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Abstract: As a popular research subject in the field of computer vision, knowledge distillation (KD)
is widely used in semantic segmentation (SS). However, based on the learning paradigm of the
teacher–student model, the poor quality of teacher network feature knowledge still hinders the
development of KD technology. In this paper, we investigate the output features of the teacher–
student network and propose a feature condensation-based KD network (FCKDNet), which reduces
pseudo-knowledge transfer in the teacher–student network. First, combined with the pixel informa-
tion entropy calculation rule, we design a feature condensation method to separate the foreground
feature knowledge from the background noise of the teacher network outputs. Then, the obtained
feature condensation matrix is applied to the original outputs of the teacher and student networks
to improve the feature representation capability. In addition, after performing feature condensation
on the teacher network, we propose a soft enhancement method of features based on spatial and
channel dimensions to improve the dependency of pixels in the feature maps. Finally, we divide the
outputs of the teacher network into spatial condensation features and channel condensation features
and perform distillation loss calculation with the student network separately to assist the student
network to converge faster. Extensive experiments on the public datasets Pascal VOC and Cityscapes
demonstrate that our proposed method improves the baseline by 3.16% and 2.98% in terms of mAcc,
and 2.03% and 2.30% in terms of mIoU, respectively, and has better segmentation performance and
robustness than the mainstream methods.

Keywords: knowledge distillation; feature condensation; prediction information entropy; feature
soft enhancement; semantic segmentation

1. Introduction

In the field of computer vision, SS tasks occupy a pivotal position [1]. The SS task
can classify visual inputs into different semantically interpretable classes. On the micro-
level, it is a class resolution of pixels in an image. For example, classifying a pixel point
in an image as an airplane or a car, and assigning the same color to the same class of
pixel points. Recent work in SS has made tremendous progress, such as deeplabv3+ [2],
PSPNet [3], RefineNet [4], and OCRNet [5]. With the development of deep learning and
the advent of hardware supporting high-performance computing, deep learning models
have become more complex, bringing new challenges to the task of intensive prediction
such as SS. First, there is a lack of data available for SS tasks, and it is even more difficult
to obtain special data for industrial use. Second, data annotation itself requires a lot of
human and material resources, which will greatly limit the development and application
of SS in various industries. In addition, from the perspective of development, industrial
production is gradually moving towards intelligence. The rise of edge computing indicates
that micro-small devices will become the mainstream of the industry, which also requires
the models to be lighter and more efficient. In summary, under limited data and cost
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conditions, the key to the practical application of SS is to move the model to be lightweight
and high efficiency.

KD is one of the effective methods to improve the performance of lightweight models,
which has been confirmed by many studies. The classical paradigm of the teacher–student
model aims to use a deeper or wider network (teacher) to learn more knowledge and to
guide and correct another compact network (student). According to the way of knowledge
transfer, KD can be categorized as output feature knowledge, intermediate feature knowl-
edge, relational feature knowledge, and structural feature knowledge. The concept of KD
was first proposed by Hinton et al. [6] in 2015 and belongs to the way of output feature
knowledge. They believed that the outputs contain similar relations between classes. The
temperature (T) method was introduced to soften the classification information (soft labels)
output by the teacher network and transfer this information as knowledge to the student
network to improve performance. Since the output-feature-based KD methods rely on
the design of loss functions and are sensitive to parameters, methods combining multiple
learning modes have been continuously proposed [7,8]. Benefiting from diverse learning
modes such as meta-learning [9], incremental learning [10], and contrast learning [11],
output-feature-based KD is applied to cross-domain [12], cross-modal tasks [13], and even
special scenarios such as self-distillation [14] and self-supervision [15]. This paves the way
for output-feature-based KD to go deeper into various learning tasks. At the same time,
the intermediate-feature-based KD methods have also emerged [16,17], which can obtain
more abundant knowledge information from the teacher network and solve the problem of
single output knowledge information. Compared with the former two, relational feature
knowledge and structural feature knowledge pay more attention to the data sample’s
relationship between layers [18] and the relationship within features [19].

However, although the above KD methods perform well in many computer vision
tasks, they still have limitations for dense prediction tasks such as SS. The KD approach
applied to SS requires the teacher network to output feature mapping with more pixel
feature representation. Therefore, in the process of teacher network guidance, in addition
to knowledge transfer, how to enhance the feature representation capability of the teacher
network output is also the key to improving the performance of the student network.

This paper applies an output-feature-based KD to the SS task. We propose a feature
condensation method to extract critical foreground knowledge and reduce background
noise in the output feature maps to improve the representation of the output features and
the difficulty of fitting the student network to the teacher network. To reduce the weakened
feature correlation caused by the feature condensation process, we propose a feature soft
enhancement method to further intensify the feature representation capability of the teacher
network output by improving the elemental correlation of salient regions from the spatial
and channel domains. Specific contributions are as follows.

