate success, but so far they have not yet undergone such extensive multi-year
testing as the QGD approach.

This paper is related to further development of the QGD and QHD regularizations
and the corresponding numerical methods in the case of multicomponent gas mixture
dynamics, and we deal with the so-called one-velocity and one-temperature homogeneous
gas mixture model, with the perfect polytropic components. The reason is that such type
models are widespread in practice including the computational design of aircraft and
rocket engines.

For binary mixtures, the original regularized QGD multi-velocity and multi-temperature
homogeneous gas mixture model was constructed on the basis of kinetic equations for
mixtures in ([8], Chapter 9). It was rewritten in [30] in the form of the compressible Navier–
Stokes–Fourier equations with exchange terms for components and additional regularizing
velocities, viscous stresses and heat fluxes, and a justification of its entropy correctness was
given. Concerning applications, in particular, see [8,31]. For multicomponent mixtures,
see similar QGD model and its applications in [32,33]. We do not touch this model here.
The transition to the QGD one-velocity and one-temperature model was accomplished
in ([34], Section 1) by aggregating the PDEs of the original model. The aggregation pro-
cedure is simple and consists in using the balance PDEs for the mass of components and
the momentum and total energy of the mixture, followed by taking the common velocities
and temperatures of the components in them. The main advantage of this procedure is
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that the entropy correctness of the resulting QGD model is guaranteed. A mathematical
analysis of such a multicomponent QGD regularization, as well as its QHD simplification,
with additional allowance for diffusion fluxes between components, has recently been
given in [35].

In [36], another approach to the construction of regularized QHD Navier–Stokes–
Fourier–Cahn–Hilliard equations at low Mach numbers was given, based on the well-
known Coleman–Noll procedure and also ensuring the entropy correctness of the QHD
model. The regularizing velocity wα of the component α, which play an important role
in the QGD and QHD regularizations, turned out to be different in [34,36] depending
on the partial pressure pα and the total pressure p, respectively. An additional full or
partial averaging of wα from [34] can be applied (for the QHD regularization, they are the
same), which also makes the result depending on p, see the next Section. A mathematical
analysis of such a multicomponent QHD regularization has recently been given in [37];
among other things, it turned out that, in contrast to the single-component case, in the
absence of diffusion fluxes, the QHD system of PDEs acquires the composite hyperbolic–
parabolic type, i.e., the regularization becomes incomplete. Theoretical constructions
were accompanied by experiments with corresponding difference schemes, see [34,38–41],
etc. The full averaging of wα seems to be unsuccessful since the entropy correctness of
the QGD regularization with it was established in ([34], Section 2) only by passing to
a non-conservative modification of the balance PDE for the total energy of the mixture,
and the corresponding difference schemes gave satisfactory results only in simple 1D tests,
in particular, see Section 5 below.

The partial averaging of wα corresponds to the combined wα, and the first sufficiently
successful experiments with corresponding difference schemes are presented in [42]. An
incomplete attempt to derive the combined wα and the entire regularized system using
the approach from [10] is also made there. In this case, the regularizing viscous stress
tensor and heat flux turn out to be different than in ([34], Section 1) in contrast to the
single-component case, and a significant drawback of such a system in [42] is the loss of
entropy correctness.

In this paper, we analyze the effect of these new combined regularizing velocities
of components wα depending on the densities of the components and the total pressure.
However, we still apply the same aggregated regularized balance PDEs for the momentum
and total energy of the mixture as in ([34], Section 1.2) and [35] in the case of binary and
general multicomponent mixtures, respectively. In addition, we involve a new generalized
form of the diffusion fluxes between the mixture components. Following [35], we study
both the QGD and QHD regularizations in a unified manner by introducing a parameter in
the corresponding PDEs. The first main theoretical result of the paper is the derivation of
the balance equation for the mixture entropy with non-negative entropy production for
our essentially modified system of equations. The second result concerns the derivation
and study of the linearized system of PDEs: we justify the existence, uniqueness and
L2-dissipativity of weak solutions to an initial-boundary value problem for this system. We
also discuss that our results imply the Petrovskii parabolicity of the original quasilinear
system of PDEs which allows one to obtain the local-in-time classical unique solvability
of the Cauchy problem for this system identical to ([35], Theorem 3.3) and simplify the
statement of correct boundary conditions for it. We emphasize that the presence of the
diffusion fluxes is crucial for validity of the second and related results, for, without them,
the original system of PDEs becomes a more complicated composite hyperbolic–parabolic,
as in [37], not parabolic. This discovered regularizing role of the diffusion fluxes is
nontrivial and even somewhat surprising. Notice that important mathematical results on
the properties of other PDEs for compressible heat-conducting gas mixtures were proved,
in particular, in [2,43–46].

In the one-dimensional (1D) case, we also consider the new special three-point and
symmetric finite-difference discretization which modifies one suggested in [41] in the case
of the new regularizing velocities and more general form of the diffusion fluxes; for the
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single-component gas dynamics PDEs, this discretization was suggested, generalized and
computationally tested in [47–49]. The discretization uses some non-standard nonlinear
averages of the densities of the components and temperature and is conservative in the
mass of the components and the momentum and total energy of the mixture. Our main
theoretical result relating to this discretization is the semi-discrete balance equation for
the mixture entropy with the non-negative entropy production; it means that the con-
structed discretization is entropy correct. In addition, results of our numerical experiments
demonstrate better (sometimes, much better) or not worse behaviour, depending on the
test, for the new combined regularizing velocities compared to those used previously.
Now we can hope that the entropy correct discretizations of the considered type will be
further developed for the general multidimensional gas mixture dynamics PDEs in the
spirit of [48].

Vast literature is devoted to other numerical methods for solving multicomponent
gas dynamics PDEs. We refer the reader to the brief review and a collection of references
in the recent paper [50]. Note that only a few of the papers touch the entropy correct
methods [51]. This is an important but complicated subject even in the case of single-
component gas dynamics PDEs, see, in particular, reviews: Tadmor, E., Entropy stable
schemes ([6], Chapter 17) and Carpenter, M.H.; Fisher, T.C.; Nielsen, E.J. et al. Entropy
stable summation-by-parts formulations for compressible computational fluid dynamics
([6], Chapter 19) and references therein.

The structure and the results of the paper in more detail are as follows. In Section 2,
we present the aggregated regularized systems of PDEs describing the multidimensional
one-velocity and one-temperature homogeneous gas mixture model, define the collection
of all the involved functions and pass to the combined regularizing velocities. Proposition 1
concerns properties of the average gas mixture parameters, and Proposition 2 establishes a
useful particular connection between solutions to the regularized systems of PDEs for the
gas mixture dynamics and single-component gas dynamics. The main result is Theorem 1
about the balance equation for the mixture entropy with the non-negative entropy produc-
tion. In Section 3, we derive and study the linearized system of PDEs. The key role belongs
to the properties of symmetry/skew symmetry and positive definiteness of the related
bilinear forms considered in Lemma 2. Theorem 2 states the existence, uniqueness and
L2-dissipativity of weak solutions to an initial-boundary value problem for the linearized
system. We also discuss the Petrovskii parabolicity of the original quasilinear system of
PDEs and a local-in-time classical unique solvability of the Cauchy problem for this system.
In Section 4, we pass to the 1D case of the regularized system of PDEs, introduce the mesh
notation and present a special three-point and symmetric discretization in space for 1D
regularized systems. Theorem 3 contains a semi-discrete balance equation for the entropy
of the gas mixture, with a non-negative entropy production, and serves as a counterpart of
Theorem 1. Section 5 is devoted to 1D numerical experiments. Applying the constructed
discretization, we solve four known tests from [52–55]. The results confirm that the dis-
cretization is able to simulate well various dynamic problems of contact between two
different gases, including the case of high initial pressure drops, and have some advantages
over other choices of the regularizing velocities from [34] and especially from [37,39].

The paper also contains four appendices. Appendix A is devoted to derivation of
the combined regularizing velocities and the full regularized system of PDEs from [39]
based on the Euler-type system of PDEs for multicomponent gas mixture dynamics, by
applying a formal procedure suggested in [11]. In Appendix B, we accomplish the scaling
of the regularized system of PDEs from Section 2 that is often used to solve practical prob-
lems. In Appendix C, for the 1D case of the Euler-type system of PDEs from Appendix A,
the Rankine–Hugoniot relations on the shock wave are given, and conditions for the ex-
istence of a stationary shock wave and the relationship between the values of the sought
functions to the left and right of it are derived. Finally, in Appendix D, the 1D finite-
difference counterpart of Proposition 2 is given.
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2. A Regularized System of Equations for the Multicomponent Gas Mixture Dynamics
with New Regularizing Velocities in the Presence of Diffusion Fluxes

The aggregated regularized system of PDEs for one-velocity and one-temperature
multicomponent homogeneous gas mixture dynamics consists of the following balance
PDEs for the mass of components, total momentum and total energy of the mixture:

∂tρα + div
(
ρα(u−w`α) + dα

)
= 0, α = 1, K, (1)

∂t(ρu) + div
(
ρ(u−w`)⊗ u

)
+∇p = div Π` +

(
ρ− `τ div(ρu)

)
f, (2)

∂tE + div
(
0.5ρ|u|2(u−w`) + 〈ραhα(u−w`α)〉

)
= div(−q + Π`u) + ρ(u−w`) · f + Q. (3)

Here, the main sought functions are the densities of the mixture components ρ1 > 0, . . . , ρK >
0 (K > 2 is their amount), their common velocity u = (u1, . . . , un) and absolute temperature
θ > 0. These functions depend on x = (x1, . . . , xn) ∈ Ω and t > 0, where Ω is a domain in
Rn, n = 1, 2, 3, and α = 1, K means that α = 1, . . . , K. Vector-functions are written in bold.
The operators div = ∇· and ∇ = (∂1, . . . , ∂n) are taken in x, ∂t =

∂
∂t and ∂i =

∂
∂xi

. In this
section, the symbols ⊗ and · denote the tensor and scalar products of vectors, the tensor
divergence is taken with respect to its first index, and 〈·〉 is the operation of summation
over index α = 1, K.

This regularized system of PDEs was derived in [34] for K = 2 and d1 = d2 = 0 by
aggregating the regularized multi-velocity and multi-temperature gas mixture PDEs [30].
In general case, it has recently been studied mathematically in [35] in general case.

Now, we sequentially define a number of functions involved in these PDEs. We
assume that the mixture components are perfect polytropic gases and exploit the following
expressions for the pressure, specific internal energy, the total energy and the specific
enthalpy of the component α:

pα = (γα − 1)ραεα = Rαραθ, εα = cVαθ, Eα = 0.5ρα|u|2 + ραεα, hα = εα +
pα

ρα
= cpαθ, (4)

with physical constants γα = Rα
cVα

+ 1 > 1, Rα > 0, cVα > 0 and cpα = cVα + Rα = γαcVα,
the last two of which are the specific heat capacities at constant volume and pressure,
α = 1, K. One can consider any two of four constants γα > 1, Rα > 0, cVα > 0 and cpα > 0
as the main independent ones; below, in computations in Section 5, such role is played by
γα and cVα.

The total density and pressure, average specific internal energy and total energy of the
mixture are expressed by the formulas

ρ = 〈ρα〉, p = 〈pα〉 = Rρθ, ε =
〈ρα

ρ
εα

〉
= cVθ, E = 〈Eα〉 = 0.5ρ|u|2 + ρε, (5)

with the average gas mixture parameters

R :=
〈ρα

ρ
Rα

〉
, cV :=

〈ρα

ρ
cVα

〉
. (6)

The second Formula (5) is the Dalton law for mixtures. The function ρα
ρ =: Cα is the mass

concentration of the mixture component α. Consequently, the important formula of the
standard form for the total pressure holds as well

p = (γ− 1)ρε, γ :=
R
cV

+ 1 =
cp

cV
with cp :=

〈ρα

ρ
cpα

〉
.

In contrast to the single-component case, R, cV and γ are functions, not constants, except for
the particular cases R1 = . . . = RK, cV1 = . . . = cVK and γ1 = . . . γK, respectively.
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In the above PDEs, the following regularizing velocities for the component α and
average ones were originally used

w`α = `
τ

ρα
div(ραu)u + ŵα, ŵα = τ

(
(u · ∇)u +

1
ρα
∇pα − f

)
, (7)

w` :=
〈ρα

ρ
w`α

〉
= `

τ

ρ
div(ρu)u + ŵ, ŵ :=

〈ρα

ρ
ŵα

〉
= τ

(
(u · ∇)u +

1
ρ
∇p− f

)
, (8)

see [34], where τ = τ(ρ, u, θ) > 0 is a regularization (relaxation) parameter which is usually
a function, not constant, with ρ := (ρ1, . . . , ρK). Here, ` = 0 or 1, and the regularization
is of the so-called quasi-gasdynamic (QGD) type for ` = 1 or essentially simpler quasi-
hydrodynamic (QHD) type for ` = 0, so actually we consider two different, albeit related,
systems in a unified manner similarly to [35]. The Formula (8) mean takes the average of
w`α and ŵα, in other words, the full and partial averaging of w`α.

In this paper, we replace ŵα by ŵ making w`α combined and dependent on the total
pressure p instead of the partial pressure pα:

w`α = `
τ

ρα
div(ραu)u + ŵ, ŵ = τ

(
(u · ∇)u +

1
ρ
∇p− f

)
(9)

and analyze the effect of this replacement discussed above in Introduction. Notice that the
replacement does not affect the validity of Formula (8) for w`.

The viscosity tensor and heat flux are expressed, respectively, by the formulas

Π` = ΠNS + Πτ
` , q = qF + qd + `qτ

and contain the standard-type terms and the regularizing ones with the superscript τ. The
classical Navier–Stokes viscosity tensor and the Fourier heat flux are given by the formulas

ΠNS = µ
(
∇u + (∇u)T)+ (λ− 2

3 µ
)
(div u)I, −qF = κ∇θ, (10)

where µ > 0, λ > 0 and κ > 0 are the total coefficients of dynamic and bulk viscosities and
heat conductivity (which can depend on the sought functions (ρ, u, θ)), ∇u = {∂iuj}n

i,j=1
and I is the unit tensor of order n.

Next, the regularizing viscosity tensor and heat flux are given by the formulas

Πτ
` = ρu⊗ ŵ + `τ

(
u · ∇p + 〈γα pα〉div u− 〈γαQα〉+ Q

)
I, (11)

−qτ = τ
{(

cVρ∇θ − θ∇(Rρ)
)
· u−Q

}
u. (12)

The density of body force f and intensities of heat sources Qα > 0 (acting on the compo-
nent α) are given functions, and Q := 〈Qα〉 > 0.

