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Abstract: Binomial autoregressive models are frequently used for modeling bounded time series
counts. However, they are not well developed for more complex bounded time series counts of
the occurrence of n exchangeable and dependent units, which are becoming increasingly common
in practice. To fill this gap, this paper first constructs an exchangeable Conway–Maxwell–Poisson-
binomial (CMPB) thinning operator and then establishes the Conway–Maxwell–Poisson-binomial
AR (CMPBAR) model. We establish its stationarity and ergodicity, discuss the conditional maximum
likelihood (CML) estimate of the model’s parameters, and establish the asymptotic normality of the
CML estimator. In a simulation study, the boxplots illustrate that the CML estimator is consistent
and the qqplots show the asymptotic normality of the CML estimator. In the real data example, our
model takes a smaller AIC and BIC than its main competitors.

Keywords: CMPB thinning operator; bounded time series; CMPBAR model; under-dispersion;
equi-dispersion; over-dispersion

1. Introduction

Bounded time series of counts are commonly observed in real-world applications.
Its (binomial) index of dispersion (as a function of n, µ and σ2) is defined by BID(X) =
nσ2/

(
µ(n− µ)

)
, where n is the predetermined upper limit of the range, E(X) = µ and

Var(X) = σ2. If its BID(X) < 1, then it is under-dispersed, if its BID(X) = 1, then it is
equi-dispersed, while if its BID(X) > 1, then it is over-dispersed (or the extra-binomial
variation).

A popular tool to establish a binomial autoregressive model (BAR) is the binomial
thinning operator “◦” [1], which is introduced by

α ◦ X := ∑X
i=1 Wi, (1)

where X is a non-negative integer-valued random variable, {Wi, i = 1, 2, · · · , n} is an
i.i.d. Bernoulli random variable sequence with P(Wi = 1) = 1− P(Wi = 0) = α and
independent of X. McKenzie [2] used the binomial thinning operator given in (1) to
establish the binomial AR(1) model, which is a popular model for bounded time series and
defined as follows

Xt = α ◦ Xt−1 + β ◦ (n− Xt−1), (2)

where n ∈ N is the predetermined upper limit of the range; X0 follows the binomial
distribution with P(X0 = k) = (n

k)π
k(1 − π)n−k; α = β + ρ and β = (1 − ρ)π with

ρ ∈ (max {−π/(1− π),−(1− π)/π}, 1) and π ∈ (0, 1); the counting series at time t are
independent of the random variables Xs, ∀s < t; and all the counting series in “α◦” and
“β◦” are mutually independent sequences of independent Bernoulli random variables with
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parameters α and β, respectively. The binomial AR(1) process given in (2) is now well
understood and it is an ergodic Markov chain with a stationary distribution Bin(n, π) with
π = β/(1− ρ) and ρ = α− β. Hence, its BID(Xt) = 1, i.e., the BAR model given in (2),
applies to equi-dispersed time series with finite range; see [3–7] for more discussion about
the BAR(1) model.

Weiß and Pollett [8] extended the binomial AR(1) model as the density-dependent
BAR(1) model (denoted as the DDBAR(1) model), whose thinning probabilities vary over
time by assuming αt = α(Xt−1/n) and βt = β(Xt−1/n). In particular, for given n, if
αt = (1− ρ)(a+ bXt−1/n) and βt = (1− ρ)(a+ bXt−1/n)+ ρ, the DDBAR(1) model allows
to analyze bounded integer-valued time series with under-dispersion, equi-dispersion and
over-dispersion, see Section 4 in [8] for more details. To model extra-binomial variation for
time series counts, Weiß and Kim [9] proposed the beta-binomial AR (BBAR) model based
on the beta-binomial thinning operator “α◦φ”, which is introduced by

αφ ◦ X = ∑X
i=1 Bi,

where X is a non-negative integer-valued random variable, {Bi, i = 1, 2, · · · , n} is an i.i.d.
Bernoulli random variable sequence with P(Bi = 1|αφ) = 1− P(Bi = 0|αφ) = αφ and
αφ ∼ Beta(τα, τ(1− α)), τ = (1− φ)/φ, {Bi, i = 1, 2, · · · , X} is independent of X.