1. According to the calculation rule of pixel information entropy, we designed feature
condensation to separate the foreground feature knowledge and background noise of the
teacher network outputs. With the help of feature condensation, the teacher network filters
the pseudo-knowledge and transfers more accurate foreground feature knowledge to the
student network.

2. After feature condensation, we design a feature soft enhancement method, which
utilizes the softmax function to calculate the pixel information distribution from the spatial
and channel dimensions and converts it into a weight matrix to act on the original feature
map, thus enhancing the pixel dependency.

3. Finally, multi-path KD is performed according to the network structure. Extensive
experiments using the public Pascal VOC and Cityscapes datasets demonstrate that our pro-
posed method has better performance and robustness than the current mainstream methods.
Additionally, the generalization ability test on the fundus retinal vessel segmentation task
demonstrates that our method has good cross-domain generalization performance.

The rest of this paper is organized as follows: Section 2 presents the related work.
Section 3 introduces the architecture of the proposed FCKDNet, the building blocks of the
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model, and the objective function. Section 4 presents the experiment settings, qualitative,
and quantitative results. Finally, Section 5 summarizes this work.

2. Related Work
2.1. Knowledge Distillation for Semantic Segmentation

In recent studies, KD-based methods have been widely used to improve the accuracy
of lightweight models in SS tasks. Due to different SS scenes and model defects, various
pertinent KD methods are proposed. Liu et al. [20] considered dense prediction as a
structured prediction and proposed a structured KD scheme (SKD). A pair-wise Markov
random field framework is used to improve the continuity of spatial labeling, aligning the
pair-wise features learned by the teacher and student networks, thus enabling the student
network to learn more structural information. Then, without restricting to pair-wise and
pixel-wise dimensions, the outputs of the teacher and student networks are supervised
using adversarial training, so that the student network can be approximated in a higher
dimension. Different from the study of dense pair-wise relations, Wang et al. [21] focused
on the intra-class feature and proposed an intra-class feature variation KD method (IFVD).
The features on each pixel are compared to the similarity with various feature centers to
represent the intra-class feature variation. Then the most robust intra-class feature variation
representation in the teacher network is used to correct the student network. Shu et al. [22]
argued that aligning the activation mapping of teacher and student in the spatial domain
may bring redundant information to the teacher network. To this end, they proposed
a channel-wise distillation method (CWD) to normalize the activation mapping of each
channel to obtain the soft probability mapping. The Kullback–Leibler divergences of the
teacher and student networks are then minimized to make the distillation process focus
more on the significant regions of the channel. Arnaudo et al. [23] proposed a contrastive
regularization distillation and applied it to aerial image processing in combination with
incremental learning, and achieved superior segmentation accuracy. Yang et al. [24]
proposed a cross-image relational KD (CIRKD) for urban road scene segmentation by
analyzing the pixel dependencies in global images. Subsequently, Huang et al. [25]
argued that extracting better knowledge from a stronger teacher network is the key to
improving student network performance. To this end, they constructed a correlation-based
loss to capture the intrinsic inter-class relationships from teachers, using the relationship
between teacher and student predictions as a knowledge premise. With the prevalence of
Transformer in the visual field, Liu et al. [26] proposed a Transformer-based KD framework
(TransKD), which learns and guides student transformers through feature maps and patch
embeddings of large-scale teacher transformers. After eliminating the use of large pre-
training transformers, the model greatly reduced FLOPs by more than 85.0%. In addition,
Yuan et al. [27] proposed a novel mutual KD semi-supervised learning framework in
combination with consistency regularization. In this framework, multiple teacher networks
are used to generate high-quality pseudo-labels to supervise the student network, and a
bridge of mutual KD is constructed between teacher networks to achieve multi-channel
knowledge sharing.

Contrary to the above methods, our work is more concerned with the quality of
the output features of the teacher network. The knowledge value contained in a pixel is
evaluated by calculating the information entropy of each pixel. Then a threshold is set to
filter pixels with low knowledge values and only pixels with high knowledge values are
retained for KD operation. Such an approach can well suppress the influence of useless
pseudo-knowledge from the original features transferred to the student network.

2.2. Feature Enhancement

Feature enhancement is an important tool to improve model performance. Unlike
data augmentation, feature enhancement is to perform pixel-level processing on the middle
layer feature maps or output feature maps, and improves the representation ability of
image features by improving the dependence between pixels. Hou et al. [28] proposed
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a coordinate attention ( CA ) module which extracts information from both spatial and
channel dimensions, emphasizes useful features while suppressing useless features, and
enhances the expression ability of features. To better extract detailed spatial information,
Deng et al. [29] proposed a two-stage feature-enhanced attention network (FEANet) to
mine multi-level features from both spatial and channel dimensions. Benefiting from the
proposed feature enhanced attention module (FEAM), FEANet can retain more spatial
information to fuse high-resolution features of RGB-T images and refine segmentation
boundary. Ji et al. [30] designed a local-to-global context-aware feature enhancement
network (LGCNet) for salient object detection using global context-aware information from
foreground/background cues and global feature representations. Zhou et al. [31] proposed
a compositional multi-scale feature-enhanced learning approach (COMAL) to improve
crowd-counting accuracy. The design of COMAL is accomplished in terms of semantic
embedding, crowd feature diversity, and multiscale contextual information. To address
the problem of small data samples that make it difficult to achieve robust models, Chen
et al. [32] designed a novel attention mechanism on the architecture of meta-learning to
highlight class-specific features while weakening background noise. Li et al. [33] proposed
a feature-enhancement- and channel-attention-guided single-shot detector (FCSSD). This
method performs well in multi-scale object detection and achieves a trade-off in accuracy
and inference time.