Finally, we consider the diffusion fluxes and additional respective heat flux of the form

−dα :=
〈
dαβ

(
∇(Gα − Gβ) + (eα − eβ)∇θ

)〉
β
=
〈
dαβ

(
∇Gα + eα∇θ − (∇Gβ + eβ∇θ)

)〉
β
, (13)

qd =
〈(

Gα + eαθ
)
dα

〉
, (14)

Gα := εα +
pα

ρα
− sαθ = hα − sαθ = (cpα − sα)θ, sα = sα0 − Rα ln

ρα

ρα0
+ cVα ln

θ

θ0
, (15)

where 〈·〉β means the summation over index β = 1, K. The functions Gα and sα are the
usual Gibbs potential and specific entropy of the component α, and sα0, ρα0 > 0 and θ0 > 0
are constant reference values for sα, ρα and θ, α = 1, K. The functions-coefficients dαβ and
eα can depend on the sought functions. Their specific form is not essential below, and we
only assume the symmetry property dαβ = dβα for any α 6= β.
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Let 〈·〉α,β := 〈〈·〉β〉 mean the summation over α, β = 1, K. Using permutations of
indices α and β and then this symmetry property, we obtain two identities

〈dαβ(ϕα − ϕβ)〉α,β = 〈(dαβ − dβα)ϕα〉α,β = 0,

〈dαβ(ϕα − ϕβ)ψα〉α,β

= 0.5〈dαβ(ϕα − ϕβ)ϕα + dβα(ϕβ − ϕα)ψβ〉α,β = 0.5
〈
dαβ(ϕα − ϕβ)(ψα − ψβ)

〉
α,β (16)

for any numbers ϕ1, . . . , ϕK and ψ1, . . . , ψK. The first identity implies the important physical
property 〈dα〉 = 0, and the second one will also be essential below.

We can avoid the explicit usage of sα due to the formulas

∇Gα + eα∇θ = −θ∇sα + (cpα − sα + eα)∇θ = Rα
θ

ρα
∇ρα + ēα∇θ

=
1
ρα
∇pα + (ēα − Rα)∇θ and Gα + eαθ = (cVα + ēα)θ, with ēα := Rα − sα + eα. (17)

In particular, for eα = sα, we obtain the simplest formulas

∇Gα + sα∇θ = Rα
θ

ρα
∇ρα + Rα∇θ =

1
ρα
∇pα, Gα + sαθ = hα.

The general multicomponent case (K > 2) for ` = 0, 1 in the presence of dα and qd

has recently been studied mathematically in [35] but only in the particular case dαβ ≡ d0
and Keα − 〈eβ〉β = bα, that is the same for K = 2 but much less general for K > 3. The
above quantities dα and qd generalize those proposed in [1] in the case K = 2; in this case,
the formulas are transformed and discussed in more detail in [35]. Notice also that a much
more general approach for introducing these quantities is known, for example, see [2].

Without the regularization, i.e., for τ = 0, the above regularized system of PDEs is
simplified and reduced to the compressible Navier–Stokes–Fourier-type system for the
one-velocity and one-temperature multicomponent gas mixture dynamics for µα > 0,
λα > 0 and κα > 0 or the Euler-type one for µα = λα = κα = 0, α = 1, K, in particular,
see [1,2,50] and references therein, and also Appendix A.

In [34], the above total coefficients µ, λ and κ are defined simply as

µ = 〈µα〉, λ = 〈λα〉, κ = 〈κα〉, (18)

i.e., the sums of the corresponding coefficients of the components. These coefficients can be
artificial depending on τ in order to ensure stability of symmetric in space discretizations
for computations, or physical, or sums of them. In the first case, the typical formulas for τ
and them are as follows

τ =
ah

cs + iτ |u|
, µ = τ〈aSα pα〉, λ = τ〈a1Sα pα〉, κ = τ〈aPrαγαcVα pα〉 (19)

in accordance with Formula (18). Here, 0 < a 6 1 is a parameter, aSα > 0 and aPrα > 0 are
the Schmidt and inverse Prandtl numbers for the component α; a1Sα > 0 is a counterpart of
aSα (in particular, a1Sα = 0), which can be also used as adjusting numerical parameters,

cs =
√

γ(γ− 1)ε =
√

γRθ

is the sound speed of the mixture, iτ = 0 or 1, and h is a characteristic size of the spatial
mesh. In the case of aSα = aS, a1Sα = a1S and aPrα = aPr independent of α, the formulas for
µ, λ and κ are simplified:

µ = aSτp, λ = a1Sτp, κ = τaPr〈γαcVα pα〉.
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For the single-component gas dynamics, see such formulas, in particular, in [8,9,19].
Recall that Rα = R0

mα
, where R0 is the universal gas constant and mα > 0 is the

molecular mass of gas α. In some cases, γα and mα are taken as the two main gas constants,
and the average molecular mass of the mixture m is defined by 1

m =
〈 ρα

ρ
1

mα

〉
. Then the other

gas constants can be expressed in the form

cVα =
R0

(γα − 1)mα
, R =

R0

m
, cV = R0

〈ρα

ρ

1
(γα − 1)mα

〉
, γ− 1 =

R
cV

=
〈ρα

ρ

1
γα − 1

m
mα

〉−1
.

We first give some inequalities for R, cV , m and γ.

Proposition 1. 1. The two-sided bounds hold

min
α=1,K

Rα 6 R 6 max
α=1,K

Rα, min
α=1,K

cVα 6 cV 6 max
α=1,K

cVα, min
α=1,K

mα 6 m 6 max
α=1,K

mα.

Moreover, all the inequalities are strict, except for the particular cases R1 = . . . = RK, cV1 = . . . =
cVK and m1 = . . . = mK, respectively.

2. The formula and two-sided bounds also hold

min
α=1,K

γα 6 γ =
R + cV

cV
=
〈ραcVαγα〉
〈ραcVα〉

6 max
α=1,K

γα. (20)

Moreover, both the bounds are strict excluding the particular case γ1 = . . . = γK; in that case, we
have γ = γ1 even if cVα are not identical for all α = 1, K.

3. The following relations hold

〈γα pα〉 = γ̃p > γp with γ̃ :=
〈ραRαγα〉
〈ραRα〉

=
〈ρα

ρ

m
mα

γα

〉
⇔
〈ρα

ρ
c2

sα

〉
> c2

s = γ(γ− 1)ε. (21)

with c2
sα = γα(γα − 1)εα. Here, 〈γα pα〉 = γp, or γ̃ = γ, in the case γ1 = . . . = γK only.

Proof. Items 1 and 2 are elementary. Item 3 is valid since

〈γα pα〉 − γp = 〈(γα − 1)pα〉 − (γ− 1)p =
(〈 R2

α

cVα
ρα

〉
− 〈ραRα〉2
〈ραcVα〉

)
θ > 0 (22)

owing to the Cauchy inequality

〈ραRα〉2 =
〈

Rα

√
ρα

cVα

√
ραcVα

〉2
6
〈 R2

α

cVα
ρα

〉
〈cVαρα〉.

The inequality becomes an equality only for R2
α

c2
Vα

independent of α, i.e., γ1 = . . . = γK.

Remark 1. Starting from Formula (22), we can accomplish the following transformations

(
〈γα pα〉 − γp

) 〈ραcVα〉
θ

=
〈
(γα − 1)2cVαρα

〉
〈ραcVα〉 −

〈
(γα − 1)ραcVα

〉2

=
〈(
(γα − 1)2 − (γα − 1)(γβ − 1)

)
ραρβcVαcVβ

〉
α,β =

〈
(γα − 1)(γα − γβ)ραρβcVαcVβ

〉
α,β.

Permuting indexes α and β, similarly to identity (16), we derive the representation

〈γα pα〉 − γp =
θ

2〈cVαρα〉
〈
(γα − γβ)

2ραρβcVαcVβ

〉
α,β > 0

since (γα − 1)(γα − γβ) + (γβ − 1)(γβ − γα) = (γα − γβ)
2. This formula also implies Item 3.
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Formulas for γ and γ̃ in relations (20) and (21) show that both of them are averages
of γ1, . . . , γK, and clearly cVα and Rα can be scaled in these formulas. For γ̃, the same
bounds as in Item 2 for γ are valid. Note that, in our expression for Πτ , see (11), we use
the term 〈γα pα〉 as in [34,35], in contrast to γp in [39]. Moreover, both sides of the second
inequality (21) can be considered as different definitions for the squared sound speed of
the mixture, and we prefer to use the right-hand side in this role in this paper (Appendix C
helps to make the choice).

We first consider the sought functions of the particular form.

Proposition 2. Let 0 < Cα < 1, α = 1, K, be arbitrary constants such that 〈Cα〉 = 1. Consider
the sought functions of the particular form ρα = Cαρ with ρ > 0 (α = 1, K), u and θ > 0 and the
case of dα = 0 and ψ = ψ(ρ, u, θ) for the functions ψ = τ, µ, λ,κ. For them, the above regularized
system of PDEs for the gas mixture dynamics is reduced to the following regularized system of
PDEs for a single-component gas dynamics

∂tρ + div
(
ρ(u−w`)

)
= 0, (23)

∂t(ρu) + div
(
ρ(u−w`)⊗ u

)
+∇p = div Π` +

(
ρ− `τ div(ρu)

)
f, (24)

∂tE + div
(
(E + p)(u−w`)

)
= div(−q + Π`u) + ρ(u−w`) · f + Q (25)

for the sought functions ρ, u and θ and (x, t) ∈ Ω× [0, T]. Here,

p = (γ− 1)ρε = Rρθ, ε = cVθ, E = 0.5ρ|u|2 + ρε, R = 〈CαRα〉, cV = 〈CαcVα〉 (26)

with constant γ = R
cV

+ 1, R and cV , together with

w` = `
τ

ρ
div(ρu)u + ŵ, ŵ = τ

(
(u · ∇)u +

1
ρ
∇p− f

)
,

Π` = ΠNS + Πτ
` , Πτ

` = ρu⊗ ŵ + `τ
(
u · ∇p + γ̃p div u− (γ1 − 1)Q

)
I, (27)

q = qF + `qτ , −qτ = τ
{(

cVρ∇θ − Rθ∇ρ
)
· u−Q

}
u = τ

{(
ρ∇ε− p

ρ
∇ρ
)
· u−Q

}
u, (28)

where γ̃ = 〈CαRαγα〉/〈CαRα〉 and the above formulas (10) for ΠNS and qF are in use.

Proof. For ρα = Cαρ, under the assumptions made about Cα, we clearly obtain ρ = 〈ρα〉
and

w`α = `
τ

ρ
div(ρu)u + ŵ = w`, 〈ραhα〉 = ρ〈Cαcpα〉θ = ρε + p.

Thus, all the balance PDEs for the mass of components (1), after division by Cα, are reduced
to Equation (23). Moreover, expressions (11) for Πτ

` and (12) for −qτ are reduced to those
given in Formulas (27) and (28), using the expression for γ̃ in relations (21). Therefore, now
the original balance PDEs for the total momentum and total energy (2) and (3) take forms
(24) and (25).

This proposition establishes a particular connection between solutions to the regular-
ized systems of PDEs for the gas mixture dynamics and single-component gas dynamics
for any γα > 1 and cVα > 0, α = 1, K, and can be useful to check properties of the former
system. In fact, it enlarges the corresponding 1D Proposition 1 in [41]. However, recall that
γ̃ = γ in Formula (27) only in the particular case γ1 = . . . = γK, see Proposition 1, Item 3
or Remark 1.

Applying the operation 〈·〉 to the mass balance equation for the mixture compo-
nents (1), using the formula 〈æα(u−w`α)〉 = ρ(u−w`) valid according to the first expres-
sion (8), and the property 〈dα〉 = 0, we obtain the important total mass balance equation

∂tρ + div(ρ(u−w`)) = 0. (29)
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Here, ρ1, . . . , ρK and θ appear only implicitly since ρ = 〈ρα〉 and p in w` depend on them.
The balance PDEs for the total momentum and total energy of the mixture (2) and (3)

entail sequentially the balance PDEs for the kinetic and internal energies of the mixture

0.5∂t(ρ|u|2) + 0.5 div
(
ρ|u|2(u−w`)

)
+ (∇p) · u = (div Π) · u +

(
ρ− `τ div(ρu)

)
f · u, (30)

∂t(ρε) + div〈ραεα(u−w`α)〉+ p div u = div(−q + 〈pαw`α〉) + Π : ∇u− ρŵ · f + Q, (31)

where the symbol : denotes the scalar product of tensors. The derivation exploits the total
mass balance equation (29) and is valid for any w`, for the former equation, and exploits
only the relation w` = `τ div(ρu)u + ŵ (for f 6≡ 0), but not explicitly Formulas (7) and (8),
for the latter equation, see ([35], Section 4.1).

The first main result of the paper concerns the total entropy balance equation. Recall
that the specific entropy of the mixture is given by the formula s =

〈 ρα
ρ sα

〉
. The result

corresponds to ([35], Theorem 3.1) but concerns another definition of the regularizing
velocity (9) and deals with much more general form of dα, for K > 3; this form is applicable
in [35,37] as well.

Theorem 1. Let dαβ = dβα > 0 for any α 6= β. The following regularized entropy balance equation
for the multicomponent mixture in the presence of diffusion fluxes holds

∂t(ρs) + div
{
〈ραsα(u−w`α)〉+ 〈eαdα〉+

1
θ
(qF + `qτ)

}
= PNS + Pτ

with the entropy production PNS + Pτ , where

PNS =
1
θ

{µ

2
|∇u +∇uT |2F +

(
λ− 2

3
µ
)
(div u)2 +

1
θ
κ|∇θ|2

+
1
2
〈
dαβ

∣∣∇(Gα − Gβ) + (eα − eβ)∇θ
∣∣2〉

α,β

}
> 0,

Pτ =
ρ

τθ
|ŵ|2 + `

〈
τ

Rα

ρα
(div(ραu))2 + τcVαρα

(
u · ∇ ln θ + (γα − 1)div u− (γα − 1)Qα

2pα

)2〉
+
〈Qα

θ

(
1− `

τ(γα − 1)Qα

4pα

)〉
,

and | · |F is the Frobenius norm. Moreover, Pτ is non-negative for ` = 0, as well as for ` = 1
under the condition

τ
〈 (γα − 1)Q2

α

4pα

〉
6 Q.

This condition is certainly true provided that τ(γα − 1)Qα 6 4pα, α = 1, K.