As discussed in Weiß [10], the BAR(1) model, DDBAR(1) model, and BBAR(1) model
can be interpreted as a system with n mutually independent units and each unit being
either in state “1” or state “0”. Assume Xt is the number of units being in state “1” at
time t. Then α ◦ Xt−1 (αt ◦ Xt−1 or αφ ◦ Xt−1) is the number of units still in state “1” at
time t with survival probability α (random survival probability αt or αφ), β ◦ (n− Xt−1)
(βt ◦ (n− Xt−1) or βφ ◦ (n− Xt−1)) is the number of units, which moved from state “0”
to state “1” at time t with revival probability β (random revival probability βt or βφ). It
is worth mentioning that all of BAR(1), DDBAR(1), and BBAR(1) models are aimed at a
system with n independent units, but not a system with n dependent units, i.e., the counting
series in “◦” is independent and identically distributed, but not dependent. To solve this
dilemma, Kang et al. [11] proposed a generalized binomial AR (GBAR) model based on the
generalized binomial thinning operator “α◦θ”, which is proposed by Ristić et al. [12] and
given as follows

αθ ◦ X = ∑X
i=1 Ui,

where Ui = (1−Vi)Wi + ViZ, {Wi} and {Vi} are two independent random sequences of
iid random variables with Bernoulli(α) and Bernoulli(θ) distributions, Z is a Bernoulli(α)
random variable and is responsible for the cross-dependence, ∀i, j = 1, 2, ..., X, {Wi}, {Vj}
and Z are mutually independent and each of them is independent of X.

Unfortunately, the GBAR model [11] can not use to analyze under-dispersed or equi-
dispersed bounded data. To fill this gap, we are inspired by the Conway–Maxwell–Poisson-
binomial (CMPB) distribution [13] and construct the Conway–Maxwell–Poisson-binomial
thinning operator, whose counting series is exchangeablility. Furthermore, we propose
a new Conway–Maxwell–Poisson-binomial autoregressive (CMPBAR) model, which not
only allows us to analyze bounded data with over-dispersion but also allows us to model
bounded data with equi-dispersion or under-dispersion. The second contribution of this
paper is that we discuss the CML estimation of the parameters involved in the new model,
and establish the asymptotic normality of the CML estimator. To illustrate that the new
model is more flexible and superior, we apply the new model on the weekly rainy days at
Hamburg–Neuwiedenthal in Germany.

The paper is organized as follows. Section 2 first gives a brief review of the Conway–
Maxwell–Poisson-binomial distribution, then gives the definition of the exchangeable
Conway–Maxwell–Poisson-binomial thinning operator and that of the Conway–Maxwell–
Poisson-binomial AR model. The conditional maximum likelihood estimation and its
asymptotic properties are established in Section 3. Section 4 gives a simulation study and
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Section 5 gives real data to show the better performance of the new model. Conclusions are
made in Section 6.

2. Model Formulation and Stability Properties
2.1. Conway–Maxwell–Poisson-Binomial Distribution

For readability, we first give a brief review of the CMPB distribution introduced by
Shmueli et al. [13].

A random variable X taking values in {0, 1, 2, . . . , n} is said to follow the Conway–
Maxwell–Poisson-binomial distribution with parameters (α, ν), if the probability mass
function (pmf) of X takes the form P(X = x|α, ν, n) = (n

x)
ν
αx(1− α)n−x/Z(α, ν), where

Z(α, ν) = ∑n
x=0 (

n
x)

ν
αx(1− α)n−x, 0 < α < 1, ν ∈ R and n ∈ N is the predetermined upper

limit of the range.
For simplicity, we write X ∼ CMPB(n, α, ν). Denote θ = α/(1− α), the pmf of X can

be rewritten as

P(X = x|θ, ν, n) =
1

S(θ, ν)

(
n
x

)ν

θx, (3)

where S(θ, ν) = ∑n
x=0 (

n
x)

ν
θx, θ > 0 and n ∈ N is the predetermined upper limit of the range.

Therefore, we obtain the moment-generating function of X as MX(s) = E(esX) =
S(θes, ν)

S(θ, ν)
.

Furthermore,

E(X) = θ
S
′
(θ, ν)

S(θ, ν)
, Var(X) = θ

S
′
(θ, ν)

S(θ, ν)
+ θ2

S
′′
(θ, ν)

S(θ, ν)
−
(

S
′
(θ, ν)

S(θ, ν)

)2
,

BID =
nVar(X)

E(X)
(
n− E(X)

) =
S(θ, ν)S

′
(θ, ν) + θS(θ, ν)S

′′
(θ, ν)− θ(S

′
(θ, ν))2

nS(θ, ν)S′(θ, ν)− θ(S′(θ, ν))2 , (4)

where S
′
(θ, ν) = ∂S(θ, ν)/∂θ and S

′′
(θ, ν) = ∂S

′
(θ, ν)/∂θ (see Shmueli et al. [13],

Borges et al. [14], Daly and Gaunt [15], and Kadane [16] for more detailed discussion).
Unfortunately, the specific range of the BID for the CMPB distribution can not be

obtained by (4). To solve this dilemma, we give an example in Figure 1 with n = 7, when
α and ν are varying from {0.1, 0.2, 0.3, · · · , 0.9} and {−2,−1.5,−0.5, 0, 0.5, 1, 1.5, 2, 2.5},
respectively.

alpha nu

B
ID

1

2

3

4

5

6

Figure 1. Plot of the BID of the CMPB distribution for different choices of α and ν.