Different from the design concept of these networks, our method is proposed to further
improve the fitting degree of the teacher–student network in the KD process. According
to the research of Mirzadeh et al. [34], it is not that the higher the performance of the
teacher network is, the more helpful the learning of the student network is. When the gap
between the teacher and student networks is too large, it leads to the phenomenon that the
student network is more difficult to fit the teacher network. After experimental exploration,
enhancing the correlation between feature elements can improve the above problems. To
this end, we propose a feature enhancement method based on space and channel to further
improve the effectiveness of KD.

3. Methodology
3.1. Overall Architecture

In this paper, we propose a feature condensation KD (FCKDNet) based on the teacher–
student model. As shown in Figure 1, the overall architecture consists of the teacher
network, the student network, feature condensation operation, space and channel soft
enhancement, and KD loss. For both teacher and student networks, we use the classical
encoder–decoder structure to extract image features and output pixel class probability
distribution feature maps. KD typically requires an excellent network as a teacher. To
extract more detailed image features, it is necessary to use a deeper or wider network as
the teacher.

Specifically, we feed images into both teacher and student networks by batch for
regularization training and obtain the respective output feature maps. To reduce the impact
of background noise on foreground pixel prediction, we propose a feature condensation
method to separate the foreground pixels from the background pixels in the feature maps
output by the teacher network. In the separation phase, the information quantity of each
pixel is calculated using the calculation rule of pixel information entropy and the threshold
is set to filter the foreground pixels with high information quantity. Then the feature
condensation matrix is obtained to multiply with the original feature maps of the teacher
and student networks, respectively. The feature maps containing only foreground feature
knowledge are obtained. After that, the proposed feature soft enhancement method is
used to intensify the foreground features from the spatial and channel dimensions. In
the distillation phase, we calculate the similar error between the spatial and channel soft
enhancement features of the teacher network and the outputs of the student network
as the distillation loss. While the original outputs of the student network calculate the
cross-entropy loss with the ground truth and then back-propagating together.
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Figure 1. The overall architecture of FCKDNet. In the process of feature soft enhancement based on
spatial and channel, we first use maximum pooling and average pooling to obtain salient features in
the spatial and channel domains, and weighted multiplication into the original feature mapping to
obtain the enhanced feature mapping Fsp and Fch. Then the softmax function is used for normalization
to obtain the soft probability mapping, which is represented by matrices Wsp and Wch. At this point,
Wsp and Wch have robust feature probability distribution representation. Finally, the soft probability
mappings Wsp and Wch are pixel-wise multiplied with the enhanced feature mappings Fsp and Fch to
complete the entire feature soft enhancement process.

3.2. Feature Condensation

Feature condensation is a process of filtering useless information. In this paper, we
separate the foreground feature knowledge from the background noise in the feature
maps and select only the real and rich foreground feature knowledge for distillation. It
will reduce the unnecessary effect of background noise on the student network during
distillation. Before that, we need to clarify two issues: (1) how to evaluate the usefulness
of a feature element and (2) how to filter out useless information from the output feature
map of the teacher network. According to [35], the essence of the output-feature-based
KD is to calculate the similarity error at the pixel level for the output feature maps of the
teacher and student networks, and thus the variation of element value in the feature maps
is crucial. In other words, we can convert the element value into prediction probability,
and use the prediction probability to determine the importance of that pixel point. Further,
the prediction information entropy can represent the knowledge contribution of each pixel
point. Therefore, given a pixel point with a predicted value (x, pT(x)), we can calculate the
prediction information entropy of that point as:

V(x) = −∑ pT(x) log pT(x) (1)

After obtaining the prediction information entropy of pixel points, we can filter out
the pixel points with high knowledge contribution by setting a threshold and retaining the
position index of these points. Finally, the position index is used to find the pixel value of
this position from the original feature maps and retain it as knowledge.