Proof. According to ([35], proof of Theorem 3.1), the following preliminary equation
involving the entropies of the mixture and the components holds

∂t(ρs) + div
{
〈ραsα(u−w`α) + eαdα〉+

1
θ
(qF + `qτ)

}
= −1

θ
∇θ · 〈eαdα〉 −

1
θ

〈
∇Gα · dα

〉
+

1
θ2κ|∇θ|2 + 1

θ

{µ

2
|∇u +∇uT |2 +

(
λ− 2

3
µ
)
(div u)2

}
+

1
θ

Bτ , (32)

where
Bτ := 〈∇pα ·w`α〉 − `qτ · 1

θ
∇θ + Πτ : ∇u− ρŵ · f + Q.
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This equation is derived from the balance PDEs (1) and (31) and does not exploit specific
expressions for w`α and ŵ in them. In the first term on the right, we have taken into account
the following obvious formula

〈Gα

θ
dα

〉
− qd

θ
= −〈eαdα〉,

see definition (14) of qd, that only slightly differs from the similar formula in [35].
Using identity (16), we can write the first and second terms on the right in Equation (32)

in the form

−1
θ
∇θ · 〈eαdα〉 −

1
θ

〈
∇Gα · dα

〉
= −1

θ

〈(
∇Gα + eα∇θ

)
· dα

〉
=

1
2θ

〈
dαβ

(
∇Gα + eα∇θ − (∇Gβ + eβ∇θ)

)2〉
α,β.

Next, in the case of expressions (9), we can extract and collect the terms with ŵ from
the first, third and fourth terms of Bτ and thus write

Bτ = 〈∇pα · ŵ〉+ (u · ∇)u · ρŵ− ρŵ · f + B̃τ

=
(
ρ(u · ∇)u +∇p− ρf

)
· ŵ + B̃τ =

ρ

τ
|ŵ|2 + B̃τ .

Concerning the remainder B̃τ , the following formula holds 1
θ B̃τ = Pτ − ρ

τθ |ŵ|
2, see ([35],

proof of Theorem 3.1) and the references therein, that completes the proof.

Clearly, PNS + Q
θ and Pτ − Q

θ are the Navier–Stokes–Fourier and regularizing con-
tributions to the entropy production. Theorem 1 remains valid for τ > 0 (in particular,
τ = 0, i.e., without a regularization), when one should pass to a different form for the first
relaxation term:

ρ

τθ
|ŵ|2 =

τ

ρθ
|ρ(u · ∇)u +∇p− ρf|2.

3. Linearized Regularized System of PDEs for Gas Mixture Dynamics, Its Properties
and Corollaries
3.1. An Auxiliary Reduction of the Balance Equations

Let f = 0 and Q1 = . . . = QK = 0. We introduce the vector of the sought functions
z := (ρ, u, θ) and first present an important auxiliary reduction of the balance PDEs for ρα,
u and θ up to the terms O(|∇z|2).

Lemma 1. The following reduced PDEs hold: for the densities of the components

∂tρα +∇ρα · u + ρα div u

= τ
[ραθ

ρ
〈Rβ∆ρβ〉β + `[u · (u · ∇)∇]ρα + (`+ 1)ρα(u · ∇)div u + Rρα∆θ

]
+θ
〈

dαβ

(Rα

ρα
∆ρα −

Rβ

ρβ
∆ρβ

)〉
β
+
〈
dαβ(ēα − ēβ)

〉
β
∆θ + O(|∇z|2), α = 1, K, (33)

for the velocity

∂tu +
θ

ρ
〈Rα∇ρα〉+ (u · ∇)u + R∇θ

= (`+ 1)τ
θ

ρ
(u · ∇)〈Rα∇ρα〉+

µ

ρ
∆u +

χ

ρ
∇div u + `τ

〈γα pα〉
ρ
∇div u

+τ[u · (u · ∇)∇]u + (`+ 1)τR(u · ∇)∇θ + O(|∇z|2), (34)
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with χ := 1
3 µ + λ, and for the temperature

∂tθ +
R
cV

θ div u + u · ∇θ

= τ
Rθ2

cVρ
〈Rα∆ρα〉+ (`+ 1)τ

Rθ

cV
(u · ∇)div u + `τ[u · (u · ∇)∇]θ +

( κ
cVρ

+ τ
R2θ

cVρ

)
∆θ

+
θ

cVρ

〈
dαβ

(Rα

ρα
∆ρα −

Rβ

ρβ
∆ρβ

)
ēα

〉
α,β

+
1

cVρ

〈
dαβ(ēα − ēβ)ēα

〉
α,β∆θ + O(|∇z|2). (35)

Hereafter, ∆ = div∇ is the Laplace operator and ēα = Rα − sα + eα, see the last formula (17).

Proof. According to ([35], Section 3.2), the balance equation for the velocity holds

∂tu + ((u−w`) · ∇)u +
1
ρ
∇p =

1
ρ

{
div ΠNS + (u · ∇)(ρŵ) + (div u)

(
ρŵ + `∇〈τγα pα〉

)
+`τ〈γα pα〉∇div u + `∇

(
τu · ∇p− τ(〈γαQα〉 −Q)

)}
+
(

1− `
τ

ρ
div(ρu)

)
f, (36)

and the balance equation for the temperature holds

∂tθ +
(

u− 〈cVαραw`α〉
cVρ

)
· ∇θ +

R
cV

θ div u

=
1

cVρ

{
〈cVα div dα〉θ + div(−q + 〈pαw`α〉) + Π : ∇u− ρŵ · f + Q

}
(37)

as well. Their derivation does not exploit a specific form of w`α. For d1 = . . . = dK = 0,
the presented reductions have recently been proved in [37] for ` = 0, and the similar
reductions have also been accomplished in [35], where the terms with multiplier ` are the
same as here, whereas the other terms are partially different.

So, it suffices to reduce the terms with dα. In the balance PDEs for the mass of
components (1), we obtain

−div dα =
〈
dαβ

(
∆(Gα − Gβ) + (eα − eβ)∆θ

)〉
β
+ O(|∇z|2)

= θ
〈

dαβ

(Rα

ρα
∆ρα −

Rβ

ρβ
∆ρβ

)〉
β
+
〈
dαβ(ēα − ēβ)

〉
β
∆θ + O(|∇z|2), α = 1, K, (38)

since the following chain of transformations

∆Gα = −θ∆sα + (cpα − sα)∆θ + O(|∇z|2) = θ
(Rα

ρα
∆ρα −

cVα

θ
∆θ
)
+ (cpα − sα)∆θ + O(|∇z|2)

= θ
Rα

ρα
∆ρα + (cpα − cVα − sα)∆θ + O(|∇z|2)

is valid and cpα − cVα = Rα. In the balance equation for the temperature (37), we can write

〈cVα div dα〉θ + div(−qd) = 〈cVα div dα〉θ − (Gα + eαθ)div dα + O(|∇z|2)

= −
〈
(div dα)(cpα − cVα − sα + eα)θ

〉
+ O(|∇z|2)

= θ2
〈

dαβ

(Rα

ρα
∆ρα −

Rβ

ρβ
∆ρβ

)
ēα

〉
α,β

+ θ
〈
dαβ(ēα − ēβ)ēα

〉
α,β∆θ + O(|∇z|2)

using the previous decomposition (38). This completes the proof.

The systems of PDEs (1)–(3) and (1), (36), (37) (taking into account formula (11)) are
equivalent for classical (smooth) solutions. Below the reduced system of PDEs (33)–(35)
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helps to linearize the original system of PDEs and perform its parabolicity analysis. Clearly,
the left-hand sides of these PDEs are independent of τ and `.

3.2. Linearized Regularized System of PDEs, Its Properties and Corollaries

In the case f = 0 and Q1 = . . . = QK = 0, the system of PDEs (1)–(3) has constant so-
lutions

(ρ, u, θ)(x, t) ≡ z0 = (ρ0, u0, θ0), with any ρ0 := (ρ10, . . . , ρK0), ρ10 > 0, . . . , ρK0 > 0, θ0 > 0

and any u0. We perform the linearization of the solution z to this system on z0 and write

ρα = ρα0 + ρα∗ρ̃α (α = 1, K), u = u0 + u∗ũ, θ = θ0 + θ∗ θ̃,

where z̃ := (ρ̃, ũ, θ̃) with ρ̃ := (ρ̃1, . . . , ρ̃K) is the vector of dimensionless perturbations
and ρα∗ > 0, u∗ > 0 and θ∗ > 0 are scaling parameters selected below. We substitute the
solution in this form into the reduced system of PDEs (33)–(35) and discard the terms of the
second order of smallness with respect to z̃ and its first and second order derivatives using
the formula ∇z = (ρ1∗∇ρ̃1, . . . , ρK∗∇ρ̃K, u∗∇ũ, θ∗∇θ̃). Then, we divide the resulting PDEs
by ρα∗, u∗ and θ∗, respectively, and derive the linearized system of PDEs with constant
coefficients for z̃:

∂tρ̃α + u∗
(
û0 · ∇ρ̃α + ρ̂α0 div ũ

)
= τ0u2

∗

{ ρ̂α0θ0

ρ0u2∗
〈Rβρβ∗∆ρ̃β〉β + `(û0 · ∇)2ρ̃α + (`+ 1)ρ̂α0(û0 · ∇)div ũ +

R0ρ̂α0θ∗
u2∗

∆θ̃
}

+θ0

〈
dαβ0

( Rα

ρα0
∆ρ̃α −

Rβρβ∗
ρβ0ρα∗

∆ρ̃β

)〉
β
+

θ∗
ρα∗

〈
dαβ0(ēα0 − ēβ0)

〉
β
∆θ̃, α = 1, K,

∂tũ + u∗
( θ0

ρ0u2∗
〈Rαρα∗∇ρ̃α〉β + (û0 · ∇)ũ +

R0θ∗
u2∗
∇θ̃
)
= u2

∗

{
(`+ 1)τ0

θ0

ρ0u2∗
(û0 · ∇)〈Rαρα∗∇ρ̃α〉

+
µ0

ρ0u2∗
∆ũ +

( χ0

ρ0u2∗
+ `τ0

(Rγ)0θ0

u2∗

)
∇div ũ + τ0(û0 · ∇)2ũ + (`+ 1)τ0

R0θ∗
u2∗

(û0 · ∇)∇θ̃
}

,

∂t θ̃ + u∗
(R0θ̂0

cV0
div ũ + û0 · ∇θ̃

)
= u2

∗

{
τ0

R0θ̂ 2
0 θ∗

cV0ρ0u2∗
〈Rαρα∗∆ρ̃α〉

+(`+ 1)τ0
R0θ̂0

cV0
(û0 · ∇)div ũ + `τ0(û0 · ∇)2θ̃ +

( κ0

cV0ρ0u2∗
+ τ0

R2
0θ0

cV0u2∗

)
∆θ̃
}

+
θ̂0θ0ρα∗
cV0ρ0

〈
dαβ0

( Rα

ρα0
∆ρ̃α −

Rβρβ∗
ρβ0ρα∗

∆ρ̃β

)
ēα0

〉
α,β

+
θ0

cV0ρ0

〈
dαβ0(ēα0 − ēβ0)ēα0

〉
α,β∆θ̃

}
.

Here, moreover, the scaling factors u∗ and u2
∗ are taken out of the convective and dissipative

terms (i.e., the terms with the first and second order derivatives except for the diffusion
terms), respectively, and the following notation is introduced for the components of the
scaled background solution, background values of ρ, R and cV and the average value of
Rαγα:

ρ̂α0 :=
ρα0

ρα∗
, û0 = (û10, . . . , ûn0) :=

u0

u∗
, θ̂0 :=

θ0

θ∗
,

ρ0 := 〈ρα0〉, R0 :=
〈ρα0

ρ0
Rα

〉
, cV0 :=

〈ρα0

ρ0
cVα

〉
, (Rγ)0 =

〈ρα0

ρ0
Rαγα

〉
.
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In addition, dαβ0, ēα0, τ0, µ0, χ0 and κ0 are the values of dαβ, ēα, τ, µ, χ and κ, respectively,
on the background solution z0, and the following PDE operator is involved

(û0 · ∇)2 := (û0 · ∇)(û0 · ∇) =
n

∑
i,j=1

û0iû0j∂i∂j.

For d1 = . . . = dK = 0, the possibility of simultaneous symmetrization of the convective
and dissipative terms has recently been found in [35,37] by choosing the scaling parameters

ρα∗ = b
√

ρα0cV0ρ0

Rα
, α = 1, K, u∗ = b

√
cV0θ0, θ∗ = bθ0 ∀b > 0, (39)

with a free parameter b. We accept this choice and pass to a much simpler form of the above
linearized system of PDEs

∂tρ̃α + u∗
(
û0 · ∇ρ̃α + ρ̂α0 div ũ

)
= τ0u2

∗
{

ρ̂α0〈ρ̂β0∆ρ̃β〉β + `(û0 · ∇)2ρ̃α + (`+ 1)ρ̂α0(û0 · ∇)div ũ + a0ρ̂α0∆θ̃
}

+bα

〈
dαβ0(bα∆ρ̃α − bβ∆ρ̃β)

〉
β
+ bαb(θ)

〈
dαβ0(ēα0 − ēβ0)

〉
β
∆θ̃, α = 1, K, (40)

∂tũ + u∗
(
〈ρ̂α0∇ρ̃α〉+ (û0 · ∇)ũ + a0∇θ̃

)
= u2

∗
{
(`+ 1)τ0(û0 · ∇)〈ρ̂α0∇ρ̃α〉

+µ̄0∆ũ +
(
χ̄0 + `τ0θ̂0(aγ)0

)
∇div ũ + τ0(û0 · ∇)2ũ + (`+ 1)τ0a0(û0 · ∇)∇θ̃

}
, (41)

∂t θ̃ + u∗
(
a0 div ũ + û0 · ∇θ̃

)
= u2

∗
{

τ0a0〈ρ̂α0∆ρ̃α〉+ (`+ 1)τ0a0(û0 · ∇)div ũ + `τ0(û0 · ∇)2θ̃ +
(
κ̄0 + τ0a2

0
)
∆θ̃
}

,

+b(θ)
〈
dαβ0(bα∆ρ̃α − bβ∆ρ̃β)ēα0

〉
α,β + b2

(θ)

〈
dαβ0(ēα0 − ēβ0)ēα0

〉
α,β∆θ̃

}
. (42)

Here, the following constant factors have been introduced

aα :=
Rαθ∗

u2∗
, a0 :=

〈ρα0

ρ0
aα

〉
=

R0θ∗
u2∗

, (aγ)0 =
〈ρα0

ρ0
aαγα

〉
,

bα :=
(Rαθ0

ρα0

)1/2
, b(θ) :=

( θ0

cV0ρ0

)1/2
, µ̄0 :=

µ0

ρ0u2∗
, χ̄0 :=

χ0

ρ0u2∗
, κ̄0 :=

κ0

cV0ρ0u2∗
,

and, for the last two terms in (40) and (42), we have taken into account the formulas

θ0
Rβρβ∗
ρβ0ρα∗

= bαbβ,
θ∗
ρα∗

= bαb(θ),
θ̂0ρα∗
cV0ρ0

=
b(θ)
bα

, α, β = 1, K.