From Figure 1, the BID of the CMPB distribution takes a value, which may be less than
1, equal to 1, or greater than 1 for different values α and ν. Additionally, it implies that the
CMPB distribution allows us to analyze bounded time series counts with under-dispersion,
equi-dispersion, and over-dispersion.
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To further explore the dynamic change of the BID with α varying from {0.1, 0.2, · · · , 0.9}
for given n = 7 and ν = −0.5, 0, 0.5, 1, 1.5, or 2, we present the plots of the BID in Figure 2.
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Figure 2. Plots of the BID of the CMPB distribution for different choices of α.

From Figure 2, we obtain the following observations. First, if ν < 1, the BID is no less
than 1. To be precise, its BID is increasing to maximum when α is varying from 0 to 0.5,
and then decreasing to 1 when α is varying from 0.5 to 1. Second, if ν = 1, its BID = 1, for
all α ∈ (0, 1). Third, if ν > 1, its BID is no more than 1. Precisely, its BID is decreasing to
the minimum when α is varying from 0 to 0.5, and then increasing to 1 when α is varying
from 0.5 to 1. To sum up, the Conway–Maxwell–Poisson-binomial distribution allows
under-dispersion, equi-dispersion, and over-dispersion for bounded time series data.

Remark 1. By (3), the pmf of the CMPB (n, α, ν) is expressed as that of the power series distribution
and if ν = 0, P(X = x|θ, ν, n) = θx/∑n

x=0 θx, θ = α/(1− α), if ν = 1, the CMPB(n, α, ν)
reduces to binomial distribution with parameter α.

2.2. Conway–Maxwell–Poisson-Binomial Thinning Operator

By Shmueli et al. [13], the CMPB distribution is a distribution on the sum of n depen-
dent Bernoulli components without specifying anything else about the joint distribution
of those components. Precisely, if X ∼ CMPB(n, α, ν), there exists a Bernoulli variable
sequence {Zi} such that X = ∑n

i=1 Zi, where

Pz1,··· ,zn := P(Z1 = z1, · · · , Zn = zn) =
1

∑1
z1=0 · · ·∑1

zn=0 (
n
x)

ν−1
θx

(
n
x

)ν−1
θx (5)

with θ = α/(1− α), x = ∑n
i=1 zi and (z1, z2, · · · , zn) ∈ {0, 1}n.
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Definition 1. Let θ = α/(1− α). Then the exchangeable Conway–Maxwell–Poisson-binomial
thinning operator is introduced by

α �ν X := ∑X
i=1 Zi, (6)

where X is a non-negative random variable, {Zi, i = 1, 2, · · · , X} is an exchangeable Bernoulli
variable sequence with its pmf taking the form (5) and independent of X.

To generate the random number of “α �ν X”, we first let X = n, then α �ν X|(X =

n) ∼ CMPB(n, α, ν). Therefore, E(α �ν X|X = n) = θS
′
(θ, ν)/S(θ, ν), Var(α �ν X|X =

n) = θ
S
′
(θ, ν)

S(θ, ν)
+ θ2

S
′′
(θ, ν)

S(θ, ν)
−
(

S
′
(θ, ν)

S(θ, ν)

)2
 and the conditional binomial index of dis-

persion (CBID) is CBID =
S(θ, ν)S

′
(θ, ν) + θS(θ, ν)S

′′
(θ, ν)− θ(S

′
(θ, ν))2

nS(θ, ν)S′(θ, ν)− θ(S′(θ, ν))2 , where S(θ, ν) =

∑n
x=0 (

n
x)

ν
θx, S

′
(θ, ν) = ∂S(θ, ν)/∂θ, and S

′′
(θ, ν) = ∂S

′
(θ, ν)/∂θ.

Second, we let θ = α/(1− α), then the pmf of α �ν n takes the form (3). Third, we let
θ = λν, λ > 0. By (3), the pmf of the α �ν n can be rewritten as

P(α �ν n = x) =
1

U(λ, ν)

((
n
x

)
λx
)ν

with U(λ, ν) =
n

∑
x=0

((
n
x

)
λx
)ν

.

Furthermore,

P(α �ν n = x + 1) =
(

n− x
x + 1

λ

)ν

P(α �ν n = x), (7)

by which an algorithm is used to generate a random number of α �ν X with X = n can be
expressed as follows.

