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Abstract: To solve the problem of feature distribution discrepancy in cross-corpus speech emotion 

recognition tasks, this paper proposed an emotion recognition model based on multi-task learning 

and subdomain adaptation, which alleviates the impact on emotion recognition. Existing methods 

have shortcomings in speech feature representation and cross-corpus feature distribution align-

ment. The proposed model uses a deep denoising auto-encoder as a shared feature extraction net-

work for multi-task learning, and the fully connected layer and softmax layer are added before each 

recognition task as task-specific layers. Subsequently, the subdomain adaptation algorithm of emo-

tion and gender features is added to the shared network to obtain the shared emotion features and 

gender features of the source domain and target domain, respectively. Multi-task learning effec-

tively enhances the representation ability of features, a subdomain adaptive algorithm promotes the 

migrating ability of features and effectively alleviates the impact of feature distribution differences 

in emotional features. The average results of six cross-corpus speech emotion recognition experi-

ments show that, compared with other models, the weighted average recall rate is increased by 

1.89%~10.07%, the experimental results verify the validity of the proposed model. 

Keywords: speech emotion recognition; multi-task learning; subdomain adaptation; feature  

distribution 

 

1. Introduction 

Speech is a very valuable research object to realize intelligent interaction today. 

Through speech communication, human beings can not only obtain the speaker’s seman-

tic information, but also perceive the speaker’s emotional state, gender, age and other 

paralinguistic content [1]. In the middle of the 20th century, human–computer interaction 

(HCI) systems mainly conveyed instructions to computers through the mouse and key-

board, and did not have the ability to perceive speech emotional information. In order to 

improve the intelligence of a computer and meet the comfortable and convenient needs 

of users, it is particularly important to make the computer have the speech-emotional in-

formation perception ability like human beings. In this context, researchers began to ex-

plore the emotional information processing of speech. 

Speech Emotion Recognition (SER) first began using acoustic statistical features to 

classify emotions [2] in the 1980s, these acoustic features are still widely used in speech 

analysis [3,4]. With the rapid development of artificial intelligence in the 21st century, 

speech emotion recognition technology has been widely used in various fields, including 

call quality detection in a customer service center, speech assistants and auxiliary diagno-

ses. Therefore, SER has very important practical application research value. 
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In real application scenarios, different corpora have different recording environ-

ments, personnel gender, age distribution and languages, resulting in great variations in 

feature distribution among different corpora, which makes it difficult for models trained 

based on a single corpus to achieve good recognition results on new speech signal [5]. 

Speech emotion recognition also has some limitations in other aspects. For example, in the 

case of strong background noise, emotional information is difficult to be effectively rec-

ognized. Therefore, many scholars try to supplement it with other aspects, including facial 

emotion recognition [6–8] and physiological signal emotion recognition [9,10]. 

In order to further enhance the generalization of the speech emotion recognition 

model, the main contributions of this work are summarized as follows: 

1. The proposed method uses multi-task learning to help the network extract speech 

features, which is more robust than the features obtained only using emotional recog-

nition tasks. 

2. A subdomain transfer learning method is proposed, which can reduce the negative 

transfer in the whole local adaptation process more than the global adaptation 

method. 

3. In the ablation experiment and the evaluation compared with other algorithms, the 

proposed method has achieved performance leadership in most cross-corpus 

schemes. 

2. Related Work 

At present, the recognition rate of speech emotion recognition has reached the level 

of human recognition, but this can only be achieved under the condition of acoustic labor-

atory and some specific emotion corpus. When the training data and test data come from 

different corpora, the model performance often suffers a serious decline. Many research-

ers propose cross-corpus algorithms to solve the data discrepancy to improve the model 

performance. 

Deng et al. [11] used unsupervised learning methods of denoising auto-encoder and 

domain adaptive technology to solve the inherent difference between the training set and 

the test set. Huang et al. [12] proposed a new feature transfer method based on PCANet 

to learn the emotional features of unlabeled data by measuring the distribution offset be-

tween training data and test data. Zong et al. [13] proposed a domain adaptive least 

squares regression model. The least squares regression model was trained by adding reg-

ularization constraints of source domain data and a group of target domain data to the 

objective function to improve cross-corpus recognition performance. In addition, the sub-

space learning algorithm has also achieved satisfactory results in the cross-corpus SER. 