For the output feature map FT ∈ RC×H×W of the teacher network, where c denotes
the number of output channels and H and W denote the spatial dimensions, firstly, we
flatten it into the two-dimensional form of (C, HW) and perform the softmax operation to
distribute the pixel prediction values in the range of (0, 1), obtain the pixel queue QT . Then,
according to Equation (1), we calculate the prediction information entropy QT for each
pixel in V(QT(x)) to obtain the prediction information entropy queue QIE. After that, we
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recover QIE again into a matrix (C, H, W) of the shape MIE and set a threshold τ to filter
the prediction information entropy in MIE. Mathematically, the evaluation of the pixel
points can be expressed as:

VE(x) =
{

1, if MIE(x) ≤ τ
0, if MIE(x) > τ

(2)

where x represents the index in the matrix, and VE represents the feature condensation
matrix of the teacher network. Because the prediction information entropy of the pixel
point is inversely proportional to its prediction value, that is, the greater the prediction
value, the smaller the prediction information entropy. Therefore, we set the pixels whose
prediction information entropy is less than or equal to the threshold τ to 1 for retention,
and the pixels greater than the threshold τ to 0 for elimination, and then obtain the feature
condensation matrix VE. Finally, VE is multiplied with the original feature maps of the
teacher and student networks and can be expressed as:

FT−FC = FT ×VE (3)

FS−FC = FS ×VE (4)

where FT−FC represents the foreground feature matrix of teacher network output, FS−FC
represents the foreground feature matrix of student network output, FS represents the
original feature map of student network, and the notation × represents element-wise
multiplication in the matrix. The calculation of VE is shown in Figure 2.

Figure 2. Example of calculating feature condensation matrix.

3.3. Feature Soft Enhancement

In order to intensify the representation ability of the teacher network after obtaining
the foreground feature map FT−FC, inspired by reference [36], we design a feature soft
enhancement method based on spatial and channel dimensions to improve pixel affinity
in FT−FC. As shown in Figure 1, the max pooling and average pooling firstly are used to
extract significant feature elements from the spatial and channel dimensions of FT−FC, and
then we weighted multiply them to the original foreground feature map FT−FC to obtain
Fsp and Fch, respectively. Then the softmax function is used to calculate the probability
distribution of the dependence between pixels. The larger the calculation value, the stronger
the relative dependence. The probability distribution matrix Wsp of Fsp can be expressed as:

Wsp = softmax(
exi

HW
∑

i=1
exi

) (5)
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where x is the element value corresponding to pixel index i in Fsp, and HW is the length
of feature matrix. Similarly, the probability distribution matrix Wch of Fch can be obtained.
Finally, we multiply the probability distribution matrices Wsp and Wch of spatial and
channel dimensions with Fsp and Fch, respectively, to realize feature soft enhancement.
The calculation formulas of the spatial soft enhancement feature F

′
sp and the channel soft

enhancement feature F
′
ch are:

F
′
sp = Fsp ×Wsp (6)

F
′
ch = Fch ×Wch (7)

3.4. Design of Knowledge Distillation

For the KD phase, we use a distillation method similar to similarity-preserving KD [16].
This method obtains its own similarity matrix by calculating the inner product of the
corresponding output feature maps of the teacher and student networks, respectively. Then,
the mean square error (MSE) is used to measure the two similarity matrices such that
the teacher and student networks produce similar activations for the same classes, thus
retaining knowledge similar to the teacher network in the student network’s feature maps.
The output of the teacher network is given as the spatial soft enhancement feature F

′
sp and

the channel soft enhancement feature F
′
ch, and the output of the student network is given

as the foreground feature matrix FS−FC. The similarity matrix can be expressed as:

G̃sp = F
′
sp · F

′T
sp ; Gsp[i,:] = G̃sp[i,:]/

∥∥∥G̃sp[i,:]

∥∥∥
2

(8)

G̃ch = F
′
ch · F

′T
ch ; Gch[i,:] = G̃ch[i,:]/

∥∥∥G̃ch[i,:]

∥∥∥
2

(9)

G̃S−FC = FS−FC · FT
S−FC ; GS−FC[i,:] = G̃S−FC[i,:]/

∥∥∥G̃S−FC[i,:]

∥∥∥
2

(10)

where we use the row-wise L2 normalization to obtain the similarity matrices Gsp, Gch,
and GS−FC, and the notation [i, :] denotes the ith row in the matrix. Then, the spatial and
channel-based KD loss can be defined as:

Lsp(GT , GS) =
1
b2 ∑

i∈I

∥∥∥Gi
sp − Gi

S−FC

∥∥∥2

F
(11)

Lch(GT , GS) =
1
b2 ∑

i∈I

∥∥∥Gi
ch − Gi

S−FC

∥∥∥2

F
(12)

where b represents the number of batches in the feature map, ‖·‖F represents the Frobenius
norm, and i represents the ith element in the matrix. i can index all elements in the teacher–
student matrix and calculate the mean element-wise squared difference. Finally, we define
the total loss function as:

L = (1− γ)LCE(ps, y) +
γ

2
Lsp(GT , GS) +

γ

2
Lch(GT , GS) (13)

where LCE(·) represents the cross-entropy loss, ps is the original prediction of the student
network, y is the ground truth, and γ is the loss balancing hyperparameter.