Remark 2. By Kadane [16], the counting series {Zi} in Definition 1 is a dependent Bernoulli
variable sequence with exchangeability of order 2. To account for the concept of exchangeability, we
assume π is a permutation of (z1, z2, · · · , zn). Then Pz1,··· ,zn = Pπ(1,··· ,zn). By the definition of
exchangeability in Section 6 in Kadane [16], ∑n

i=1 Zi is n-exchangeable. Kadane [16] stated that
“de Finetti’s Theorem shows that sums of exchangeable random variables are mixtures of Binomial
random variables. Because the marginal distribution of each component is Bernoulli, interest centers
on the joint distribution of pairs of such variables”. By Theorem 4 in Kadane [16], n-exchangeability
applies to every permutation of length n, it implies that n

′
is exchangeable for each n

′
< n. Hence,

{Zi} is exchangeable with order 2 because every pair has the same distribution as every other
pair, i.e., every pair of {Z1, Z2, · · · , Zn} has the same distribution as every other pair and for any
pair (Zi, Zj), ∀i, j = 1, 2, · · · , n, and i 6= j, P(Zi = 0, Zj = 1) = P(Zi = 1, Zj = 0) > 0,
P(Zi = 0, Zj = 0) + 2P(Zi = 0, Zj = 1) + P(Zi = 1, Zj = 1) = 1, P(Zi = 1, Zj = 1) > 0,
and P(Zi = 0, Zj = 0) > 0; see [16] for more discussion.

2.3. Binomial Autoregressive Model with the CMPB Operator

Now, we define the BAR(1) model with the CMPB operator by

Xt = α �ν Xt−1 + β �ν (n− Xt−1), (8)

where 0 < α < 1, 0 < β < 1, both α �ν Xt−1 = ∑
Xt−1
i=1 Zi and β �ν (n− Xt−1) = ∑

n−Xt−1
i=1 Wi

are the CMPB thinning operators given in Definition 1, their counting series {Zi} and {Wi}
are the exchangeable Bernoulli variable sequence with their pmfs taking the form (5), {Zi}
is independent of {Wj}, ∀i = 1, 2, . . . , Xt−1, j = 1, 2, . . . , (n− Xt−1), and all the thinnings
at time t are independent of {Xs, s < t}, n ∈ N, ν ∈ R.
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For simplicity, we denote the new model as the CMPBAR(1) model. By (8), {Xt}N is a
Markov chain and its one-step transition probability takes the form

Pη(k|l) = P(Xt = k|Xt−1 = l) =
1

S(θ1, ν)S(θ2, ν)

min {k,l}

∑
i=0

(
l
i

)ν(n− l
k− i

)ν

θi
1θk−i

2 , (9)

where S(θ1, ν) = ∑l
i=0 (

l
i)

ν
θi

1 and S(θ2, ν) = ∑n−l
i=0 (

n−l
i )

ν
θi

2 with η = (θ1, θ2, ν) and θ1 =
α/(1− α) and θ2 = β/(1− β).

Theorem 1. If {Xt} satisfies (8), then {Xt} is ergodicity and strictly stationarity.

Proof. Similar to that of Theorem 1 in Kang et al. [11], the state space of {Xt} is {0, 1, · · · , n}.
Because P(Xt = i|Xt−1 = j) > 0, ∀i, j ∈ {0, 1, · · · , n}, so the state space of {Xt} is an equiv-
alence class. Furthermore, {Xt} is an irreducible and aperiodic Markov chain; therefore,
{Xt} is ergodic with a unique stationary distribution by [17].

By Definition 1 and (8), for given Xt−1, {Xt} given in (8) consists of two independent
parts α �ν Xt−1 and β �ν (n − Xt−1), where α �ν Xt−1 ∼ CMPB(Xt−1, α, ν) and β �ν (n −
Xt−1) ∼ CMPB(n− Xt−1, β, ν). Denote θ1 = α/(1− α) and θ2 = β/(1− β). Then

E(Xt|Xt−1) = θ1S
′
1/S1 + θ2S

′
2/S2,

Var(Xt|Xt−1) = θ1
S
′
1

S1
+ θ2

S
′
2

S2
+ θ2

1

S
′′
1

S1
−
(

S
′
1

S1

)2
+ θ2

2

S
′′
2

S2
−
(

S
′
2

S2

)2
,

and the conditional binomial index of dispersion (CBID) is

CBID =
θ2

1S2
2
(
S1S

′′
1 − (S

′
1)

2)+ θ2
2S2

1
(
S2S

′′
2 − (S

′
2)

2)+ θ1S1S
′
1S2

2 + θ2S2S
′
2S2

1(
nS1S2 − θ1S′1S2 − θ2S1S′2

)(
θ1S2S′1 + θ2S1S′2

)
where S1 := S1(θ1, ν) = ∑

Xt−1
x=0 (Xt−1

x )
ν
θx

1 , S
′
1 := S

′
1(θ1, ν) = ∂S1(θ1, ν)/∂θ1, S

′′
1 := S

′′
1(θ1, ν) =

∂S
′
1(θ1, ν)/∂θ1, S2 := S2(θ2, ν) = ∑

n−Xt−1
x=0 (n−Xt−1

x )
ν
θx

2 , S
′
2 := S

′
2(θ2, ν) = ∂S2(θ2, ν)/∂θ2,

S
′′
2 := S

′′
2(θ2, ν) = ∂S

′
2(θ2, ν)/∂θ2.