For example, Liu et al. [14] proposed a domain adaptive subspace learning method to 

learn the projection matrix and convert the speech signal from the original feature space 

to the label subspace; Song et al. [15] proposed a transfer linear subspace learning frame-

work, and used the nearest neighbor graph algorithm to measure the similarity between 

different corpora, so as to achieve cross-corpus speech emotion recognition research; Luo 

et al. [16] extracted the source domain data and target domain data to obtain the shared 

subspace feature representation and two independent feature representations, and used 

the orthogonal constraint method to eliminate the redundancy of shared features and in-

dependent features, while minimizing the difference between the conditional distribution 

and marginal distribution of the source domain and target domain in the shared subspace. 

Finally, they achieved high recognition rates in 30 sets of cross-corpus emotion recogni-

tion experiments. In addition, the combination of deep learning and domain adaptation 

to solve cross-corpus speech emotion recognition problems has gradually become a new 

research focus. For example, Liu et al. [17] used the depth convolution neural network 

and the maximum mean discrepancy (MMD) to perform feature migration and achieve 

cross-corpus speech emotion recognition. 
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Therefore, the influencing factors of cross-corpus SER system performance can be 

summarized as follows: 

1. To obtain the emotional information with strong representation ability in speech fea-

ture. Human speech contains a variety of paralinguistic information in addition to 

semantic information, such as mood, gender, emotion, but the ideal speech emotional 

feature should be independent of the speaker, semantics, language and other objec-

tive factors, and reflect emotional information as effectively as possible, which puts 

forward higher requirements for the generalization of emotional features of the cross-

corpus SER system. 

2. To effectively measure the distribution discrepancy of features. In cross-corpus SER 

research, researchers mostly use the emotion feature measurement criteria based on 

the global feature area [12,13,17], and only measure the distance between two emo-

tion vector matrices representing the source domain and target domain, ignoring the 

differences of different emotion features in the field, which may lead to the confused 

transfer of similar emotion information, such as happy and surprise, anger and dis-

gust, which is not conducive to the subsequent emotion classification. 

3. Model Framework 

Multi-task learning can improve the generalization of the main task recognition per-

formance. This chapter introduces a cross-corpus SER model based on Multi-task learning 

and subdomain adaptation (MTLSA), as shown in Figure 1. First, it is confirmed that the 

main recognition task of MTLSA is emotion recognition, while the auxiliary recognition 

task is gender recognition. Secondly, in the aspect of feature processing, the model 

MTLSA in this chapter uses the deep denoising auto-encoder (DDAE) network as the task-

sharing network. On this basis, task-specific layers with attribute dependency are added, 

so that when the network learns the shared features, it allows each task-specific layer to 

optimize its own attribute parameters to improve performance. Then, in the low dimen-

sional emotional features output by the DDAE code, the whole region is divided into emo-

tional subdomain space and gender subdomain space according to emotional labels and 

gender labels, and the subdomain adaptation algorithm based on the local maximum 

mean discrepancy (LMMD) [18] is used to reduce the feature distribution distance be-

tween the source domain and target domain. Finally, the cross entropy loss calculation is 

performed using the emotion label and gender label information of the source domain, 

and the MTLSA is constrained by the feature reconstruction loss and feature distribution 

distance measurement loss. The MTLSA multi-task learning module and subdomain ad-

aptation will be described in detail in Sections 3.1 and 3.2, and the MTLSA training and 

recognition process will be described in Section 3.3. 
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Figure 1. Overall Framework of Multi-task Learning and Subdomain Adaptive Model. 

3.1. Multi-Task Learning 

In the cross-corpus SER research, in order to further reduce the discrepancy in the 

distribution of emotional features and improve the generalization of the system, the multi-

task learning mechanism is introduced to eliminate the emotional differences caused by 

gender factors, so as to learn more common emotional information between different 

fields. In this section, MTLSA performs feature matching under the multi-task learning 

mechanism based on hyper-parameter sharing. The sharing network of the emotion 

recognition task and gender recognition task is DDAE. It has been verified that the recon-

structed features can effectively compress feature dimensions and remove feature redun-

dancy. On this basis, the model adds noise to the DAE and builds a DDAE network to 

extract common emotional features from the source domain and target domain to enhance 

system robustness. 