Next, we study the initial-boundary value problem (IBVP) for the linearized system of
PDEs (40)–(42) in the cylinder Q∞ := Ω× (0, ∞) under the boundary and initial conditions

z̃|∂Ω×(0,∞) = 0, z̃|t=0 = z̃(0)(x). (43)

Let L2(Ω) and L2(Ω) be, respectively, the standard Lebesgue spaces of functions and vector
functions defined on Ω and denote by (·, ·)Ω = (·, ·)L2(Ω), ‖ · ‖Ω = ‖ · ‖L2(Ω), (·, ·)Ω =

(·, ·)L2(Ω) and ‖ · ‖Ω = ‖ · ‖L2(Ω) their inner products and norms. Let H1(Ω) = W1
2(Ω) be

a standard Sobolev space of vector functions defined on Ω, and H1
0(Ω) be the closure in

the H1(Ω)-norm of the space of smooth vector-functions with a compact support in Ω.
For ∂tz̃(·, t),∇z̃(·, t) ∈ L2(Ω), PDEs (40)–(42) correspond to the integral identity(

∂tz̃(·, t), z
)

Ω
+ u∗BΩ(z̃(·, t), z) + u2

∗AΩ(z̃(·, t), z) +Ad
Ω(z̃(·, t), z) = 0 ∀z ∈ H1

0(Ω), (44)
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for any vector-function z = (ρ, u, θ)(x) ∈ H1
0(Ω) (which here is not the solution to the

original quasilinear system of PDEs) and almost all t > 0.
In the identity, the three bilinear forms are involved

BΩ(z̃, z) :=
〈(

û0 · ∇ρ̃α + ρ̂α0 div ũ, ρα

)
Ω

〉
+
(
〈ρ̂α0∇ρ̃α〉+ (û0 · ∇)ũ + a0∇θ̃, u

)
Ω
+
(
a0 div ũ + û0 · ∇θ̃, θ

)
Ω,

AΩ(z̃, z) := µ̄0
(
∇ũ,∇u

)
Ω
+ χ̄0

(
div ũ, div u

)
Ω + κ̄0

(
∇θ̃,∇θ

)
Ω

+τ0
{(
〈ρ̂α0∇ρ̃α〉, 〈ρ̂α0∇ρα〉

)
Ω
+ `
〈(

û0 · ∇ρ̃α, (û0 · ∇)ρα

)
Ω

〉
+ (`+ 1)

(
(û0 · ∇)ũ, 〈ρ̂α0∇ρα〉

)
Ω

+
(
a0∇θ̃, 〈ρ̂α0∇ρα〉

)
Ω
+ (`+ 1)

(
〈ρ̂α0∇ρ̃α〉, (û0 · ∇)u

)
Ω
+ `
(
θ̂0(aγ)0 div ũ, div u

)
Ω

+
(
(û0 · ∇)ũ, (û0 · ∇)u

)
Ω
+ (`+ 1)

(
a0∇θ̃, (û0 · ∇)u

)
Ω

+
(〈

ρ̂α0∇ρ̃α

〉
, a0∇θ

)
Ω
+ (`+ 1)

(
(û0 · ∇)ũ, a0∇θ

)
Ω
+ `
(
û0 · ∇θ̃, û0 · ∇θ

)
Ω +

(
a0∇θ̃, a0∇θ

)
Ω

}
,

where the tensors ∇ũ and ∇u are considered as vectors of length n2, and

Ad
Ω(z̃, z) :=

〈(
dαβ0(bα∇ρ̃α − bβ∇ρ̃β), bα∇ρα

)
Ω

〉
α,β +

〈(
dαβ0b(θ)(ēα0 − ēβ0)∇θ̃, bα∇ρα

)
Ω

〉
α,β

+
〈(

dαβ0(bα∇ρ̃α − bβ∇ρ̃β), b(θ) ēα0∇θ
)

Ω

〉
α,β +

〈(
dαβ0b(θ)(ēα0 − ēβ0)∇θ̃, b(θ) ēα0∇θ

)
Ω

〉
α,β.

The last bilinear form corresponds to the diffusive terms and is independent of ũ and
u. Formally, identity (44) arises after multiplying Equations (40)–(42) by ρα, u and θ,
respectively, integrating over Ω and by parts and summing up the results.

Let us study properties of the defined bilinear forms that is crucial below.

Lemma 2. Let dαβ0 = dβα0 for any α 6= β. The following skew symmetry and symmetry
properties hold

BΩ(z̃, z) = −BΩ(z, z̃) ∀z̃ ∈ H1(Ω), z ∈ H1
0(Ω), (45)

AΩ(z̃, z) = AΩ(z, z̃), Ad
Ω(z̃, z) = Ad

Ω(z, z̃) ∀ z̃, z ∈ H1(Ω). (46)

Moreover, let z = (ρ, u, θ) ∈ H1(Ω) with u ∈ H1
0(Ω). The following representations for the

quadratic forms hold

AΩ(z, z) = µ̄0‖∇u‖2
Ω + χ̄0‖div u‖2

Ω + κ̄0‖∇θ‖2
Ω + τ0‖〈ρ̂α0∇ρα〉+ (û0 · ∇)u + a0∇θ‖2

Ω

+`τ0
(〈∥∥û0 · ∇ρα + ρ̂α0 div u‖2

Ω
〉
+
∥∥a0 div u + û0 · ∇θ

∥∥2
Ω + g0‖div u‖2

Ω
)
, (47)

Ad
Ω(z, z) = 1

2
〈
dαβ0‖bα∇ρα − bβ∇ρβ + b(θ)(ēα0 − ēβ0)∇θ‖2

Ω

〉
α,β, (48)

with g0 := 1
u2∗
(〈γα pα0〉 − γ0 p0) > 0, see relations (22), where pα0, γ0 and p0 are the values of pα,

γ and p on the background solution z0.

Proof. To prove the skew symmetry property (45), we integrate by parts term by term in
the definition of BΩ(z̃, z), rearrange the summands and obtain the equalities

BΩ(z̃, z) = −〈
(
ρ̃α, û0 · ∇ρα

)
Ω

〉
−
(
ũ, 〈ρ̂α0∇ρα

〉)
Ω
−
〈(

ρ̃α, ρ̂α0 div u
)

Ω

〉
−
(
ũ, (û0 · ∇)u

)
Ω

−
(
θ̃, a0 div u

)
Ω −

(
ũ, a0∇θ)Ω −

(
θ̃, û0 · ∇θ

)
Ω = −BΩ(z, z̃).

The first symmetry property (46) is obvious. Due to identity (16) applied to each term,
the following formulas hold
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2Ad
Ω(z̃, z) =

〈(
dαβ0(bα∇ρ̃α − bβ∇ρ̃β), bα∇ρα − bβ∇ρβ

)
Ω

〉
α,β

+
〈(

dαβ0b(θ)(ēα0 − ēβ0)∇θ̃, bα∇ρα − bβ∇ρβ

)
Ω

〉
α,β

+
〈(

dαβ0(bα∇ρ̃α − bβ∇ρ̃β), b(θ)(ēα0 − ēβ0)∇θ
)

Ω

〉
α,β

+
〈(

dαβ0b(θ)(ēα0 − ēβ0)∇θ̃, b(θ)(ēα0 − ēβ0)∇θ
)

Ω

〉
α,β

=
〈(

dαβ0
(
bα∇ρ̃α − bβ∇ρ̃β + b(θ)(ēα0 − ēβ0)∇θ̃

)
, bα∇ρα − bβ∇ρβ + b(θ)(ēα0 − ēβ0)∇θ

)
Ω

〉
α,β.

They imply the symmetry property (46) for Ad
Ω(z̃, z) and representation (48) for Ad

Ω(z, z).
Property (47) for ` = 0 has recently been checked in [37] (for Ω = Rn that is not

essential). The rest of the terms in AΩ(z, z) are as follows

`τ0
{〈
‖û0 · ∇ρα‖2

Ω
〉
+ 2
(
〈ρ̂α0∇ρα〉, (û0 · ∇)u

)
Ω
+ 2
(
(û0 · ∇)u, a0∇θ

)
Ω

+θ̂0(aγ)0‖div u‖2
Ω + ‖û0 · ∇θ‖2

Ω
}
=: A`Ω(z, z).

Next, we recall the following algebraic formula and integral identity〈(
û0 · ∇ρα + ρ̂α0 div u

)2〉
=
〈(

û0 · ∇ρα

)2〉
+
(〈

ρ̂ 2
α0
〉
+ a2

0
)
(div u)2 +

(
û0 · ∇θ

)2
+ 2
(
û0 · 〈ρ̂α0∇ρα〉

)
div u + 2a0(û0 · ∇θ)div u, (49)

(û0 · ∇ϕ, div u)Ω = (∇ϕ, (û0 · ∇)u)Ω ∀ϕ ∈ H1(Ω), u ∈ H1
0(Ω),

see ([35], formulas (4.14) and (4.18)). Integrating Formula (49) over Ω and applying the last
identity, we find

A`Ω(z, z) = `τ0
(〈∥∥û0 · ∇ρα + ρ̂α0 div u‖2

Ω
〉
+
∥∥a0 div u + û0 · ∇θ

∥∥2
Ω + g0‖div u‖2

Ω
)

with g0 := θ̂0(aγ)0− (
〈
ρ̂ 2

α0
〉
+ a2

0). According to ([35], proof of Lemma 3.1) and relations (22),
we obtain g0 = 1

u2∗
(〈γα pα0〉 − γ0 p0) > 0 that completes the proof of representation (47).

Corollary 1. Let dαβ0 = dβα0 > d > 0 for any α 6= β. The following positive definiteness
inequality holds

u2
∗AΩ(z, z) +Ad

Ω(z, z) > max
{

δ1
〈∥∥∇ρα

∥∥2
Ω

〉
, δ0
(
‖∇u‖2

Ω + ‖∇θ‖2
Ω

)}
, (50)

for any z = (ρ, u, θ) ∈ H1(Ω) with u ∈ H1
0(Ω), with δ0 := u2

∗min{µ̄0, κ̄0} > 0 and some
δ1 > 0.

Proof. Clearly, representations (47) and (48) imply the lower bound

u2
∗AΩ(z, z) +Ad

Ω(z, z) > u2
∗
(
µ̄0‖∇u‖2

Ω + χ̄0‖div u‖2
Ω + κ̄0‖∇θ‖2

Ω

)
+u2
∗τ0‖〈ρ̂α0∇ρα〉+ (û0 · ∇)u + a0∇θ‖2

Ω + 1
2 d
〈
‖bα∇ρα − bβ∇ρβ + b(θ)(ēα0 − ēβ0)∇θ‖2

Ω

〉
α,β.

We further apply simple bounds for the terms containing ∇ρα:

‖〈ρ̂α0∇ρα〉‖2
Ω 6 2

(
‖〈ρ̂α0∇ρα〉+ (û0 · ∇)u + a0∇θ‖2

Ω + 2|û0|2‖∇u‖2
Ω + a2

0‖∇θ‖2
Ω

)
,

‖bα∇ρα − bβ∇ρβ‖2
Ω 6 2‖bα∇ρα − bβ∇ρβ + b(θ)(ēα0 − ēβ0)∇θ‖2

Ω + 2b2
(θ)(ēα0 − ēβ0)

2‖∇θ‖2
Ω
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and

b2
α‖∇ρα‖2

Ω 6 2
(∥∥∥bα∇ρα −

1
〈ρ̌β0〉β

〈ρ̂β0∇ρβ〉β
∥∥∥2

Ω
+
∥∥∥ 1
〈ρ̌β0〉β

〈ρ̂β0∇ρβ〉β
∥∥∥2

Ω

)
=

2
〈ρ̌β0〉2β

(
‖〈ρ̌β0(bα∇ρα − bβ∇ρβ)〉β‖2

Ω + ‖〈ρ̂β0∇ρβ〉β‖2
Ω

)
6

2
〈ρ̌β0〉2β

(
〈ρ̌2

β0〉β〈‖(bα∇ρα − bβ∇ρβ‖2
Ω〉β + ‖〈ρ̂β0∇ρβ〉β‖2

Ω

)
,

where ρ̌β0 := ρ̂β0/bβ. According to these bounds, we derive

〈
‖∇ρα‖2

Ω

〉
6

2
〈ρ̌β0〉2β minα=1,K b2

α

(
〈ρ̌2

β0〉β〈‖(bα∇ρα − bβ∇ρβ‖2
Ω〉α,β + K‖〈ρ̂α0∇ρα〉‖2

Ω

)
6 δ̃1

(
‖∇u‖2

Ω + ‖∇θ‖2
Ω + ‖〈ρ̂α0∇ρα〉+ (û0 · ∇)u + a0∇θ‖2

Ω

+
〈
‖bα∇ρα − bβ∇ρβ + b(θ)(ēα0 − ēβ0)∇θ‖2

Ω

〉
α,β

)
,

with δ̃1 depending on ρ̂α0, |û0|, ēα0 (α = 1, K), a0, bα and b(θ). This estimate and the above
lower bound imply the positive definiteness inequality (50).

Let Ω be a bounded domain in Rn. Define the dual space H−1(Ω) = (H1
0(Ω))∗ and

the duality relation 〈·, ·〉Ω on H−1(Ω)×H1
0(Ω). Denote by V(QT), with QT = Ω× (0, T),

the space of vector functions z̃ ∈ L2((0, T); H1
0(Ω)) possessing a distributional derivative

∂tz̃ ∈ L2((0, T); H−1(Ω)), see these notions, for example, in [56].
We define the weak solution z̃ ∈ V(QT), for any T > 0, to the IBVP for the system of

PDEs (40)–(42) in Q∞ together with conditions (43), such that the integral identity∫ T

0

〈
∂tz̃(·, t), z(·, t)

〉
Ω dt + u∗BQT (z̃, z) + u2

∗AQT (z̃, z) +Ad
QT

(z̃, z) = 0, (51)

for any z ∈ L2((0, T); H1
0(Ω)) and any T > 0, together with the initial condition z̃|t=0 =

z̃(0) ∈ L2(Ω) are valid. Here, the inner products in the bilinear forms BQT , AQT and
Ad

QT
are taken over QT instead of Ω as originally. Due to the well known embedding

V(QT) ⊂ C([0, T]; L2(Ω)) [56], the initial condition is understood by continuity in L2(Ω).
Formally, identity (51) arises from the previous one (44) for z = z(·, t) by integration over
(0, T).

Now, we are ready to state the second main result.