Unfortunally, because of the complexity of S1(θ1, ν) and S2(θ2, ν), we can not obtain
the marginal distribution of {Xt} and its the autocorrelation structure, including the E(Xt),
Var(Xt), and BID. To resolve this dilemma, for given n = 10, we create some plots of
the BID (in Figure 3) by generating some samples from the CMPBAR(1) model with
ν ∈ {−5,−4.5,−4, · · · , 4.5, 5} and sample size T = 500, when (α, β) = (0.2, 0.2), (0.2, 0.5),
(0.2, 0.6), (0.5, 0.6), i.e., (θ1, θ2) = (0.25, 0.25), (0.25, 1), (0.25, 1.5), (1, 1.5).

From Figure 3, we have the following observations. First, if ν < 1, the BID of the
CMPBAR(1) model is greater than 1, i.e., the CMPBAR(1) model allows us to analyze
bounded integer-valued time series with overdispersion. Second, if ν > 1, the BID of the
CMPBAR(1) model is less than 1, i.e., the CMPBAR(1) model allows us to analyze bounded
integer-valued time series with underdispersion. Third, if ν = 1, the CMPBAR(1) model
becomes to the BAR(1) given in (2) and its BID is equal to 1, i.e., equi-dispersed bounded
integer-valued time series is allowed.
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Figure 3. Plots of BID of the CMPBAR model.

3. Parameter Estimation

In this section, we use the conditional maximum likelihood method to estimate
the parameters (denoted as η = (θ1, θ2, ν)>) involving in the CMPBAR(1) model. Let
{X0, X1, . . . , XT} be a realization of {Xt}, and generate by the CMPBAR(1) process based
on Algorithm 1, where T ∈ N represents the size of sample.

Algorithm 1: Random number generation algorithm for the CMPB distribution

Step 1. generate a random number u, u ∼ Uniform(0, 1);
Step 2. x = 0, p = P(α �ν n = 0|θ, ν, n), F = p, where P(α �ν n = 0|θ, ν, n) is given in (3);
Step 3. if u < F, set α �ν n = x and stop;
Step 4. else p = p×

( n−x
x+1 λ

)ν by (7), F = F + p, x = x + 1;
Step 5. go to Step 3.

By using (9), the conditional log-likelihood function can be written as:

`(η) = ∑T
t=1 log Pη(Xt|Xt−1)

=
T

∑
t=1

log

(
m

∑
i=0

(
Xt−1

i

)ν(n− Xt−1

Xt − i

)ν

θi
1θXt−i

2

)
− log(S(θ1, ν))− log(S(θ2, ν)), (10)

where S(θ1, ν) = ∑
Xt−1
i=0 ( i

Xt−1
)

ν
θi

1 and S(θ2, ν) = ∑
n−Xt−1
i=0 ( i

n−Xt−1
)

ν
θi

2 with m =

min {Xt, Xt−1}, θ1 > 0, θ2 > 0, and ν ∈ R. Then the CML estimate η̂cml is obtained
by minimizing (10).

Assumption 1. If there exists a t ≥ 1, such that Xt(η) = Xt(η0), Pη0 a.s., then η = η0, where
Pη0 is the probability measure under the true parameter η0 with η0 = {θ0

1 , θ0
2 , ν0}.

Theorem 2. Let {Xt} be generalized by the CMPBAR(1) model. If Assumption 1 holds, there
exists an estimator η̂cml such that

η̂cml a.s.→ η0 and
√

T(η̂cml − η0)
d−→N

(
0, J−1(η0)I(η0)J−1(η0)

)
, T → ∞,
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where I(η0) = E
[

∂log Pη0(Xt|Xt−1)

∂η

∂log Pη0(Xt|Xt−1)

∂η>

]
and J(η0) = E

(
∂2`(η0)

∂η∂η>

)
.

Proof. To prove the consistence of η̂cml , we denote `t(η) = log Pη(Xt|Xt−1). Hence, `(η) =
∑T

t=1 `t(η). Similar to the first item of Theorem 4 in Chen et al. [18], we can verify that
the assumptions of Theorem 4.1.2 in Amemiya [19] hold under Assumption 1, i.e., E`t(η)
attains a strict local maximum at η0; therefore, there exists an estimator η̂cml such that
η̂cml a.s.→ η0.