The sample features of the source domain are given as follows: 
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dimension of each speech sample, and C  represent the number of emotional categories. 

DDAE is used for redundant compression of speech features to obtain common emotional 

features with robustness and effective representation. First, add the noise with the normal 

distribution (mean value is 0, variance is 1) in the source domain 
SX  and target domain 

TX . Then, low-level features with noise are input into DDAE, and the source domain and 

target domain feature vectors decoded by DDAE are represented as SX  and TX , respec-

tively. Therefore, the loss function of the DDAE network processing features includes the 

reconstruction loss function 
SL  of 

SX  and the reconstruction loss function 
TL  of 

TX , 

which are, respectively, expressed as: 

2

1

Sn
S S

S S S i i

i

L ( X ,X ) x x
=

= = −   (1) 

2

1

Tn
T T

T T T i i

i

L ( X ,X ) x x
=

= = −   (2) 

The task-specific layer consists of two independent full connection layers, which in-

put the results into the softmax layer and output the emotion labels. In the cross-corpus 

research based on domain adaptation, the main task emotion recognition and the auxiliary 

task gender recognition will use the source domain real label information and the source 

domain softmax prediction label to calculate the cross entropy as a loss function to con-

strain the parameter update of different tasks at the specific layer. The prediction proba-

bilities of the emotion category and gender category of the source domain samples are 

expressed as 1 S

S S S

i np [ p , , p ]=  and 1 S

G G G

i np [ p , , p ]= , respectively, and the cross en-

tropy is calculated with the ground truth, respectively, and the emotion classification loss 

function YL  and gender classification loss function GL  of the source domain are ob-

tained. 

1 1

1 Sn C
S S S

Y S i i i

i cS

L (Y , p ) y log( p )
n = =

= −    (3) 

1

1
1 1

Sn
G G G G G

G G i i i i i

iS

L (Y , p ) y log( p ) ( y ) log( p )
n =

 = −  + −  −   (4) 

3.2. Subdomain Adaptation 

To learn common emotional information through gender recognition tasks by multi-

task learning. At the same time, it uses a subdomain adaptive algorithm based on Local 

Maximum Mean Discrepancy (LMMD) to measure the feature distributions discrepancy 

between the source domain and the target domain, as shown in Figure 2, so as to reduce 

the emotional differences and gender differences in speech and improve the generaliza-

tion of the system. The MTLSA model divides the low dimensional features output by the 

DDAE encoder into independent emotion subdomain space and gender subdomain space 

according to the emotion labels and gender labels of the source domain, and the emotion 

prediction label and gender prediction label of the target domain, so as to achieve accurate 

emotion feature alignment and gender feature alignment. 

In the emotion subdomain space, the emotion features output by the source domain 

and target domain through the DDAE encoder are represented as 

1
S

S

d nS S

S nX [ x , ,x ] R
  =   and 1

T

T

d nT T

T nX [ x , ,x ] R
  =  , respectively, and the feature 

distribution is aligned through LMMD, and the measured distribution distance can be 

used as loss function DEL  to continuously reduce during the training process. 
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Figure 2. Differences between subdomain adaptation and global domain adaptation. 
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Among them,   is the reproducing kernel hilbert space (RKHS), and ( )   repre-

sents the kernel function that maps emotional features to RKHS. S

i ,c  and T

i ,c , respec-

tively, represent the weight vectors of S

ix  and T

ix  belonging to the emotion category. 

The weight i ,c  of sample feature ix  is calculated as 
i i

i ,c i ,c i ,c( x ,y ) D
y y


=  . It is worth 

noting that the emotional label S

i ,cy  of the sample features in the source domain is known, 

while the target domain cannot directly obtain T

i ,cy . Here, softmax outputs the sample 

feature probability of the target domain to generate the pseudo tag T

i ,cy . 