Theorem 2. Let dαβ0 = dβα0 > d > 0 for any α 6= β. The defined weak solution z̃ ∈ V(QT),
for any T > 0, to the IBVP (40)–(43) for the linearized system of PDEs exists and is unique. It
satisfies the energy equality and bound

1
2‖z̃(·, T)‖2

L2(Ω) + u2
∗AQT (z̃, z̃) +Ad

QT
(z̃, z̃) = 1

2‖z̃
(0)‖2

L2(Ω) ∀T > 0,

max
{

max
t>0
‖z̃(·, t)‖L2(Ω),

√
2δ1
〈∥∥∇ρ̃α

∥∥2
L2(Q)

〉1/2,

√
2u∗
(
µ̄0‖∇u‖2

L2(Q) + χ̄0‖div u‖2
L2(Q) + κ̄0‖∇θ‖2

L2(Q)

)1/2
}
6 ‖z̃(0)‖L2(Ω).

In addition, the derivative ∂t
(
‖z̃(·, t)‖2

L2(Ω)

)
∈ L1(0, ∞) exists, and another form of the

energy equality holds

1
2 ∂t
(
‖z̃(·, t)‖2

L2(Ω)) + u2
∗AΩ(z̃(·, t), z̃(·, t)) +Ad

Ω(z̃(·, t), z̃(·, t)) = 0 (52)
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for almost all t > 0 and, consequently, the following strong L2(Ω)-dissipativity property holds

∂t
(
‖z̃(·, t)‖2

L2(Ω)

)
6 0 for almost all t > 0.

The proof is based on some general results from [56] together with Lemma 2 and
Corollary 1 and is quite similar to that of ([35], Theorem 3.2 and Corollary 3.1), so we omit
it. In the case d = 0, the Cauchy problem can be considered similarly to ([37], Theorem 2).

Notice that the exponential decay ‖z̃(·, t)‖L2(Ω) 6 e−δ2t‖z̃(0)‖L2(Ω) for t > 0, with δ2 =
1
2 (δ0 + δ1) > 0, follows from the energy equality (52) and Corollary 1. Methods developed
in theory of linear parabolic PDEs (see, for example, references [56–58]) allow one to derive
various regularity properties for z̃ which we do not consider here.

Lemmas 1 and 2 and Corollary 1 lead also to other important corollaries which we
briefly describe now. First, it can be checked that the system of PDEs (1), (36) and (37) is
uniformly parabolic in the Petrovskii sense [58] in any bounded subdomain D ⊂ D+ :=
(0, ∞)K ×Rn × (0, ∞) of values of its solutions z = (ρ, u, θ) under additional assumptions
on the diffusion fluxes dαβ = dβα > 0 and dαβ, eα ∈ C2(D+) for all α 6= β.

Due to the equivalence (for classical solutions) between system of PDEs (1), (36)
and (37) and the original quasilinear system of PDEs (1)–(3) for multicomponent gas
dynamics introduced in Section 2 and some very general results from [58], only this
Petrovskii parabolicity property implies the local-in-time classical (in anisotropic Hölder
spaces) unique solvability of the Cauchy problem to the latter system. Its statement
is identical to that of the corresponding ([35], Theorem 3.3). Moreover, the proof of the
Petrovskii parabolicity property can be made very close as well, using the remark from ([35],
proof of Lemma 3.2) that the uniform in D positive definiteness of a matrix A(z0, ξ),
defining the property is equivalent to a result such as Corollary 1 in the case Ω = Rn,
which goes back to a technique using the integral Fourier transform from ([17], Section 3)
(where the Petrovskii parabolicity was studied in the single-component gas case). Notice
that it was shown in [35] that the matrix A(z0, ξ) can be symmetrized by the same scaling
as accomplished above for passing to the linearized system of PDEs (40)–(42), and thus this
symmetry property is directly connected to the symmetry of the bilinear forms in Lemma 2.
For brevity, here we omit details of both the statement and proof of such theorem.

In addition, the Petrovskii parabolicity property allows one to pose correctly some
simple boundary conditions in IBVPs for the original system of PDEs, similarly to the
single-component case. We emphasize that the presence of the diffusion fluxes is crucial
for validity of this property, for without them, the original system of PDEs becomes more
complicated composite hyperbolic–parabolic, not parabolic. For ` = 0, this has recently
been checked in detail in [37]. The reason is that the quadratic form AΩ(z, z) is only non-
negative rather than positive definite in H1

0(Ω), and the degeneration occurs with respect
to ∇ρ. For ` = 1, this can be performed similarly and, moreover, this is clear if D contains
a point z0 = (ρ0, 0, θ0), since then the quadratic form AΩ(z, z) is identical for ` = 0 and 1
at such point z0, with χ̄0 + τ0a2 substituted for χ̄0. For systems of composite hyperbolic–
parabolic type, results of type ([35], Theorem 3.3) are not valid any more, and the statement
of correct boundary conditions in IBVPs for the original system of PDEs becomes more
complicated and has not yet been studied.

4. The 1D Regularized System of PDEs for Gas Mixture Dynamics and Its Entropy
Correct Spatial Discretization

Starting from this section, we pass to the particular 1D case of the above regularized
system of PDEs for the gas mixture dynamics, and its constituent balance PDEs for the mass
of the components and the momentum and total energy of the mixture take a simpler form

∂tρα + ∂x
(
ρα(u− w`α) + dα

)
= 0, α = 1, K, (53)

∂t(ρu) + ∂x
(
〈ρα(u− w`α)〉u + p

)
= ∂xΠ` +

(
ρ− `τ∂x(ρu)

)
f , (54)
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∂tE + ∂x〈(Eα + pα)(u− w`α)〉 = ∂x(−q` + Π`u) + 〈ρα(u− w`α)〉 f + Q, (55)

with ` = 0, 1. The main sought functions are the component densities ρ1 > 0, . . . , ρK > 0
and their common velocity and temperature u and θ > 0 depending on (x, t) ∈ [−X, X]×
[0, T]. We exploit the previous Formulas (4)–(6) for the main gas state variables and the
total energy of the components and the mixture, where now |u|2 = u2.

The 1D formulas for the regularizing velocities, viscous stress and heat flux look
as follows

w`α = `
τ

ρα
u∂x(ραu) + ŵ, ŵ =

τ

ρ
(ρu∂xu + ∂x p− ρ f ), (56)

Π` = ν∂xu + Πτ
` , Πτ

` = ρuŵ + `τ{u∂x p + 〈γα pα〉∂xu− 〈(γα − 1)Qα〉}, (57)

q` = −κ∂xθ + `qτ + qd, (58)

−qτ = τ
{(
〈cVαρα〉∂xθ − θ∂x〈Rαρα〉

)
u2 −Qu

}
= τ

{(
cVρ∂xθ − θ∂x(Rρ)

)
u2 −Qu

}
, (59)

−dα =
〈
dαβ

(
∂x(Gα − Gβ) + (eα − eβ)∂xθ

)〉
β
, qd =

〈(
Gα + eαθ

)
dα

〉
, (60)

where ν := 4
3 µ + λ and α = 1, K.

As above, introducing the average regularizing velocity w` :=
〈 ρα

ρ w`α

〉
= ` τ

ρ u∂x(ρu)+
ŵ allows one to simplify the form of the balance PDEs for the momentum and total energy
of the mixture (54) and (55):

∂t(ρu) + ∂x
(
ρ(u− w`)u

)
+ ∂x p = ∂xΠ` +

(
ρ− `τ∂x(ρu)

)
f , (61)

∂tE + ∂x
(
0.5ρu2(u− w`) + 〈ραcpαθ(u− w`α)〉

)
= ∂x(−q` + Π`u) + ρ(u− w`) f + Q. (62)

However, for further discretization, we prefer to use the original form of these PDEs since
this approach allows us to derive a counterpart of Theorem 1.

Let us first introduce the mesh notation. Define the uniform mesh ω̄h on [−X, X],
with the nodes xi = −X + ih, 0 6 i 6 N, and the step h = 2X

N . Let ωh = ω̄h\{−X, X} be
its internal part. Define also an auxuliary mesh ω∗h with the nodes xi+1/2 = (i + 1/2)h,
0 6 i 6 N − 1.

Let H(ω) be the space of functions defined on a mesh ω. We introduce the shifts of
the argument v−,i+1/2 = vi and v+,i+1/2 = vi+1 and the averages and difference quotients

[v]i+1/2 = 0.5(vi + vi+1), δvi+1/2 =
vi+1 − vi

h
, [y]∗i = 0.5(yi−1/2 + yi+1/2), δ∗yi =

yi+1/2 − yi−1/2

h

on functions v ∈ H(ω̄h) and y ∈ H(ω∗h), where vi = v(xi) and yi+1/2 = y(xi+1/2).
First, for simplicity, let there be no body force (i.e., f = 0). Following [41,47], we apply

a non-standard spatial discretization of balance PDEs for the mass of the components,
the momentum and total energy of the gas mixture (53)–(55) and construct their following
three-point and symmetric semi-discrete counterparts

∂tρα + δ∗
(
[ρα]ln([u]− w`α) + dα

)
= 0, α = 1, K, (63)

∂t(ρu) + δ∗
(
〈[ρα]ln([u]− w`α)〉[u] + [p]

)
= δ∗Π`, (64)

∂tE + δ∗
{〈

([Eα]2 + [pα])([u]− w`α)
〉
− 0.25h2δu · δp

}
= δ∗(−q` + Π`[u]) + [Q]∗ (65)

on ωh × [0, T]. The main sought functions ρ1 > 0, . . . , ρK > 0, u and θ > 0 together with
the functions pα, εα and Eα are defined in space on the main mesh ω̄h. In the equations,
the above expressions (4) for pα, εα and Eα as well as (5) for ρ, p, ε and E, with |u|2 = u2

and the coefficients R and cV from Formula (6), are exploited.
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We apply the following discretizations of the regularizing velocities (56):

w`α = `
τ

[ρα]
[u]δ(ραu) + ŵ, α = 1, K, ŵ =

τ

[ρ]
([ρ][u]δu + δp), (66)

as well as of the viscous stress, and heat flux and diffusion fluxes (57)–(60):

Π` = νδu + Πτ
` , Πτ

` = [u][ρ]ŵ + `τ
{
[u]δp + 〈γα[pα]1〉δu− 〈γαQα〉+ Q

}
, (67)

q` = −κδθ + qd + `qτ , (68)

−qτ = τ
{(
〈cVα[ρα]〉δθ − [θ]δ〈Rαρα〉

)
[u]2 −Q[u]

}
= τ

{(
[cVρ]δθ − [θ]δ(Rρ)

)
[u]2 −Q[u]

}
, (69)

−dα =
〈
dαβ

(
δ(Gα − Gβ) + (eα − eβ)δθ

)〉
β
, qd =

〈(
[Gα] + eα[θ]

)
dα

〉
. (70)

The functions w`α, ŵ, Π`α, q`α, τ, να, κα and Qα are defined in space on the auxiliary mesh
ω∗h . Moreover, Gα, the Gibbs potential of the component α, see Formula (15), is defined in
space on ω̄h, whereas the functions dα, eα and qd are defined in space on ω∗h .

Here, we apply nonstandard averages of ρα, pα, Eα and εα of the form [41,47]

[ρα]ln =
1

ln(ρα−; ρα+)
, [pα]1 = Rα[ρα][θα], [Eα]2 = 0.5[ρα]lnu−u+ + [ρα]ln[εα]

ln,

[εα]
ln = cVα[θ]

ln, [θ]ln := ln
(1

θ−
;

1
θ +

)
= θ−θ+ ln(θ−; θ+)

that exploit the divided difference for the logarithmic function

ln(a; b) =
ln b− ln a

b− a
for a 6= b, ln(a; a) =

1
a

, a > 0, b > 0.

Consequently, we have 〈γα[pα]1〉 = 〈[ρα]Rαγα〉[θ] in expression (67). Note that u−u+ is
similar to the geometric mean for u2 (although it is negative for u− and u+ of different
signs). Concerning the case of τ = T

(
ρ, u, θ

)
, one can set, in particular, τ = T

(
[ρ], [u], [θ]

)
or τ =

[
T (ρ, u, θ)

]
in space on ω∗h . In computations in Section 5 below, we apply the

second formula.
This spatial discretization is close to a similar one recently constructed in ([41], Sec-

tion 5) and differs from it by expression (66) for w`α (approximating formulas (9), not
(7), in the 1D case) and the much more general expression (70) for dα in the case K > 3.
In its turn, this discretization in [41] generalises the original one from [47] in the case
of the single-component gas dynamics to the considered multicomponent gas mixture
dynamics PDEs.

Notice that the arising semi-discrete counterparts of Formula (17) are nontrivial: since

δGα = −[θ]δsα + (cpα − [sα])δθ, δsα = −Rα ln(ρα−; ρα+)δρα + cVα ln(θ−; θ+)δθ,

we obtain [Gα] + eα[θ] = (cpα + eα)[θ]− [sαθ] and

δGα + eαδθ = Rα
[θ]

[ρα]ln
δρα +

(
cpα − cVα

[θ]

[θ]ln
− [sα] + eα

)
δθ.

The main result in this section is a 1D semi-discrete counterpart of the balance equation
for the mixture entropy, see Theorem 1. It corresponds to ([41], Theorem 2) but concerns
another definition (66) of the semi-discrete regularizing velocity and deals with a much
more general form of dα, for K > 3; this form is applicable in [41] as well.
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Theorem 3. Let dαβ = dβα > 0 for any α 6= β. For the 1D semi-discrete method (63)–(70), the
balance equation for the mixture entropy holds

∂t(ρs) + δ∗
〈

j`α[sα]
〉
= δ∗

(
(κδθ − `qτ)

[1
θ

]
− 〈eαdα〉

[θ]2

θ−θ+
+ B(d)

h

)
+
[
PNS

h + Pτ
h
]∗ (71)

on ωh × [0, T], with the component mass fluxes j`α = [ρα]ln([u]− w`α) and the terms

B(d)
h :=

〈
Rα j`α

(
1− [ρα]

[ρα]ln

)
+ cVα j`α

(
1− [εα]

ln
[ 1

εα

])〉
−0.25h2(Π`δu− 〈dαδGα〉+ 〈w`αδpα〉+ Q

)
δ

1
θ

,

PNS
h :=

1
θ−θ+

{
κ(δθ)2 + ν[θ](δu)2 + 0.5[θ]

〈
dαβ

(
δGα + eαδθ − (δGβ + eβδθ)

)2〉
α,β

}
> 0,

Pτ
h :=

1
θ−θ+

{
[θ][ρ]

1
τ

ŵ2 + `τ[θ]2
〈 Rα

[ρα]

(
δ(ραu)

)2
〉

+`τ
〈

cVα[ρα]
(
[u]δθ + (γα − 1)[θ]δu− Qα

2cVα[ρα]

)2〉
+ [θ]

〈
Qα

(
1− `

τ(γα − 1)Qα

4[pα]1

)〉}
.

The term
[
PNS

h + Pτ
h
]∗ in Equation (71) is the semi-discrete entropy production. The first

three terms of Pτ
h are non-negative, and the last term is non-negative for ` = 0, as well as for

` = 1 under the condition τ
〈 (γα−1)Q2

α
4[pα ]1

〉
6 Q. This condition is certainly true provided that

τ(γα − 1)Qα 6 4[pα]1, α = 1, K.