In the following, we prove the asymptotic normality of η̂cml . It is easy to see ∂`t(η)/∂θ1,
∂`t(η)/∂θ2, and ∂`t(η)/∂ν exist and are three times continuous differentiable in Θ. Thus,
there exist a N(η0) such that ∂2`t(η)/(∂η∂η>) attains the maximum value at η̃ ∈ N(η0).
Therefore,

E‖ sup
η∈N(η0)

∂2`t(η)

∂η∂η>
‖ = E‖∂2`t(η̃)

∂ηi∂ηj
‖ < ∞.

Similar to the second item of Theorem 4 in [18], we can prove that

T−1
T

∑
t=1

∂2`t(η)

∂η∂η>
p→ E

(
∂2`t(η0)

∂η∂η>

)
by Theorem 4.1.3 in Amemiya [19]. Furthermore,

T−1 ∑T
t=1 ∂`t(η0)/∂η

p→ E(∂`t(η0)/∂η)

by using ergodic theorem. Using the Martingale central limit theorem and the Cramér
device, it is direct to show that

T−1/2∂`(η0)/∂η
d−→N(0, I(η0)).

Then the asymptotic normal distribution of η̂cml is obtained based on the Taylor series
expansion of ∂`(η̂cml)/∂η around η0.

4. Simulation

In this section, we conduct a simulation study to illustrate the large sample property
of the CMPBAR(1) model.

In the simulation, we fix n = 10, let sample size T = 100, 300, 500, and use the optim

function in R to optimize `(η) in (10). To check the finite sample performance, we use the
following parameter combinations of (θ1, θ2, ν) as

(A1) = (0.25, 0.25, 0.5), (A2) = (0.25, 1, 0.5), (A3) = (0.25, 1.5, 0.5), (A4) = (1, 1.5, 0.5),

(B1) = (0.25, 0.25, 1), (B2) = (0.25, 1, 1), (B3) = (0.25, 1.5, 1), (B4) = (1, 1.5, 1),

(C1) = (0.25, 0.25, 1.5), (C2) = (0.25, 1, 1.5), (C3) = (0.25, 1.5, 1.5), (C4) = (1, 1.5, 1.5),

where ν = 0.5, 1 and 1.5 to reflect overdispersion, equidispersion, and underdispersion,
respectively.

For the simulated sample, performances of mean and standard deviation (sd) are

given. For a scale parameter ϕ, sd =
√

1
m−1 ∑m

i=1(ϕ̂i − ϕ)2, where ϕ̂i is the estimator of ϕ

in the ith replication and m = 10, 000. Summaries of the simulation results are given in
Tables 1–3.

To illustrate the consistency and the asymptotic normality of the CML estimators, we
present the boxplots of the CML estimates for (A1), (B1), and (C1) in Figures 4, 5, and 6,
and their qqplots with T = 500 in Figure 7, 8, and 9, respectively. Others are similar and
we omit them.
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Table 1. Mean and sd in parentheses of estimates for (A1)–(A4).

100 300 500

(A1) = (0.25, 0.25, 0.5)
θ1 0.2336 (0.1425) 0.2435 (0.0881) 0.2471 (0.0683)
θ2 0.2408 (0.0829) 0.2467 (0.0498) 0.2479 (0.0391)
ν 0.5682 (0.2484) 0.5231 (0.1371) 0.5135 (0.1065)

(A2) = (0.25, 1, 0.5)
θ1 0.2420 (0.0847) 0.2471 (0.0477) 0.2483 (0.0369)
θ2 1.0058 (0.0935) 1.0022 (0.0510) 1.0010 (0.0390)
ν 0.5236 (0.1353) 0.5070 (0.0742) 0.5044 (0.0567)

(A3) = (0.25, 1.5, 0.5)
θ1 0.2450 (0.0644) 0.2483 (0.0374) 0.2490 (0.0288)
θ2 1.5283 (0.1677) 1.5092 (0.0936) 1.5053 (0.0710)
ν 0.5269 (0.1505) 0.5072 (0.0821) 0.5046 (0.0628)

(A4) = (1, 1.5, 0.5)
θ1 1.0032 (0.1132) 1.0002 (0.0622) 1.0005 (0.0481)
θ2 1.5446 (0.2335) 1.5176 (0.1389) 1.5097 (0.1066)
ν 0.5246 (0.1336) 0.5087 (0.0755) 0.5052 (0.0585)

Table 2. Mean and sd in parentheses of estimates for (B1)–(B4).