In the gender subdomain space, the gender features of the source domain and target 

domain encoded by DDAE are 
1 2

S

S

d nSG SG SG

SG nX [ x ,x , ,x ] R
   =   and 

1 2
T

S

d nTG TG TG

TG nX [ x ,x , ,x ] R
   =  , respectively. Similarly, gender features are aligned by 

LMMD, and the metric distance is expressed as DGL . 

2

1 1 1

1 1 1S Tn nM
S SG T TG

DG i,M i i ,M i

m i iS T

L ( x ) ( x )
M n n

   
= = = 

 = −      (6) 

Wherein, S

i ,M  and T

i ,M , respectively, represent the weight vectors of source do-

main feature SG

ix  and target domain TG

ix  that belong to the gender category M . 

2M = , like formula (5), T

i ,My  cannot be directly obtained. The target domain samples 

need to generate pseudo label information T

i ,My  through softmax output. 

3.3. Model Training and Identification 

The total loss function of the MTLSA can be expressed as: 

SUM S T Y G DE DGL a L b L c L d L e L f L=  +  +  +  +  +    (7) 

Among them,  S T Y G DE DGL ,L ,L ,L ,L ,L  represents the reconstruction loss of source 

domain sample features, the reconstruction loss of target domain sample features, the 

emotional classification loss function of source domain sample features, the gender clas-

sification loss function of source domain sample features, the emotional feature 
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distribution distance, and the gender feature distribution distance, respectively. 

 a,b,c,d ,e, f  represents the loss weight coefficient of  S T Y G DE DGL ,L ,L ,L ,L ,L , respec-

tively, and the values of 1a b c d e f+ + + + + =  and  a,b,c,d ,e, f  are determined 

through debugging. 

In the recognition stage, the target domain samples are used as the test corpus, and 

the emotion features are extracted from the trained network. After the softmax layer out-

puts the prediction probability, the label information corresponding to the maximum 

probability value is selected as the sample recognition result, and the emotion labels of 

the target domain samples are finally output. 

4. Experimental Setup 

4.1. Corpus 

In order to ensure the consistency of the experiment and the fairness of the evaluation 

of the experimental indicators, the proposed method uses the most widely used corpus 

for evaluation. Three public corpora, Berlin [19], eNTERFACE [20], and CASIA [21] are 

selected as the corpora of the experiment. Berlin is recorded by five male and five female 

actors simulating anger, boredom, disgust, fear, neutral and sad. eNTERFACE included 

34 male and eight female subjects anger, disgust, fear, happy, sad and surprise. CASIA 

contains the anger, fear, happy, neutral, sad and surprise of two male and three female 

speakers. In order to carry out cross-corpus research, we selected the samples of source 

domain and target domain that come from different corpora, but the emotional labels of 

the two corpora are the same. Therefore, three samples of three corpora need to be rese-

lected to meet the experimental requirements. 

In terms of emotion recognition, the same emotions of Berlin and eNTERFACE are 

disgust, anger, sad, fear and happy, and the sample numbers are 375 and 1072, respec-

tively. The same emotions of eNTERFACE and CASIA are surprise, anger, sad, fear and 

happy, and the sample numbers are 1072 and 1000, respectively. The same emotions of 

Berlin and CASIA are neutral, anger, sad, fear and happy, with 408 and 1000 samples 

selected, respectively. 

In identifying gender, we need to make gender tags of three corpora. The samples of 

the material corpus used in the two identification tasks are exactly the same, only the label 

types are different. Among them, the number of male samples in Berlin and eNTERFACE 

is 159 and 885, respectively, and the number of female samples is 216 and 187, respec-

tively; eNTERFACE and CASIA. The number of male samples in the library is 847 and 

500, respectively, and the number of female samples is 225 and 500, respectively. The 

number of male samples in Berlin and CASIA is 187 and 500, respectively, and the number 

of female samples is 221 and 500, respectively. Table 1 summarizes the corpus information 

used for cross-corpus identification. 

Table 1. Corpora information for cross-corpus identification. 