Proof. The following semi-discrete balance equations for the total mass and kinetic and
internal energies of the mixture hold

∂tρ + δ∗ j` = 0, 0.5∂t(ρu2) + 0.5δ∗(j`u−u+) + (δ∗[p])u = (δ∗Π`)u,

∂t(ρε) + δ∗〈j`α[εα]
ln〉 = −δ∗q` − 〈pαδ∗([u]− w`α)〉+ [Π`δu + 〈w`αδpα〉+ Q]∗ (72)

on ωh × [0, T], with j` := 〈j`α〉. They are counterparts of the balance PDEs (29)–(31) and
have recently been proved in ([41], Lemma 3), and their derivations remain valid for any
w`α, Π` and q`, in particular, given by expressions (66)–(68).

According to the proof of ([41], Theorem 2), the following preliminary 1D semi-discrete
balance equation for the mixture entropy holds

∂t(ρs) + δ∗
〈

j`α[sα]
〉
= δ∗

(
(κδθ − `qτ)

[1
θ

]
− 〈eαdα〉

[θ]2

θ−θ+
+ B(d)

h

)
+
[κ(δθ)2

θ−θ+
+

ν[θ](δu)2

θ−θ+
+ qdδ

1
θ
−
〈

dαδ
Gα

θ

〉
+
〈A`α〉
θ−θ+

]∗
, (73)

where we have taken into account that eα plays the role of K−1bα in the definition of qd

in [41]. Recall that its derivation starts from the semi-discrete balance equations for the
mass of components (63) and the internal energy of the mixture (72), and the specific form
of w`α does not matter in this derivation. Here, the following term and its decomposition

A` = −`qτδθ +
(
Πτ

` δu + 〈w`αδpα〉+ Q
)
[θ] = 〈A`α〉

are involved, with

A`α = −`qτ
αδθ +

(
Πτ

`αδu + w`αδpα + Qα

)
[θ], −qτ

α = τ
{
[u]2

(
cVα[ρα]δθ − Rα[θ]δρα

)
−Qα[u]

}
,

Πτ
`α = [u][ρα]ŵ + `τ

{
[u]δpα + γα[pα]1δu− (γα − 1)Qα

}
,
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where only the term [u][ρα]ŵ is written differently, but the corresponding average
〈[u][ρα]ŵ〉 = [u][ρ]ŵ is the same term of Πτ

` in the above expression for A`.
Let us transform the difference of the third and fourth terms under the sign [·]∗ on the

right in Equation (73). We need the elementary formulas

δ
Gα

θ
= [Gα]δ

1
θ
+ (δGα)

[1
θ

]
, δ

1
θ
= − δθ

θ−θ+
,
[1

θ

]
=

[θ]

θ−θ+
.

Applying them and then identity (16), we obtain

qdδ
1
θ
−
〈

dαδ
Gα

θ

〉
=
(
qd − 〈dα[Gα]〉

)
δ

1
θ
− 〈dαδGα〉

[1
θ

]
= − [θ]

θ−θ+

〈
dα(eαδθ + δGα)

〉
=

[θ]

2θ−θ+

〈
dαβ

(
δGα + eαδθ − (δGβ + eβδθ)

)2〉
α,β.

Next, using expressions (66), we can extract from A`α the term [θ]A′`α such that

A′`α := [ρα][u]ŵδu + w`αδpα = ([ρα][u]δu + δpα)ŵ + `
τ

[ρα]
[u]
(
δ(ραu)

)
δpα,

and, according to ([41], Appendix A) or [47], the following formula holds

A`α − [θ]([ρα][u]δu + δpα)ŵ = `τ[θ]2
Rα

[ρα]

(
δ(ραu)

)2

+`τcVα[ρα]
(
[u]δθ + (γα − 1)[θ]δu− Qα

2cVα[ρα]

)2
+ [θ]Qα

(
1− `

τ(γα − 1)Qα

4[pα]1

)
.

Applying the operation 〈·〉 to it and accomplishing the transformations

〈
[θ]([ρα][u]δu + δpα)ŵ

〉
= [θ]([ρ][u]δu + δp)ŵ = [θ][ρ]

1
τ

ŵ2, (74)

we complete the proof.

As in the differential case, the entropy production remains non-negative for τ > 0,
where one should pass to another form for the first relaxation term in Pτ

h inside the curly

brackets: [θ][ρ] 1
τ ŵ2 = τ

[θ]
[ρ]
([ρ][u]δu + δp)2.

At the end of the section, following [41,47], we generalize the constructed semi-
discrete method and Theorem 3 to the case of any f . Recall the general momentum and
total energy balance PDEs (54) and (55) and expressions for the regularized velocities (56),
and generalize the semi-discrete Equations (64) and (65) by adding, respectively, the terms

[ρ∗` f ]∗,
〈[
[ρα]([u]− w`α) f

]∗〉
+ 0.25h2

[
ρ∗`(δu)

(
δ

1
θ

)
f
]∗

θ

to their right-hand sides, with the functions ρ∗` := [ρ]− `τδ(ρu) and f defined in space on
ω∗h . We also generalize the expression for ŵ as ŵ = τ

[ρ]
([ρ][u]δu + δp− [ρ] f ).

The new terms with f produce the following additional term on the right-hand side of
the semi-discrete balance equation for the internal energy (72):

Ψ :=
〈[
[ρα]([u]− w`α) f

]∗〉− [ρ∗` f ]∗u + 0.25h2
[
ρ∗`(δu)

(
δ

1
θ

)
f
]∗

θ.

To derive the semi-discrete balance equation for the mixture entropy (71), one should multi-
ply this term by 1

θ and transform the result. The required transformation was accomplished
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in [41] for general w`α = ` τ
[ρα ]

[u]δ(ραu) + ŵα with any ŵα, and in our case where ŵα = ŵ
is independent of α, it leads to the formulas

Ψ
θ
= −

[
〈[ρα]〉ŵ f

[1
θ

]]∗
+ δ∗Ch, Ch := 0.25h2

(
[ρ]ŵδ

1
θ
+ ρ∗`(δu)

[1
θ

])
f .

As a result, in the preliminary entropy balance equation (73), the additional term−[θ][ρα]ŵ f
appears in A`α, and the term Ch should be added to B(d)

h . Thus, Formula (74) takes the form

〈
[θ]([ρα][u]δu + δpα − [ρα] f )ŵ

〉
= [θ]([ρ][u]δu + δp− [ρ] f )ŵ = [θ][ρ]

1
τ

ŵ2.

With the given f -dependent extensions, Theorem 3 remains valid.

5. Numerical Experiments

We are still dealing with the 1D system of PDEs. Let us compare three cases A, B and
C of the regularizing velocities w`α in the balance PDEs (53)–(55):

w`α = `
τ

ρα
u∂x(ραu) + ŵ, ŵ = τ

(
u∂xu +

1
ρ

∂x p
)

(A);

w`α = `
τ

ρα
u∂x(ραu) + ŵα, ŵα = τ

(
u∂xu +

1
ρα

∂x pα

)
(B); w`α =

τ

ρ
u∂x(ρu) + ŵ (C),

with ` = 1 and α = 1, 2 (the case of binary mixtures), considered, respectively, in this paper
(see Formula (56)), papers [34,35,41] (see also Formula (7) for n = 1) and [34,37,39]. Case A
is the main one below, and we demonstrate some its advantages over the other two cases.
In case C, w`α is independent of ` and α. We discretize these expressions, respectively,
according to Formula (66) as well as

w`α = `
τ

[ρα]
[u]δ(ραu) + ŵα, ŵα = τ

(
[u]δu +

1
[ρα]

δpα

)
and w`α =

τ

[ρ]
[u]δ(ρu) + ŵ.

We consider four test examples known in the literature. In Examples 1–3, we take
the following piecewise constant initial data (ρ1, ρ2, p, u)|t=0 = (ρ0

1, ρ0
2, p0, u0) (a Riemann

problem) and piecewise constant physical parameters

(ρ0
1, ρ0

2, p0, u0, γ, cV)(x) =

{
(ρ1l , ρ2l , pl , ul , γ1, cV1), −X 6 x < 0

(ρ1r, ρ2r, pr, ur, γ2, cV2), 0 6 x 6 X
.

Moreover, ρ1r = ρ2l = 0, although, in computations, we take them suitably small positive
(equal 10−10) instead. The parameters of the gases to the left and right of x = 0 and the
final time of computations t f in can be found in Table 1. Note that there the simplest values
cV1 = cV2 = 1 in Examples 1, 3 and 4 were not required originally (since in the case
τ = ν = κ = 0, there exists a closed Euler-type system of PDEs for the sought functions
ρ, γ, u and θ, see details in Appendix A), and we have chosen them ourselves. The initial
temperature θ0 is defined in accordance with Formulas (4) and (5): p0 = Rρ0θ0 = ((γ1 −
1)cV1ρ1 + (γ2 − 1)cV2ρ2)θ

0. The boundary values of the sought functions at x = ±X in
time are kept the same as their values given at t = 0. We also take X = 0.5 in Examples 1–3
and X = 5 in Example 4.
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Table 1. The initial parameters to the left and right of the discontinuity between two gases and the
final time of computations.

Example ρ p u γ cV t f in

(1) left 0.138 1 0.5 1.67 3.11 0.2

(1) right 1 1 0.5 1.4 0.72

(2) left 14.54903 1.943 × 107 0 5/3 2420 0.0002

(2) right 1.16355 105 0 1.4 732

(3) left 1 500 0 1.4 1 0.011

(3) right 1 0.2 0 1.6 1

In Examples 1–3, the initial pressure drop rapidly increases: pl
pr

= 1, 194.3, 2500.

Recall that in order to avoid loss of accuracy in computation of [ρα]ln and [εα]ln, one
can apply the trapezoidal or midpoint rule to the integral representation of ln(a; b) in the
case b

a ≈ 1:

ln(a; b) =
∫ 1

0

1
(1− r)a + br

dr ≈ 1
2a

+
1
2b

,
2

a + b
.

We apply them for ε and ρα, respectively, that leads to the formulas [ρα]ln ≈ [ρα] and
[εα]ln ≈ [εα].

We introduce a non-uniform mesh in time 0 = t0 < t1 < . . . < tm = t f in, with the
steps htm = tm − tm−1. We take the relaxation parameter and the artificial viscosity and
heat conductivity coefficients according to Formula (19) and ν = 4

3 µ + λ:

τm
i =

ah
cm

si + iτ |um
i |

, ν = τ(aS1 p1 + aS2 p2), κ = τaPr(γ1cV1 p1 + γ2cV2 p2).

Here, 0 < a < 1 is a parameter, h = 2X
N , iτ = 0 in Examples 1 and 3 or iτ = 1 in Examples

2 and 4, and, for example, um
i = u(xi, tm). In addition, aS1 = aS2 = 3

4 and aPr = 1 in
Examples 1–3.

To complement the above spatial discretization, we apply the simplest explicit Euler
method for the temporal discretization, together with the automatic choice of the time steps
htm = tm − tm−1 according to

htm =
βh

maxi(cm−1
si + |um−1

i |)
, 1 6 m 6 m− 1, htm = t f in− tm−1 6

βh
maxi

(
cm−1

si + |um−1
i |

) ,

where β is the Courant-type parameter. A linearized stability (more precisely, L2-dissipati-
vity) conditions for such an explicit scheme theoretically and practically were studied
in [19,49] in the single-component gas case. In every example, we adjust the parameters
a and β. If the values of ρ1 or ρ2 less than 10−10 arise at the upper time level, we replace
them by 10−10.

Notice that, with a code for the considered discretization of the single-component
gas dynamics PDEs, as in [49], at one’s disposal, it is not difficult to extend it to the case
of the binary gas mixture. Proposition A2 in Appendix D (the 1D discrete counterpart of
Proposition 2) was applied for initial testing of our code for mixtures.

Example 1. (the test from ([54], p. 266)). In this first rather simple test, there is a contact
discontinuity between the two gases that moves to the right with constant velocity u; the pressure
p and temperature θ are also constant. The Mach number of the mixture ranges approximately
from 0.14 to 0.42 and is not high. However, it is known that not all numerical methods are able to
reproduce this constancy well, especially for moderate N.
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In the main case A, . the results for a = 0.5, β = 0.7, N = 251 (similarly to [54]) and
1001 are given in Figure 1; note that the scales for p, u and θ are enlarged there. In this and
other examples, we exhibit graphs of six functions: ρ1, ρ2, ρ, p, u and θ. The deviations
from constant values near the contact discontinuity are very small in ρ1 and p, slightly
larger for u and θ. They diminish as N grows and, for N = 1001, they disappear for p,
almost disappear in ρ1 and u and become very small in θ. Hereafter, the graphs for two
values of N in general almost coincide except for vicinities of the contact discontinuity and
the shock wave; the differences become more visible after several magnifications.

Figure 1. Example 1, case A. The results for a = 0.5, β = 0.7, N = 251 (orange) and 1001 (brown) for
t = 0.2. Hereafter, the graphs for two values of N mainly almost coincide except for vicinities of the
contact discontinuity and the shock wave.

In case B, we need to take smaller a and especially β to obtain suitable results: a = 0.2
and β = 0.1. However, for N = 251, the results are still not so nice: the behaviour of ρ1,
ρ2 and ρ is too smooth near the contact discontinuity, the deviations from constant values
near the contact discontinuity are very small for p, small for θ, but rather large in u. For
N = 1001, the results become better, see Figure 2.

Figure 2. Example 1, case B. The results for a = 0.2, β = 0.1, N = 251 (bronze) and 1001 (red) for
t = 0.2.

In case C, the results for a = 0.2, β = 0.1 and N = 251, are worse than in case B: all
the deviations mentioned above in it are significantly larger. Hereafter, we mainly omit the
graphs in this case for brevity (except for Example 3).
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Example 2. (a version of the Sod problem) from ([52], Table I). In the original paper, t f in
was missed, and we adjusted its value to the graphs given there. The final solution contains the
contact discontinuity between the two gases, with jumps in the values of ρ1, ρ2, ρ and θ, but not p
and u, as well as a rarefaction wave in gas 1 to the left and a shock wave (the strong discontinuity) in
gas 2 to the right of the contact discontinuity. The functions ρ1 and p are non-increasing, whereas
ρ2, ρ, u and θ are non-monotone, with the maximal values of ρ2, u and θ in front of the shock. In

addition, ρ2 is piecewise constant. The final maximal Mach number is Mmax := maxi
|um

i |
cm

si
≈ 1.67,

so now the flow is partially supersonic (note that u = M = 0 closely to the boundaries). Note that
the parameters are not scaled in this example in contrast to the rest of them, and, at first, we do not
use scaling in our computations to check further our method’s capabilities. We choose a = 0.5 and
β = 0.4. Notice that, in this example, we can take zero artificial viscosity ν = 0 without essential
changing the results.