100 200 500

(B1) = (0.25, 0.25, 1)
θ1 0.2442 (0.1286) 0.2475 (0.0755) 0.2487 (0.0586)
θ2 0.2484 (0.0693) 0.2497 (0.0402) 0.2496 (0.0313)
ν 1.0484 (0.2317) 1.0152 (0.1288) 1.0094 (0.0997)

(B2) = (0.25, 1, 1)
θ1 0.2483 (0.0906) 0.2491 (0.0508) 0.2496 (0.0393)
θ2 1.0114 (0.1667) 1.0033 (0.0906) 1.0016 (0.0692)
ν 1.0390 (0.2070) 1.0130 (0.1140) 1.0083 (0.0873)

(B3) = (0.25, 1.5, 1)
θ1 0.2507 (0.0770) 0.2497 (0.0440) 0.2499 (0.0339)
θ2 1.5215 (0.2412) 1.5097 (0.1417) 1.5053 (0.1082)
ν 1.0409 (0.2167) 1.0128 (0.1201) 1.0084 (0.0922)

(B4) = (1, 1.5, 1)
θ1 1.0219 (0.1985) 1.0042 (0.1127) 1.0028 (0.0876)
θ2 1.5420 (0.3113) 1.5251 (0.2070) 1.5151 (0.1632)
ν 1.0318 (0.1883) 1.0114 (0.1057) 1.0067 (0.0820)

Table 3. Mean and sd in parentheses of estimates for (C1)–(C4).

100 200 500

(C1) = (0.25, 0.25, 1.5)
θ1 0.2563 (0.1402) 0.2517 (0.0784) 0.2514 (0.0611)
θ2 0.2550 (0.0732) 0.2513 (0.0435) 0.2506 (0.0336)
ν 1.5431 (0.2529) 1.5169 (0.1553) 1.5103 (0.1191)

(C2) = (0.25, 1, 1.5)
θ1 0.2586 (0.1141) 0.2524 (0.0620) 0.2515 (0.0479)
θ2 1.0332 (0.2637) 1.0094 (0.1449) 1.0052 (0.1120)
ν 1.5408 (0.2482) 1.5157 (0.1497) 1.5100 (0.1153)
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Table 3. Cont.

100 200 500

(C3) = (0.25, 1.5, 1.5)
θ1 0.2625 (0.1000) 0.2523 (0.0559) 0.2515 (0.0433)
θ2 1.5186 (0.3340) 1.5169 (0.2200) 1.5100 (0.1730)
ν 1.5383 (0.2512) 1.5167 (0.1531) 1.5103 (0.1180)

(C4) = (1, 1.5, 1.5)
θ1 1.0528 (0.2914) 1.0134 (0.1701) 1.0075 (0.1329)
θ2 1.5339 (0.3820) 1.5310 (0.2724) 1.5221 (0.2243)
ν 1.5398 (0.2350) 1.5161 (0.1396) 1.5100 (0.1082)
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Figure 4. Boxplots of the CML estimates for (A1).

100 300 500

0
.0

0
.2

0
.4

0
.6

0
.8

(1)  θ1=1

100 300 500

0
.1

0
.2

0
.3

0
.4

0
.5

(2)  θ2=0.25

100 300 500

0
.5

1
.0

1
.5

2
.0

(3)  ν=1

Figure 5. Boxplots of the CML estimates for (B1).
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Figure 6. Boxplots of the CML estimates for (C1).
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Figure 7. qqplots of the CML estimates for (A1) with T = 500.
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Figure 8. qqplots of the CML estimates for (B1) with T = 500.
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Figure 9. qqplots of the CML estimates for (C1) with T = 500.

These studies indicate that the CML method seems to perform reasonably well. First,
Tables 1–3 show that the standard deviation of the CML estimator is decreasing with the
sample size increase and the mean of the CML estimator is closer to the true parameter
value in general cases. Second, Figures 4–6 account for the location and dispersion of the
estimates, all of which indicate the consistency of the estimators. Third, Figures 7–9 indicate
the asymptotic normality of the CML estimator.
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5. Real Data Example

In this section, we consider the number of weekly rainy days for the period from
1 January 2005 to 31 December 2010 at Hamburg–Neuwiedenthal in Germany, where a
week is defined as being from Saturday to Friday and n = 7. The data were collected from
the German Weather Service (http://www.dwd.de/, accessed on 12 December 2018). The
sample path and the ACF and PACF plots of the observations are given in Figures 10 and 11,
respectively.
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Figure 10. Path of the weekly rainy days.
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Figure 11. ACF and PACF plots of the weekly rainy days. (1) shows that the ACF exhibits significant
value for lag 1, and (2) presents that the PACF indicates an AR(1)-like autocorrelation structure.