Emotion Recognition Task Gender Identification Task 

Corpus Num of Samples Emotional Tags Male Samples Female Samples 

Berlin 375 Anger, Sad, Fear, 

Happy, Disgust 

159 216 

eNTERFACE 1072 885 187 

CASIA 1000 Anger, Sad, Fear, 

Happy, Surprise 

500 500 

eNTERFACE 1072 847 225 

Berlin 408 Anger, Sad, Fear, 

Happy, Neutral 

187 221 

CASIA 1000 500 500 
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4.2. Extract Speech Features 

This section uses the emotional feature set specified in the INTERSPEECH2010 emo-

tional challenge as the speech of all emotional feature set. Based on 34 LLDs, 1428 dimen-

sional features are obtained by using 21 statistical functions. Secondly, on the basis of 

LLDs and delta coefficients of four treble, 152 dimensional features are obtained by using 

19 statistical functions. Then, add the start time and duration of the speech into it. Finally, 

a total of 1582 dimensional artificial statistical emotional feature set is obtained [22]. Use 

the openSMILE tool [23] to extract 1582 dimension features of three corpora in Table 1. In 

addition, these speech features need to be normalized before input network training to 

compress the eigenvalues in the (0,1) range. 

4.3. Experimental Scheme 

Choose between two corpora randomly from the three corpora, and choose speech 

samples with the same emotion between the two corpora to design the experimental 

scheme, one of which is used as the source domain corpus, the other as the target domain 

corpus. Using the letters B, E and C to represent Berlin, eNTERFACE and CASIA, respec-

tively, six cross-corpus speech emotion recognition experimental schemes are designed, 

which are E→B, B→E, E→C, C→E, B→C, C→B. Table 2 summarizes the source domain 

and target domain of different cross-corpus experimental schemes, as well as the cross-

corpus identification tasks of each scheme. 

In the six experimental schemes, the learning rate and batch size of MTLSA are set to 

0.000001 and 100, respectively, the network optimizer and classifier use Adam and soft-

max, respectively, and the model is iteratively trained 300 times. In the training process, 

the weight coefficients {a, b, c, d, e, f} of the six loss functions of the model are [0.05, 0.05, 

0.6, 0.1, 0.1, 0.1]. For DDAE, the sizes of hidden layer neuron nodes are 1200, 900, 256, 900 

and 1200, respectively, where the encoding and decoding stages use the ELU function and 

Sigmoid function, respectively. In addition, each layer of DDAE adds a Batch Normal 

(BN) layer and a Dropout layer. For task-specific layers in multi-task learning, the hidden 

layer neuron node size is 256. 

Table 2. Six cross-corpus experimental schemes and identification tasks. 

Scheme Source Domain Target Domain Cross-Corpus Identification 

E→B eNTERFACE Berlin Anger, Sad, Fear, Happy, Dis-

gust B→E Berlin eNTERFACE 

E→C eNTERFACE CASIA Anger, Sad, Fear, Happy, Sur-

prise C→E CASIA eNTERFACE 

B→C Berlin CASIA Anger, Sad, Fear, Happy, Neu-

tral C→B CASIA Berlin 

5. Analysis of Experimental Results 

5.1. Analysis of Ablation Experiment 

This section conducts ablation experiments to evaluate the effectiveness of different 

modules in MTLSA, and sets up two ablation models. (1) MTLSA_L indicates that the 

proposed model MTLSA only uses the LMMD algorithm for emotional feature distribu-

tion alignment and gender feature distribution alignment, and does not use multi-task 

learning; (2) MTLSA_M means that MTLSA only uses the multi-task learning framework 

to learn shared features, and does not use the LMMD algorithm for feature alignment. In 

the six cross-corpus experimental schemes, the experimental results of two ablation mod-

els and MTLSA are shown in Table 3. 
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Table 3. WAR of different ablation models in six cross-corpus schemes (%). 