4. Experiments
4.1. Experimental Setup

Dataset. We perform all experiments on three public datasets with different appli-
cation scenes. (1) Pascal VOC [37] is a visual image dataset available for object detection
and SS. It has 20 classes with one background class containing 1464 images for training,
1449 images for validation, and 1456 images for testing. (2) Cityscapes [38] is a dataset of
urban road scenes with 19 classes, containing 2975 images for training, 500 images for vali-
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dation, and 1525 images for testing. (3) DRIVE [39] is a fundus retinal vessel segmentation
dataset that is used to test the cross-domain generalization performance of the proposed
method. It contains 40 images with a resolution of 584× 565, where 20 images are used for
training and 20 images for testing.

Evaluation metrics. We employ mean intersection over union (mIoU) and mean accu-
racy (mAcc) to measure the segmentation performance. In the cross-domain generalization
performance experiment, we add sensitivity (Sen), specificity (Spe), and the Dice similarity
coefficient (DSC) as metrics for medical image segmentation. They are defined as:

mIoU =
1
K

TP
FP + TP + FN

(14)

mAcc =
1
K

TP + TN
TP + FP + TN + FN

(15)

Sen =
TP

TP + FN
(16)

Spe =
TN

TN + FP
(17)

DSC =
2TP

FP + 2TP + FN
(18)

where TP denotes the number of pixels of the target object correctly divided into the target
region; TN denotes the number of pixels of the background part correctly segmented into
the background part; FP denotes the number of pixels of the background part wrongly
segmented into the target region; FN denotes the number of pixels of the target object
wrongly segmented into the background part; K represents the number of classes.

Network architechtures. For all experiments, we use DeeplabV3+ [2] as the overall
architecture of the SS network. The deep ResNet-101 (Res101) [40] and wide WideResNet-
50-2 (WRes50) [41] backbone are used as powerful teacher networks. For the student
network, we use the lightweight MobileNetV2 (MBV2) [42] and ResNet-18 (Res18) [40] as
the backbone.

Training details. Based on the standard data augmentation, we apply random flipping
and scaling in the range of [0.5,2]. To fit the input size of the network, the images were
cropped to 512× 512 for Pascal VOC and DRIVE, and 640× 640 for Cityscapes. Throughout
the training process, the network was optimized using SGD with an initial learning rate of
0.001 for Pascal VOC and DRIVE and 0.01 for Cityscapes, a momentum of 0.9, and a batch
size of 8. The number of total training iterations is 30 K for Pascal VOC and Cityscapes, and
1.2 K for DRIVE. In addition, due to the different complexities of the dataset scenes, we set
the feature condensation threshold τ and the loss balancing hyperparameter γ differently.
For Pascal VOC and DRIVE, τ is set to 0.45, and γ is set to 0.6; for Cityscapes, τ is set to 0.25,
and γ is set to 0.4. All work is done on a 20.04 Ubuntu system and a GeForce RTX3090 GPU.

4.2. Comparison with Other Methods

Our proposed method is to optimize the output features of the teacher network. It is
necessary to verify the effectiveness of our method using different types of output features.
Therefore, we use the deep network (Res101) and wide network (WRes50) as the backbone
of the teacher network namely DeepLabV3+-Res101 and DeepLabV3+-WRes50. Addi-
tionally, we add the mainstream distillation methods SKD [20], CWD [21], and IFVD [22]
to the same network architecture for comparison experiments. To ensure the fairness of
the experiments, we complete and analyze all comparison experiments under the same
experimental setting and training details.

4.2.1. Results on the Deep Teacher Network

We measure the number of parameters, computational complexity of the teacher and
student networks, and the computational time required for each KD method. Experiments
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were performed using the Pascal VOC and Cityscapes datasets, and the results are shown
in Table 1. It can be intuitively seen that there is only a small difference between the
performance of the student network and the teacher network with a significant difference
in model parameters and FLOPs, and the performance of the student network is improved
after embedding the KD. CWD and IFVD perform better in terms of computational time
with 15.9 ms and 18.3 ms, respectively. The computational time of our proposed FCKD is
20.6 ms, which is slightly inferior compared to the first two but improves by 3.9 ms compare
to SKD. Therefore, our method has a strong competitive advantage in computing costs. In
terms of segmentation performance, compared to the state-of-the-art methods, the proposed
FCKD has the most significant improvement on the original student network and is closest
to the results of the teacher network. Specifically, for the student network DeepLabV3+-
MBV2, mAcc improves by 3.16% and mIoU improves by 2.03% on Pascal VOC, mAcc
improves by 2.98% and mIoU improves by 2.30% on Cityscapes; for the student network
DeepLabV3+-Res18, mAcc improves by 3.23% and mIoU improves by 1.96% on Pascal
VOC, mAcc improves by 2.64% and mIoU improves by 1.65% on Cityscapes. Compared to
CWD, with the best segmentation performance among mainstream methods, FCKD has
a small performance improvement. In particular, FCKD improves mAcc by 0.36% and
mIoU by 0.20% on Pascal VOC, and mAcc by 0.34% and mIoU by 0.36% on Cityscapes
compare to CWD (calculated from the average of the results of the two student networks).
In addition, IFVD based on class-level feature representation is similar to our method, while
the difference is that IFVD compares the similarity of features on each pixel with various
feature centers, and our method focuses more on ensuring the integrity of the feature
regions when feature condensation is performed. From the experimental results, IFVD
has a faster computational speed, while our FCKD has better segmentation performance.
The performance difference between FCKD and IFVD on DeepLabV3+-MBV2 is more
significant. Compared to IFVD, FCKD improves mAcc by 0.86% and mIoU by 0.71% on
Pascal VOC, mAcc by 1.01% and mIoU by 1.31% on Cityscapes. In summary, our proposed
method has better segmentation performance and algorithmic robustness under multiple
data domains.