By computation, the sample mean and variance are 3.8371 and 3.6753, and the BID of
the data is 1.2371, which implies the data exhibits extra-binomial variation. Hence, we use
the CMPBAR(1) model, BAR(1) model [2], BBAR(1) model [9], and GBAR(1) model [11] to
fit data by the CML method. We compare the estimated standard error (SE),−log-likelihood
(−log-lik), Akaike’s information criterion (AIC) and Bayesian information criterion (BIC),
which are summarized in Table 4, including the fitted results of the CML estimate.

From Table 4, the CMPBAR(1) model takes the smallest values of the−log-lik, AIC, and
BIC. Hence, the CMPBAR(1) model might be more appropriate for the weekly rainy days.

To illustrate the adequacy of the CMPBAR(1) model, we consider the fitted Pearson
residual analysis of the CMPBAR(1) model. By computation, the mean and variance of
the fitted Pearson residual are 0.0760 and 1.0500, respectively. The residual analysis in
Figure 12 shows that this model performs rather well.

http://www.dwd.de/
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Table 4. Estimates for the weekly rainy days and SE are shown in parentheses.

Model Estimates −log-lik AIC BIC

π̂ ρ̂
BAR(1) 0.5476 0.1323 691.5400 1387.0800 1394.5720

(0.0122) (0.0325)

π̂ ρ̂ φ̂
BBAR(1) 0.5475 0.1408 0.2827 623.6617 1253.33233 1264.5619

(0.0177) (0.0507) (0.0320)

π̂ ρ̂ φ̂
GBAR(1) 0.5493 0.1396 0.5209 625.4958 1256.9916 1268.2303

(0.0169) (0.0492) (0.0279)

θ̂1 θ̂2 ν̂
CMPBAR(1) 1.2313 0.9547 0.0995 622.6669 1251.3337 1262.5723

(0.0627) (0.0532) (0.0681)
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Figure 12. Pearson residual analysis of the weekly rainy days. (1) ACF (2) PACF.

In addition, to further check the adequacy of the CMPBAR(1) model, we present the
probability integral transform (PIT) (if the fitted model is adequate, its PIT histogram looks
like that of a uniform distribution, see [10] for more discussion) in Figure 13 based on the
fitted CMPBAR(1) model.

As can be seen in Figure 13, the PIT histogram of the CMPBAR(1) model is close
to uniformity, i.e., the PIT histogram confirms that the fitted CMPBAR(1) model works
reasonably well for the weekly rainy days.
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Figure 13. PIT histogram based on the fitted CMPBAR(1) model.

6. Concluding Remarks

This paper considers a new CMPB thinning operator and proposes a new CMPBAR(1)
model, which provides an available method to model bounded data with under-dispersion,
equi-dispersion, and over-dispersion. We discuss some properties of the new model, the
estimate of the parameters, and its large-sample properties. Simulations are conducted to
examine the finite sample performance of estimators. A real data example is provided to
illustrate the applicability of the CMPBAR(1) model.

There are several directions in which we plan to take this work forward. First, the
random coefficient CMPBAR(1) model can be introduced by

Xt = αt ◦ν Xt−1 + βt ◦ν (n− Xt−1),

where αt = α(Xt−1/n) and βt = β(Xt−1/n), “◦ν” is the CMPB thinning operator and the
counting series in “αt◦ν”, and that in “βt◦ν” is independent and all of the counting series
at time t is independent of {Xs, s < t}; see Weiß and Pollett [8] for the random coefficient
BAR(1) model. Second, a correlated sign-thinning operator can be established by

α �ν X = sign(α)sign(X)∑X
i=1 Zi,

where sign(x) = 1 if x ≥ 0 and sign(x)=−1 if x < 0, {Zi, i = 1, 2, · · · , X} is an exchangeable
Bernoulli variable sequence with its pmf taking the form (5). Based on the correlated
sign thinning operator, one can construct a Z-valued autoregressive model to analyze
data with a range Z and under-dispersed, equi-dispersed, and over-dispersed. Third,
a class of Conway–Maxwell–Poisson-binomial generalized autoregressive conditional
heteroskedasticity models can be considered by

Zt|Ft−1 ∼ CMPB(n, αt, ν), αt = gη(Zt−1/n, αt−1),

where η is the parameter vector involving in the model (see Ristić et al. [20] and Chen et al. [18]
for ARCH-type models, Lee and Lee [21] and Chen et al. [22] for GARCH-type models for
bounded data). In addition, a semi-parameter version can be considered by

Zt|Ft−1 ∼ CMPB(n, αt, ν), αt = gη(Zt−1/n, αt−1) + fγ(Xt),

where η is the parameter vector involved in the model, {Xt} is the covariate process
imposed in the observe process {Zt}, and γ is the parameter vector involving in f (·).
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