Model E→B B→E E→C C→E B→C C→B 

MTLSA_L 36.80 24.44 32.90 23.23 30.10 39.95 

MTLSA_M 55.73 30.60 34.40 30.32 39.30 53.94 

MTLSA 57.60 34.12 35.21 31.52 41.90 56.86 

From Table 3, it can be seen that the WAR of the proposed model MTLSA in this 

chapter is higher than those of other ablation models under the six schemes, indicating 

that it is an effective practice for MTLSA to combine multi-task learning with subdomain 

adaptive feature transfer. From the WAR of MTLSA_L and MTLSA_M, it can be seen that 

MTLSA only uses a deep denoising auto-encoder to extract common features, and on this 

basis, LMMD is used to measure the distribution distance of emotional features and gen-

der feature distribution distance, and the system performance of using LMMD to measure 

the distribution distance of emotional features is poor, while the multi-task learning ar-

chitecture is used to extract common features, and the use of auxiliary tasks to learn emo-

tion-related information is beneficial to obtain more emotional features, effectively reduc-

ing the feature distribution distance between the source domain and the target domain. 

Multi-task learning and subdomain adaptation are both forms of transfer learning, and 

the fusion of the two can extract salient emotional features and effectively improve the 

generalization of the system. 

5.2. Comparative Experimental Analysis 

In this section, some state-of-the art cross-corpus SER models are used for compari-

son to evaluate the performance of MTLSA, including Transfer Sparse Discriminant Sub-

space Learning (TSDSL) [22], Deep Belief Network and Back Propagation (DBN+BP) [24], 

Domain Adaptive Subspace Learning (DoSL) [14]. At the same time, PCA+SVM is selected 

as the reference algorithm for the experiment, and the SVM classifier adopts a linear ker-

nel function. Table 4 shows the WAR results of the MTLSA and other advanced models 

and benchmark models in six cross-corpus recognition schemes. 

It can be seen from Table 4 that the WAR of the proposed model MTLSA is higher 

than PCA+SVM, TSDSL and DBN+BP in six cross-corpus schemes, indicating that multi-

task learning combined with subdomain adaptive reduction in feature distribution differ-

ences is advanced. Among them, TSDSL only reduces the feature distribution distance in 

the global domain emotion space, and ignores the connection between more fine-grained 

emotion categories, and the model in this chapter uses emotion labels and gender labels 

to divide the feature space into independent subdomain space, considering the confusing 

alignment influence of different emotion information, and accurately aligning the feature 

distribution of the same emotion and gender. DBN+BP belongs to the application of deep 

learning with the proposed model, but DBN+BP only uses the basic feature processing 

method, and does not use the correlation feature transfer learning algorithm to train the 

cross-corpus emotion classifier, so the cross-corpus recognition effect is not ideal, DoSL 

uses subspace learning methods, but only features reduction and dimension selection, and 

does not achieve accurate domain alignment. It is difficult to effectively improve the gen-

eralization of the cross-corpus speech emotion recognition model. 

Table 4. WAR of comparison model in six cross-corpus schemes (%). 

Model E→B B→E E→C C→E B→C C→B Average 

PCA+SVM 50.85 33.68 28.60 27.80 33.60 43.87 36.40 

TSDSL [22] 50.67 35.47 32.50 33.28 37.40 56.60 40.98 

DBN+BP [24] 26.67 32.28 24.20 31.04 35.80 46.81 32.80 

DoSL [14] 49.58 30.64 35.20 33.90 35.77 57.51 40.43 

MTLSA 57.60 34.12 35.21 31.52 41.90 56.86 42.87 
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Compared with the above single task-learning method, the structure of multi-task 

learning is generally composed of shared modules and task modules. The shared modules 

contain shared network parameters, and the task modules contain different tasks that the 

network needs to complete. Multi-task learning trains multiple tasks in parallel by sharing 

network layer parameters, and finally enables a single network to achieve multiple func-

tions, which is also the key to improving model generalization. It can be concluded that 

gender is an important factor affecting the performance of cross-corpus speech emotion 

recognition, and learning common gender information while extracting common emotion 

information can effectively alleviate the gender difference in emotional features and help 

further reduce the feature distribution distance between the source domain and the target 

domain. 

6. Conclusions 

This paper proposed a cross-corpus speech emotion recognition model based on 

multi-task learning and subdomain adaptation to alleviate the impact of gender factors 

on emotion recognition. The model takes emotion recognition as the main task, gender 

recognition as the auxiliary task, and uses the deep denoising auto-encoder as the shared 

network of the multi-task learning framework to extract the emotional common infor-

mation and gender common information with strong representation ability. LMMD-based 

subdomain adaptive algorithm is used to constrain learning emotion and gender features, 

and further, obtain shared information. From a large number of experimental results, the 

model proposed in this chapter can not only effectively reduce the difference in feature 

distribution between the source domain and the target domain, but also alleviate the im-

pact of gender attributes on emotion recognition, providing a new idea for solving the 

problem of cross-corpus speech emotion recognition. 