Table 1. Performance comparison with mainstream distillation methods using the deep teacher
network on Pascal VOC and Cityscapes. We tag the teacher as T and the student as S. FLOPs are
measured based on the fixed size of 512× 512. The computational time represents the inference time
of the teacher and student networks and the computational time of each distillation method. The
bold number denotes the best result in each block.

Methods Params (M) FLOPs (G) Computational Time (ms)
Val mAcc (%) Val mIoU (%)

Pascal VOC Cityscapes Pascal VOC Cityscapes

T: DeepLabV3+-Res101 56.0 1870.0 13.7 89.64 87.24 77.67 77.46

S: DeepLabV3+-MBV2

5.0 229.8

5.3 81.35 80.59 72.20 70.44
+SKD [20] 24.5 82.42 81.78 72.86 71.58
+CWD [22] 15.9 84.27 83.23 74.05 72.26
+IFVD [21] 18.3 83.65 82.56 73.52 71.43
+FCKD (ours) 20.6 84.51 83.57 74.23 72.74

S: DeepLabV3+-Res18

20.3 784.5

4.7 82.69 83.05 73.18 73.21
+SKD [20] 24.5 84.73 84.22 74.35 73.78
+CWD [22] 15.9 85.45 85.17 74.92 74.62
+IFVD [21] 18.3 85.14 84.83 74.77 74.15
+FCKD (ours) 20.6 85.92 85.51 75.14 74.86

To show the segmentation performance difference more visually, we visualize the
segmentation results of the student network, CWD, and the proposed FCKDNet, as shown
in Figure 3. The segmentation differences are marked using yellow dashed lines. It can be
seen that FCKDNet has more accurate segmentation for objects close to the background
color due to the reduction of the influence of misclassified pixels in the background during
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the feature similarity calculation, such as the bottle in the first row of Pascal VOC, the
bus in the third row, and the distant street lamp in the second row of Cityscapes. The
segmentation performance of the student network is slightly inferior due to its own per-
formance limitations. In addition, Figure 4 shows in more detail the specific IoU scores of
individual classes in the Pascal VOC validation set. We can see that our FCKDNet has better
segmentation results compared to the student network and CWD. There is a significant
elevation of small objects and more regular objects. For example, the segmentation of birds,
buses, and tables improves by 4.3%, 4.0%, and 3.2%, respectively, compared to the student
network, and improves by 2.5%, 1.2%, and 0.5% compared to CWD.

Figure 3. Segmentation results using the deep teacher network and the student network DeepLabV3+-
MBV2 on the validation sets of Pascal VOC and Cityscapes: (a) raw images, (b) the original student
network without KD, (c) channel-wise distillation, (d) our method, and (e) ground truth.

Figure 4. Illustration of individual class IoU scores over the student network DeepLabV3+-MBV2,
the mainstream CWD, and our proposed FCKDNet on the Pascal VOC validation set.

4.2.2. Results on the Wide Teacher Network

The wide teacher network ensures that rich features, e.g., texture features in different
orientations and frequencies, are learned at each layer. Then, our proposed feature conden-
sation operation and feature soft enhancement method are used to further highlight feature
information from the pixel level. Table 2 shows the experimental results using the wide
teacher network. It can be seen that our proposed FCKDNet is closer to the segmentation
results of the teacher network compare to other conventional methods. Specifically, for the
student network DeepLabV3+-MBV2, our proposed FCKD improves mAcc by 2.43% and
mIoU by 1.74% on Pascal VOC, and mAcc by 2.67% and mIoU by 2.12% on Cityscapes.
For the student network DeepLabV3+-Res18, mAcc and mIoU improve by 2.26% and
1.65% on Pascal VOC, respectively, and both metrics improve by 1.71% and 1.04% on
Cityscapes, respectively. Among the mainstream methods, CWD has the best segmentation