In the main case A, the results for N = 501 and 2001 are given in Figure 3, and they
correspond well to those from [52] excluding the very small hollow in ρ at the contact
discontinuity. Notice that scaling u and θ by the natural divisors u∗ = θ∗ = 1000 (with
no scaling of ρ1, ρ2 and x) and consequently p by the divisor p∗ = 106, see details in
Appendix B, does not improve the results.

Figure 3. Example 2, case A. The results for a = 0.5, β = 0.4, N = 501 (orange) and 2001 (brown) for
t = 0.0002.

In case B, once again, the results for the same N are rather nice, but the graph of ρ2
is slightly more smoothed and the graph of ρ has an additional false step, both near the
contact discontinuity. See Figure 4.
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Figure 4. Example 2, case B. The results for a = 0.5, β = 0.4, N = 501 (bronze) and 2001 (red) for
t = 0.0002.

In case C, the results for the same N are of low quality in general. Despite the fact that
ρ1, p and θ are computed rather accurately, the graphs of ρ2 and u have high “fingers” at
the point of contact discontinuity. Additionally, there are single oscillations of relatively
small amplitude in p and of high-amplitude in ρ near that point. Since the unknown
functions satisfy the unified system of PDEs, it is somewhat surprising that some of them
are computed accurately, while the rest are not. In this case, even in a simplified example,
low quality of numerical results has recently been detected in [59] for another scheme.

We also briefly comment on two simpler Sod problems, see Examples 1 and 2 in [41],
where the initial pressure drop is much less and equals 10 and 20 and the case B was
studied only. If the initial pressure drop equals 10, results in cases A and B are very close
and both equally correct. Even in case C, results are rather well, though with small ledges
in the graphs of ρ2 and u at the contact discontinuity.

If the initial pressure drop equals 20, the best results are in case A. In case B, they
are also nice, though the graph of ρ2 is slightly more smoothed and the graph of ρ has a
slightly deeper hollow near the contact discontinuity. In case C, the results are already
poor in general: though ρ1, p and θ are computed rather accurately, the graphs of ρ2 and u
have visible “fingers” at the point of contact discontinuity, and the graph of ρ has a single
oscillation near that point.

Example 3. (stiff two-gas shock-tube problem) from ([53], Test 5.4). In [53], the values
pl and pr were confused, and t f in was not specified so we adjusted its value. In this example,
the initial pressure drop equals 2500 and is very high. In general, the behavior of the final solution is
similar to the previous example. However, the support of the maximal value of ρ2 is narrower, θ is
non-increasing and the jumps in the values of ρ2, ρ and θ are high. Furthermore, Mmax ≈ 1.44, so
the flow is partially supersonic once again. We take a = 0.25 and β = 0.4.

In the main case A, for N = 4001, the results correspond well to those in [53], see
Figure 5. For smaller N = 1001, the graphs of ρ2 and ρ are more smoothed near the contact
discontinuity, as well as u and θ have very small ledges near the right end of the rarefaction
wave and the contact discontinuity, respectively, though the rest of the graphs look well.
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Figure 5. Example 3, case A. The results for a = 0.25, β = 0.4, N = 1001 (orange) and 4001 (brown)
for t = 0.011.

In case B, the computation for the same β = 0.4 and N fails. For four times smaller
β = 0.1, the results are not bad (see them for N = 4001 in ([41], Example 3)), but now the
graph of ρ1 acquires an additional rather high, though very narrow, false step, and the
graphs of ρ2 and ρ are slightly more smoothed, both near the point of contact discontinuity.

In case C, the results are specific, see Figure 6. Now, for β = 0.2 and the same N,
the graph of ρ1 has a large “finger” at the contact discontinuity which height is about twice
the value of ρ1 to the left of that point. Surprisingly, the rest of graphs look rather accurate
including even ρ (although after a magnification, the defect in its graph just to the right
of the contact discontinuity becomes more noticeable), and the situation does not change
for some larger times as well. This figure shows that the rather accurate computation of ρ,
p, u and θ for the mixture does not guarantee the same concerning both ρ1 and ρ2 for the
components (the latter graphs are sometimes omitted from the numerical results).

Figure 6. Example 3, case C. The results for a = 0.25, β = 0.2, N = 1001 (copper) and 4001 (purple)
for t = 0.011. The graphs of ρ1 have high “fingers” at the contact discontinuity.

Example 4. (Shock-bubble interaction problem) from ([55], Test 3.4). In this example,
the structure of the initial parameters is more complicated than in previous examples:
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(ρ1, ρ2, u, 1.4p, γ)|t=0 =


(0, 0.1819, 1.22, 1, 1.648), |x + 4| < 1√

2
(1, 0, 1.22, 1, 1.4), x < −3
(1.3764, 0, 0.8864, 1.5698, 1.4), otherwise

,

thus, in gas 1 with γ1 = 1.4, there is “the bubble” of gas 2 with γ2 = 1.648 moving to the right.

Here, t f in = 4, and Mmin := mini
|um

i |
cm

si
≈ 0.32 and Mmax ≈ 1.22, so the flow is transonic. In

this problem, shock waves and contact discontinuities interact, that complicates computations. Let
a = 0.5 and β = 0.2.

In the main case A, the results for N = 1001 and 4001 are given in Figure 7. For
N = 4001, the graphs of ρ and p are very close to those only presented in [55]. The very
small ledges in the graphs of ρ2 are observed at the two points of contact discontinuities.
To achieve their smallness, we have changed the values aS2 = 0.15 and aPr = 10.

Figure 7. Example 4, case A. The results for a = 0.5, β = 0.2, N = 1001 (orange) and 4001 (brown) for
t = 4.

In case B, the results for the same N are shown in Figure 8. On the one hand, the overall
quality of the solution for N = 1001 is high, without any ledges, even for the same standard
aSα and aPr as in previous examples. On the other hand, ρ1, ρ2, ρ and θ are too smooth near
the two mentioned points, especially for N = 1001.

In case C, the graphs of ρ2 have high “fingers” at the same two points which we could
not remove by changing the parameters. Nevertheless, as in Example 3, the other graphs
are correct except for a small “finger” in θ at the right of the same points.

Finally, we see that the results in the main case A are better or not worse than in the
other two cases. The weakest results are in case C.
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Figure 8. Example 4, case B. The results for a = 0.5, β = 0.2, N = 1001 (bronze) and 4001 (red) for
t = 4.
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Appendix A

In the case τ = µ = λ = κ = 0 and d1 = . . . = dK = 0, the regularized balance PDEs
for the mass of components, total momentum and total energy of the mixture (1)–(3) are
reduced to the following Euler-type system of PDEs

∂tρα + div(ραu) = 0, α = 1, K, (A1)

∂t(ρu) + div(ρu⊗ u) +∇p = ρf, (A2)

∂tE + div
(
(E + p)u

)
= ρu · f + Q. (A3)

We consider differentiable solutions to these PDEs and first obtain some of their corol-
laries. The balance PDEs for the mass, kinetic and internal energies of the mixture (29)–(31)
are essentially simplified as well:

∂tρ + div(ρu) = 0, (A4)

0.5∂t(ρ|u|2) + 0.5 div
(
ρ|u|2u

)
+ (∇p) · u = ρf · u, ∂t(ρε) + div(ρεu) + p div u = Q. (A5)
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Differentiating on the left in the Euler total momentum balance equation (A2), using
the total mass balance equation (A4) and dividing the result by ρ, we derive the equation
for u:

∂tu + (u · ∇)u +
1
ρ
∇p = f. (A6)

Differentiating the ratio Cα = ρα
ρ and using the Euler mass balance PDEs (A1) and

(A4), we obtain

∂tCα + u · ∇Cα =
1
ρ2

{
(∂tρα + u · ∇ρα)ρ− ρα(∂tρ + u · ∇ρ)

}
=

1
ρ2

{(
∂tρα + div(ραu)

)
ρ− ρα

(
∂tρ + div(ρu)

)}
= 0.

By definition (6) of R and cV and the formula γ = R
cV

+ 1 we immediately find

∂tR + u · ∇R = 0, ∂tcV + u · ∇cV = 0,

∂tγ + u · ∇γ =
1

c2
V

[
(∂tR + u · ∇R)cV − R(∂tcV + u · ∇cV)

]
= 0.

Note that due to Equation (A4), we can also write the derived PDEs in the divergent form

∂t(ρϕ) + div(ρϕu) = 0 for ϕ = Cα, R, cV .

The derived equation for γ and the balance equation for the internal energy (A5) imply

∂t p + u · ∇p = (∂tγ + u · ∇γ)ρε + (γ− 1)
(
∂t(ρε) + u · ∇(ρε)

)
= (γ− 1)(−ρε div u− p div u + Q)

since p = (γ− 1)ρε and, consequently, the following equation for p:

∂t p + u · ∇p + γp div u = (γ− 1)Q. (A7)

Equations (A6) and (A7) are well-known in the case of the single-component gas dynamics
PDEs. In the general case, they are known too, and we have included their short derivations
for completeness and the reader’s convenience.

The derived PDEs have an important corollary. The original system of PDEs (A1)–(A3)
consists of K + n + 1 PDEs for K + n + 1 sought scalar functions ρ, u and θ. Now we see
that the closed systems of PDEs exist for n + 4 sought scalar functions ρ, R, cV , u and
θ, or even n + 3 sought scalar functions ρ, γ, u and ε, since p = Rρθ = (γ − 1)ρε and
E = 0.5ρ|u|2 + cVρθ = 0.5ρ|u|2 + ρε. Other choices of sought functions are possible as well.

Next, consider the following formal regularization [11], also for the reader’s conve-
nience. In the Euler balance PDEs for the mass of components (A1), we replace

ραu → ραu + τ∂t(ραu) = ραu + τ
(
(∂tρα)u + ρα∂tu

)
= ραu− τ

(
div(ραu)u + ρα

(
(u · ∇)u +

1
ρ
∇p− f

))
= ρα(u−w1α), (A8)

where τ > 0 is a regularization parameter and the arisen regularizing velocity w1α is given
by Formula (9) for ` = 1. Thus, we come to the regularized balance Equation (1), namely
with the regularizing velocity (9), for ` = 1 and d1 = . . . = dK = 0.
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In the Euler balance equation for the total momentum (A2), we replace

div(ρu⊗ u) +∇p− ρf → div(ρu⊗ u + τ∂t(ρu⊗ u)) +∇(p + τ∂t p)− (ρ + τ∂tρ)f

= div
(
ρu⊗ u− τ(ρw1 ⊗ u + ρu⊗ ŵ)

)
+∇

(
p− τ(u · ∇p + γp div u− (γ− 1)Q)

)
−
(
ρ− τ div(ρu)

)
f

= div
(
ρ(u−w1)⊗ u) +∇p− div Π̃τ −

(
ρ− τ div(ρu)

)
f

since ∂t(ρu⊗ u) = ∂t(ρu)⊗ u + ρu⊗ ∂tu and then owing to the above Euler PDEs (A2),
(A6), (A7) and (A4), sequentially. Here, the averaged regularizing velocity w1 is given by
Formula (8) for ` = 1, and the regularizing viscous stress is defined by

Π̃τ := ρu⊗ ŵ + τ
(
u · ∇p + γp div u− (γ− 1)Q

)
which in the last two terms differs from Πτ

1 given by (11) for ` = 1 (except for the simple
case γ1 = . . . = γK).

In the Euler balance equation for the total energy of the mixture (A3), we first replace

(E + p)u → (E + p)u + τ∂t
(
(E + p)u

)
= (E + p)u + τ

(
(∂tE + ∂t p)u + (E + p)∂tu

)
.

We accomplish the following transformations

∂tE = −div
(
(E + p)u

)
+ ρu · f + Q = −∇E + p

ρ
· ρu− E + p

ρ
div(ρu) + ρu · f + Q

= −
(
(u · ∇)u +∇ε +

1
ρ
∇p− p

ρ2∇ρ− f
)
· ρu− (E + p)

1
ρ

div(ρu) + Q.

Consequently, we derive

(E + p)u + τ∂t
(
(E + p)u

)
= (E + p)

(
u− τ

(1
ρ

div(ρu)u− ∂tu
))

−τ
((

ρ∇ε− p
ρ
∇ρ
)
· u−Q

)
u− (ŵ · ρu− ∂t p) · u = (E + p)(u−w1) + q̃τ − Π̃τu,

with a regularizing heat flux

−q̃τ := τ
(
(ρ∇ε− Rθ∇ρ) · u−Q

)
u,

which in the first and second terms essentially differs from −qτ given by (12) (including
even the particular cases cV1 = . . . = cVK and R1 = . . . = RK). Second, we also replace

ρu · f →
(
ρu + τ∂t(ρu)

)
· f = ρ(u−w1) · f

owing to the Euler balance equation for the total momentum (A2).
All these replacements together lead from the original Euler-type system (A1)–(A3) to

its following regularized version

∂tρα + div
(
ρα(u−w1α)

)
= 0, α = 1, K,

∂t(ρu) + div(ρ(u−w1)⊗ u) +∇p = div Π̃τ +
(
ρ− τ div(ρu)

)
f,

∂tE + div
(
(E + p)(u−w1)

)
= div(−q̃τ + Π̃τu) + ρ(u−w1) · f + Q.

Notice that not only the terms Π̃τ and q̃τ but also the term div
(
(E + p)(u−w1)

)
are

different from their respective counterparts in Equations (2) and (3). One can also add the
above Navier–Stokes–Fourier terms ΠNS and qF, see (10), to Π̃τ and q̃τ and thus obtain
the regularized QGD-type system. Such a system, where w1α is replaced with w1, has
recently been applied in [39] (without any its derivation, only by the formal analogy to
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the single-component gas case) and, in a sense, looks closer to the standard form of the
corresponding single-component gas system of Equations (23)–(25), than the regularized
system (1)–(3) from Section 2, though both the systems for mixtures are reduced to it in the
case of a single component. Recall that the derivation of system (1)–(3) was accomplished in
a quite different way by aggregating the regularized multi-velocity and multi-temperature
gas mixture equations [30].

However, a significant theoretical drawback of the system derived in this Appendix
and used in practice, with the regularizing velocity either w1α, or w1 instead, is the failure
of attempts to prove the non-negativity of the entropy production for it, in contrast to
the regularized systems considered in [34,35,37] and system (1)–(3) with the combined
regularizing velocity (9). The reason of this drawback is any of the above mentioned
differences in the regularized terms.