Entropy 2023, 25, 125 11 of 16

performance, IFVD is suboptimal, and SKD has the smallest improvement. Compared
to CWD, the proposed FCKD is significantly enhanced on Cityscapes, where mAcc and
mIoU improve by 0.34% and 0.36%, respectively. Compared to IFVD, FCKD achieves a
better performance on Cityscapes, where mAcc and mIoU improve by 1.01% and 0.86%,
respectively. Compared to SKD, FCKD significantly improved the results on Pascal VOC,
where mAcc and mIoU improve by 1.28% and 1.19%, respectively (calculated from the
average of the results of the two student networks). In summary, the experimental results
demonstrate the applicability of our FCKDNet to the wide teacher network as well. Figure 5
shows the qualitative results for the student network, CWD, and our proposed FCKDNet.
The areas of significant segmentation differences are marked using yellow dashed lines in
the results. We can observe that FCKDNet has the best segmentation results and the fewest
misclassified pixel regions.

Table 2. Performance comparison with mainstream distillation methods using the wide teacher
network on Pascal VOC and Cityscapes. We tag the teacher as T and the student as S. FLOPs are
measured based on the fixed size of 512× 512. The computational time represents the inference time
of the teacher and student networks and the computational time of each distillation method. The
bold number denotes the best result in each block.

Methods Params (M) FLOPs (G) Computational Time (ms)
Val mAcc (%) Val mIoU (%)

Pascal VOC Cityscapes Pascal VOC Cityscapes

T: DeepLabV3+-WRes50 72.2 2653.9 7.6 86.58 85.45 76.38 75.62

S: DeepLabV3+-MBV2

5.0 229.8

5.3 81.35 80.59 72.20 70.44
+SKD [20] 24.5 82.64 81.57 72.76 71.21
+CWD [22] 15.9 83.38 82.74 73.40 72.13
+IFVD [21] 18.3 83.06 82.28 73.15 71.27
+FCKD (ours) 20.6 83.78 83.26 73.94 72.56

S: DeepLabV3+-Res18

20.3 784.5

4.7 82.69 83.05 73.18 73.21
+SKD [20] 24.5 83.53 83.42 73.64 73.55
+CWD [22] 15.9 84.62 84.46 74.51 74.10
+IFVD [21] 18.3 84.15 83.73 74.16 73.87
+FCKD (ours) 20.6 84.95 84.76 74.83 74.25

Figure 5. Segmentation results using the wide teacher network and the student network DeepLabV3+-
MBV2 on the validation sets of Pascal VOC and Cityscapes: (a) raw images, (b) the original student
network without KD, (c) channel-wise distillation, (d) our method, and (e) ground truth.
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4.3. Ablation Study

In this section, we conduct detailed ablation experiments for each module in the
network. We use the student network as a baseline on which we add the teacher network,
feature condensation, spatial soft enhancement, and channel soft enhancement successively.
All experiments are performed on Pascal VOC. As shown in Table 3, direct use of the
teacher network for KD improves baseline by 1.85% on mAcc and 1.14% on mIoU. Using
feature condensation on the teacher network improves baseline 2.38% on mAcc and 1.66%
on mIoU. Additionally, the baseline improves by 2.78% and 3.04% on mAcc, and 1.78%
and 1.85% on mIoU, respectively, using spatial and channel feature soft enhancement.
The results lead to two conclusions: (1) feature condensation has a good separation of
foreground feature knowledge and background noise, and has a higher performance
improvement for the network relative to the spatial soft enhancement and channel soft
enhancement; (2) channel soft enhancement captures richer feature information than spatial
soft augmentation. Finally, using all modules maximizes the performance with a 3.16%
improvement in terms of mAcc and 2.03% improvement in terms of mIoU compared to
the baseline. In summary, our proposed method improves the representation ability of
the teacher network’s output features and improves the problem that the teacher–student
network is difficult to fit during the training period.

Table 3. Ablation study of our method on the validation set of Pascal VOC. Student (Baseline): we
set DeepLabV3+-MBV2 as the student network and baseline. Teacher: we set DeepLabV3+-Res101 as
the teacher network. FC: feature condensation. SSE: spatial soft enhancement that proposed. CSE:
channel soft enhancement that proposed. The bold number denotes the best result.

Student (Baseline) Teacher FC SSE CSE Val mAcc (%) Val mIoU (%)
√

- - - - 81.35 72.20√ √
- - - 83.20 73.34√ √ √

- - 83.73 73.86√ √ √ √
- 84.13 73.98√ √ √

-
√

84.39 74.05√ √ √ √ √
84.51 74.23

Adjusting the feature condensation threshold τ and the loss balancing hyperparameter
γ is the key to improving the network performance. We set τ to 0.15, 0.35, and 0.45, and γ
to 0.4, 0.6, and 0.8 for the experiments. The impact on the network is shown in Figure 6.
For τ, when τ = 0.15, the performance improvement is the least, which indicates that some
feature pixels are lost when filtering background pixels. When τ = 0.45, the performance
improvement is the highest, while the improvement is not significant with respect to
τ = 0.35, indicating that 0.45 is closer to the optimal value. For γ, it can be seen that the
KD effect is not significant at γ = 0.4; when γ = 0.8, the distillation weight is so high that it
ignores the supervision of the network by the ground truth; the network performance is
best at γ = 0.6.
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Figure 6. Impact of the feature condensation threshold τ and the loss balancing hyperparameter γ on
our proposed FCKDNet.

4.4. Cross-Domain Generalization Ability

Finally, we discuss the cross-domain generalization ability of FCKDNet. Different
from the natural-environment-style dataset used in the above section, we use a medical
image dataset to illustrate the cross-domain segmentation performance of the proposed
method. This is a fundus retinal vessel segmentation task, and since the DRIVE dataset
used does not contain a validation set, we divide the 20 images of the training set into 16
for training and 4 for validation. Finally, the allocation ratio of the training set, validation
set, and test set for the experiment is 16:4:20. Moreover, we choose the classic segmentation
network SegNet [43] and the high-performance U-Net [44] and R2U-Net [45] in the field of
medical image segmentation for experimental comparison. In addition to Acc and IoU, we
add Sen, Spe, and DSC as evaluation metrics for medical image segmentation. The higher
values of Sen, Spe, and DSC, the better performance of the network.

The experiments are performed according to the training details in Section 4.1, and the
results are shown in Table 4. It can be found that SegNet has the highest score of 78.9% on
Sen. DeepLabV3+-MBV2 and DeepLabV3+-Res18, which used FCKD (DeepLabV3+-MBV2
(+FCKD) and DeepLabV3+-Res18 (+FCKD)), are 76.6% and 77.8% on Sen, respectively.
Compared with U-Net and R2U-Net, they have a smaller gap with SegNet. In the Spe
metric, DeepLabV3+-MBV2 and DeepLabV3+-Res18 have insignificant performance, while
DeepLabV3+-MBV2 (+FCKD) and DeepLabV3+-Res18 (+FCKD) improve on them by 0.4%
and 0.9%, respectively, which is comparable to U-Net. More, our DeepLabV3+-MBV2
(+FCKD) and DeepLabV3+-Res18 (+FCKD) have superior performance on DSC, Acc, and
IoU. DeepLabV3+-Res18 (+FCKD) obtains the highest scores on DSC, Acc, and IoU with
81.8%, 96.5%, and 69.2%, respectively. Additionally, DeepLabV3+-MBV2 (+FCKD) has
the most significant improvement over DeepLabV3+-MBV2, improving by 2.2%, 1.3%,
and 3.1% on DSC, Acc, and IoU, respectively. Figure 7 shows the qualitative results for
each network. It can be seen that DeepLabV3+-MBV2 (+FCKD) and DeepLabV3+-Res18
(+FCKD) have more detailed segmentation performance based on DeepLabV3+-MBV2 and
DeepLabV3+-Res18, for example, the segmentation is clearer and more continuous on the
fine vessels. Compared with U-Net and R2U-Net, the segmentation results of our method
are richer and closer to the ground truth. In general, our FCKDNet is competent for the
task of fundus retinal vessel segmentation and achieves better results. In other words, our
method has good generalization performance on the cross-domain segmentation task.
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Table 4. Cross-domain generalization performance study of our method on the DRIVE dataset. The
bold number denotes the best result.

Method Sen (%) Spe (%) DSC (%) Acc (%) IoU (%)

SegNet [43] 78.9 86.7 62.1 85.3 45.0
U-Net [44] 73.6 96.3 79.6 94.8 66.1
R2U-Net [45] 76.4 97.2 81.5 96.2 68.8
DeepLabV3+-MBV2 73.3 96.2 79.3 95.1 65.7
DeepLabV3+-Res18 74.1 95.4 80.8 95.3 67.8
DeepLabV3+-MBV2 (+FCKD) 76.6 96.6 81.6 96.4 68.9
DeepLabV3+-Res18 (+FCKD) 77.8 96.3 81.8 96.5 69.2

Figure 7. The visual results of fundus vascular segmentation.

5. Conclusions

In this paper, a novel feature condensation KD method is proposed for SS. The method
is able to separate foreground feature knowledge and background noise at the pixel level in
the output features of the teacher network. Then, a feature soft enhancement method based
on spatial and channel dimensions is used for the foreground feature knowledge to further
improve the feature representation ability of the network. Finally, the enhanced features of
the teacher network are used to distill knowledge with the student network. Compared
with the current mainstream KD methods, our method can effectively help the teacher
network filter pseudo-knowledge and improve student network performance. Experiments
on public datasets demonstrate the effectiveness and good cross-domain generalization
performance of our FCKDNet. In addition, our method still suffers from shortcomings
such as the inability to adaptively find the optimal solution of the threshold during the
feature condensation process, which may cause over-separation of effective knowledge. In
the future, we will continue to optimize our network, and we hope our work will inspire
more researchers to investigate feature filtering and apply it to segmentation KD.
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