Appendix B

In this appendix, we accomplish the scaling of the regularized system of PDEs from
Section 2 that is used to solve many problems. Define the scaled sought functions and variables

ρ̄α =
ρα

ρ∗
, ū =

u
u∗

, θ̄ =
θ

θ∗
, x̄ =

x
x∗

, t̄ =
t
t∗

with arbitrary scaling constant parameters ρ∗ > 0, u∗ > 0, θ∗ > 0 and x∗ > 0 as well as
t∗ = x∗

u∗ .
Inserting ρα = ρ∗ρ̄α, u = u∗ū, θ = θ∗ θ̄, x = x∗ x̄ and t = t∗ t̄ in the main balance PDEs

(1), (2) and (3) and multiplying them by x∗
ρ∗u∗ , x∗

ρ∗u2∗
and x∗

ρ∗u3∗
, respectively, we find that the

PDEs do not change their form for the scaled sought functions:

∂t̄ρ̄α + divx̄
(
ρ̄α(ū− w̄`α) + d̄α

)
= 0, α = 1, K,

∂t̄(ρ̄ū) + divx̄
(
ρ̄(ū− w̄`)⊗ ū

)
+∇x̄ p̄ = divx̄ Π̄ +

(
ρ̄− `τ divx̄(ρ̄ū)

)
f̄,

∂t̄Ē + divx̄
(
0.5ρ̄|ū|2(ū− w̄`) + 〈ρ̄α h̄α(ū− w̄`α)〉

)
= divx̄(−q̄ + Π̄ū) + ρ̄(ū− w̄`) · f̄ + Q̄

for (x̄, t̄) ∈ Ω̃× [0, T̄], where Ω̃ := Ω/x∗, i.e., x̄ ∈ Ω̃ ⇔ x∗ x̄ ∈ Ω, and T̄ = T
t∗ . Here, the

following derivatives and differential operators are involved ∂t̄ =
∂
∂t̄ , ∂x̄i =

∂
∂x̄i

, divx̄ = ∇x̄·
and ∇x̄ = (∂x̄1 , . . . , ∂x̄n); also f̄ = x∗f

u2∗
, Q̄α = x∗Qα

ρ∗u3∗
and Q̄ = 〈Q̄α〉.

The scaled density, specific internal energy, total energy and specific enthalpy of the
components conserve their form

p̄α = (γα − 1)ρ̄α ε̄α = R̄αρ̄α θ̄, ε̄α = c̄Vα θ̄, Ēα = 0.5ρ̄α|ū|2 + ρ̄α ε̄α, h̄α = ε̄α +
p̄α

ρ̄α
= c̄pα θ̄,

with the same γα but the other constants scaled:

γα − 1 =
R̄α

c̄Vα
=

Rα

cVα
, R̄α =

θ∗Rα

u2∗
, c̄Vα =

θ∗cVα

u2∗
, c̄pα =

θ∗cpα

u2∗
, α = 1, K.

The scaled total density and pressure, average specific internal energy and total energy
of the mixture also conserve their form

ρ̄ = 〈ρ̄α〉, p̄ = 〈 p̄α〉 = R̄ρ̄θ̄ = (γ− 1)ρ̄ε̄, ε̄ =
〈 ρ̄α

ρ̄
ε̄α

〉
= c̄V θ̄, Ē = 〈Ēα〉 = 0.5ρ̄|ū|2 + ρ̄ε̄,

with the same γ but the scaled R̄ and c̄V :

γ− 1 =
R̄
c̄V

=
R
cV

, R̄ :=
〈 ρ̄α

ρ̄
R̄α

〉
=

θ∗R
u2∗

, c̄V :=
〈 ρ̄α

ρ̄
c̄Vα

〉
=

θ∗cV

u2∗
.
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The scaled regularizing velocities together with the viscosity tensor and heat flux are
expressed in a natural way

w̄`α =
τ̄

ρ̄α
divx̄(ρ̄αū)ū + ` ¯̂w, ¯̂w = τ̄

(
(ū · ∇x̄)ū +

1
ρ̄
∇x̄ p̄− f̄

)
,

w̄` :=
〈 ρ̄α

ρ̄
w̄`α

〉
= `

τ̄

ρ̄
divx̄(ρ̄ū)ū + ¯̂w,

Π̄ = Π̄NS + Π̄τ
` , q̄ = q̄F + q̄d + `q̄τ ,

Π̄NS = µ̄
(
∇x̄ū + (∇x̄ū)T)+ (λ̄− 2

3 µ̄
)
(divx̄ ū)I, −q̄F = κ̄∇x̄ θ̄,

Π̄τ
` = ρ̄ū⊗ ¯̂w + `τ̄

(
ū · ∇x̄ p̄ + 〈γα p̄α〉divx̄ ū− 〈γαQ̄α〉+ Q̄

)
I,

−q̄τ = τ̄
{(

c̄V ρ̄∇x̄ θ̄ − θ̄∇x̄(R̄ρ̄)
)
· ū− Q̄

}
ū,

but with the following scaled coefficients

τ̄ =
u∗τ
x∗

, µ̄ =
µ

ρ∗u∗x∗
, λ̄ =

λ

ρ∗u∗x∗
, κ̄ =

θ∗κ
ρ∗u3∗x∗

.

In particular, in the case of τ and the artificial coefficients given by expressions (19) or (2),
they conserve their form

τ̄ =
ah̄

c̄s + iτ |ū|
, µ̄ = τ̄〈aSα p̄α〉, λ̄ = τ̄〈a1Sα p̄α〉, κ̄ = τ̄〈aPrαγα c̄Vα p̄α〉,

with h̄ := h
x∗ and c̄s =

√
γ(γ− 1)ε̄ =

√
γR̄θ̄, or µ̄ = αSτ̄ p̄, λ̄ = α1Sτ̄ p̄ and κ̄ = αPrγc̄V µ̄.

The diffusion fluxes and additional respective heat flux take the form

−d̄α :=
〈
d̄αβ

(
∇x̄(Ḡα − Ḡβ) + (ēα − ēβ)∇x̄ θ̄

)〉
β
, q̄d =

〈(
Ḡα + ēα θ̄

)
d̄α

〉
,

Ḡα = ε̄α − s̄α θ̄ +
p̄α

ρ̄α
= (c̄pα − s̄α)θ̄, s̄α = s̄α0 − R̄α ln ρ̄α + c̄Vα ln θ̄,

with the scaled coefficients

d̄αβ =
u∗dαβ

ρ∗x∗
, ēα =

θ∗eα

u2∗
, s̄α0 =

θ∗sα0

u2∗
, ρα0 = ρ∗, θ0 = θ∗.

Appendix C

We consider the 1D version of the Euler-type system of PDEs (A1)–(A3) considered
in Appendix A. Then, for discontinuous solutions, we consider the Rankine–Hugoniot
conditions on the line of discontinuity x = ξ(t) of the values of the sought functions. Quite
similarly, for example, to ([60], Section 2.4) and taking into account Formula (5) for ρ, p, ε
and E, these conditions have the form

ξ ′[ρα]ξ = [ραu]ξ , α = 1, K, ξ ′[ρu]ξ = [ρu2 + p]ξ , ξ ′[E]ξ = [(E + p)u]ξ ; (A9)

in this appendix, [ϕ]ξ(t) := ϕ(ξ(t) + 0, t)− ϕ(ξ(t)− 0, t) is the jump in the values of a
function ϕ through the specified line of discontinuity. It is also assumed that the limit
values of all the sought functions to the left and to the right of the discontinuity are not
identical, otherwise there is actually no solution discontinuity.

In the literature, the so-called stationary shock waves are known for which ξ(t) = const.
Let ψl := ψ(ξ − 0) and ψr := ψ(ξ + 0) be the limit values from the left and from the right
at the point x = ξ of a function ψ(x).
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Proposition A1. For the existence of the stationary shock wave, the following conditions should be
valid

M2
l :=

u2
l

γ(γ− 1)ε l
>

γ− 1
2γ

with γ = γl =
Rl
cVl

+ 1, M2
l 6= 1. (A10)

Herewith γr = γl , and the values of the functions to the right of the discontinuity can be expressed
in terms of their values to the left of it with the help of the relations

ραl
ραr

=
ur

ul
= a :=

2 + (γ− 1)M2
l

(γ + 1)M2
l

, α = 1, K,
pr

pl
= b :=

2γM2
l − (γ− 1)
γ + 1

,
θr

θl
= ab.

(A11)

Proof. For ξ ′ = 0, conditions (A9) lead to the system of nonlinear algebraic equations

ραrur = ραlul , α = 1, K, ρru2
r + pr = ρlu2

l + pl , (A12)

(0.5ρru2
r + ρrεr + pr)ur = (0.5ρlu2

l + ρlε l + pl)ul . (A13)

By virtue of the first of them, ul 6= 0, and we sequentially obtain

ραr = a−1ραl , α = 1, K, a :=
ur

ul
, (A14)

ρr = a−1ρl , Rr = Rl , cVr = cVl , γr = γl , ρrur = ρlul . (A15)

Then ρru2
r = aρlu2

l , and by virtue of the second Equation (A12) we obtain pr = pl +
ρlu2

l (1− a). Now, we rewrite Equation (A13), after division by ul and due to the formula
ρε = p

γ−1 , in the form{
0.5aρlu2

l +
γ

γ− 1
(

pl + ρlu2
l (1− a)

)}
a = 0.5ρlu2

l +
γ

γ− 1
pl .

We divide it by γpl , apply the formula ρu2

γp = u2

γ(γ−1)ε and obtain the quadratic equation
for a: ( γ

γ− 1
− 0.5

)
M2

l a2 − 1
γ− 1

(1 + γM2
l )a + 0.5M2

l +
1

γ− 1
= 0.

Its trivial root a = 1 corresponds to the coincidence of the right and left values of the sought

functions. Therefore, the nontrivial root is a =
2+(γ−1)M2

l
(γ+1)M2

l
6= 1 for M2

l 6= 1, that according

to equalities (A14) leads to the first Formula (A11).
Substituting it in the formula pr = pl + ρlu2

l (1− a) leads to the expression for pr
pl

specified in Formula (A11), which is correct (gives the value pr > 0) under the first
condition (A10). The last formula (A11) follows from the formulas θ = p

Rρ and (A15).

This proposition should be used to state more precisely the initial data for some
numerical experiments such as in ([8], Section 9.8.3). Relations (A11) are well-known for
the single-component gas, for example, see ([61], Chapter 4). Obviously γ−1

2γ < 0.5. In
addition, inequalities a < 1 or b > 1 are equivalent to M2

l > 1. It is simple to check that the
inequality ab > 1 is equivalent to

γM4
l − (γ− 1)M2

l − 1 = γ(M2
l − 1)

(
M2

l + γ−1) > 0,
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i.e., to M2
l > 1 once again. The same is true concerning the inequality a

b < 1. Consequently,
1
b < a < 1 < b for M2

l > 1, or 1
b > a > 1 > b for γ−1

2γ < M2
l < 1. Thus, in particular,

we have

ραr > ραl , |ur| < |ul |, pr > pl , θr > θl for M2
l > 1, (A16)

and the opposite inequalities hold for γ−1
2γ < M2

l < 1. In addition, it is simple to check that

γ− 1
2γ

< M2
r :=

u2
r

γ(γ− 1)εr
=

a2u2
l

γ(γ− 1)abε l
=

a
b

M2
l < 1

for M2
l > 1, or M2

r > 1 for γ−1
2γ < M2

l < 1. We emphasize that the important stability issue
is not touched here.

The expression M2 = u2

γ(γ−1)ε that has just arisen in relations (A10) is the squared Mach
number in mixtures corresponding to the sound speed in mixtures defined as in Section 2.
We have considered the stationary shock waves but it is well-known that non-stationary
ones can be reduced to them by passing to a moving system of coordinates [60].

Appendix D

We present the 1D finite-difference counterpart of Proposition 2. Let δtym = ym+1−ym

ht(m+1)
.

Proposition A2. Let 0 < Cα < 1, α = 1, K, be arbitrary constants such that 〈Cα〉 = 1. Consider
the sought functions of the particular form ρα = Cαρ with ρ > 0, α = 1, K, u and θ > 0, to the
finite-difference scheme such as the semi-discrete equations (63)–(69), but with ∂t replaced with δt
and [0, T] replaced with the mesh {t0, . . . , tm−1}, in the case of dα = 0, f = 0 and, for example,
τ = [T (ρ, ε, u)] > 0, ν = [N (ρ, ε, u)] > 0 and κ = [K(ρ, ε, u)] > 0 in space on ω∗h . For them,
this finite-difference scheme is reduced to the following one for the regularized system of PDEs for a
single-component gas dynamics

δtρ + δ∗
(
[ρ]ln([u]− w`)

)
= 0, (A17)

δt(ρu) + δ∗
(
[ρ]ln([u]− w`)[u] + [p]

)
= δ∗Π`, (A18)

δtE + δ∗
{
([E]2 + [p])([u]− w`)− 0.25h2δu · δp

}
= δ∗(−q` + Π`[u]) + [Q]∗ (A19)

for the sought functions ρ, u and θ on ωh × {t0, . . . , tm−1}. Here, the above expressions (26) for ρ,
ε, E, R and cV are used with |u| = u together with the formulas γ̃ = 〈CαRαγα〉/〈CαRα〉 and

w` = `
τ

[ρ]
[u]δ(ρu) + ŵ, ŵ =

τ

[ρ]
([ρ][u]δu + δp),

Π` = νδu + Πτ
` , Πτ

` = [u][ρ]ŵ + `τ
{
[u]δp + γ̃[p]1δu− (γ1 − 1)Q}, (A20)

q` = −κδθ + `τ
{(

cV [ρ]δθ − R[θ]δρ
)
[u]2 −Q[u]

}
. (A21)

Proof. For ρα = Cαρ, under the assumptions made about Cα, we obtain

[Cαρ]ln = Cα[ρ]ln, w`α = `
τ

[ρ]
[u]δ(ρu) + ŵ = w`, 〈γα[pα]1〉 = γ̃[p]1,

〈[Eα]2〉 = 〈0.5Cα[ρ]lnu−u+ + Cα[ρ]lncVα[θ]
ln〉 = 0.5[ρ]lnu−u+ + [ρ]ln〈cVαCα〉[θ]ln = [E]2,

〈cVα[ρα]〉 = 〈cVαCα〉[ρ] = cVρ, 〈Rαρα〉 = 〈RαCα〉ρ = Rρ.

Consequently, the discrete balance equations for the mass of components such as (63),
with ∂t replaced with δt, are reduced to Equation (A17). In addition, expressions (67) and
(68) for Πτ

` and −qτ are reduced to those given in Formulas (A20) and (A21). Therefore the
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discrete balance equations for the total momentum and total energy such as (64) and (65),
with ∂t replaced with δt, take forms (A18) and (A19).

Proposition A2 is useful to check some properties of solutions to the constructed
finite-difference scheme for the gas mixture dynamics and also to test codes that implement
the scheme.
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