Author Contributions: Conceptualization, H.F.; Data curation, Y.W., C.H. and W.D.; Formal anal-

ysis, Z.Z.; Funding acquisition, H.F.; Investigation, H.F., Z.Z. and Y.W.; Software, Z.Z.; Supervision, 

H.F.; Validation, Z.Z.; Writing—original draft, H.F. and Z.Z.; Writing—review and editing, Y.W., 

C.H. and W.D. All authors have read and agreed to the published version of the manuscript. 

Funding: This research project was founded in part by National Natural Science Foundation of 

China (Grant No. 61975053), Natural Science Project of Henan Education Department (Grant No. 

22A510013, Grant No. 22A520004 and Grant No. 22A510001), Start-up Fund for High-level Talents 

of Henan University of Technology (No. 2018BS037). 

Institutional Review Board Statement: Not applicable 

Data Availability Statement: Not applicable 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Alisamir, S., Ringeval, F. On the Evolution of Speech Representations for Affective Computing: A brief history and critical 

overview. IEEE Signal Process. Mag. 2021, 38, 12–21. 

2. Malik, M.; Malik, M.K.; Mehmood, K.; Makhdoom, I. Automatic speech recognition: A survey. Multimed. Tools Appl. 2021, 80, 

9411–9457. 

3. Sitaula, C.; He, J.; Priyadarshi, A.; Tracy, M.; Kavehei, O.; Hinder, M.; Hinder, M.; Withana, A.; McEwan, A.; Marzbanrad, F. 

Neonatal Bowel Sound Detection Using Convolutional Neural Network and Laplace Hidden Semi-Markov Model. IEEE/ACM 

Trans. Audio Speech Lang. Process. 2022, 30, 1853–1864. https://doi.org/10.1109/TASLP.2022.3178225. 

4. Burne, L. et al. Ensemble Approach on Deep and Handcrafted Features for Neonatal Bowel Sound Detection. IEEE J. Biomed. 

Health Inform. 2022. https://doi.org/10.1109/JBHI.2022.3217559. 

5. Lee, S. Domain Generalization with Triplet Network for Cross-Corpus Speech Emotion Recognition. In Proceedings of the IEEE 

Spoken Language Technology Workshop, Shenzhen, China, 19–22 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 389–396. 

6. Antoniadis, P.; Filntisis, P.P.; Maragos, P. Exploiting Emotional Dependencies with Graph Convolutional Networks for Facial 

Expression Recognition. In Proceedings of the 2021 16th IEEE International Conference on Automatic Face and Gesture Recog-

nition (FG 2021), Jodhpur, India, 15–18 December 2021; pp. 1–8. https://doi.org/10.1109/FG52635.2021.9667014. 



Entropy 2023, 25, 124 11 of 11 
 

 

7. Ryumina, E.; Dresvyanskiy, D.; Karpov, A. In search of a robust facial expressions recognition model: A large-scale visual cross-

corpus study. Neurocomputing 2022, 514, 435–450. 

8. Savchenko, A.V.; Savchenko, L.V.; Makarov, I. Classifying Emotions and Engagement in Online Learning Based on a Single 

Facial Expression Recognition Neural Network. IEEE Trans. Affect. Comput. 2022, 13, 2132–2143. 

https://doi.org/10.1109/TAFFC.2022.3188390. 

9. Du, G.; Su, J.; Zhang, L.; Su, K.; Wang, X.; Teng, S.; Liu, P.X. A Multi-Dimensional Graph Convolution Network for EEG Emotion 

Recognition. IEEE Trans. Instrum. Meas. 2022, 71, 3204314. 

10. Liu, S.; Wang, X.; Zhao, L.; Li, B.; Hu, W.; Yu, J.; Zhang, Y. 3DCANN: A spatio-temporal convolution attention neural network 

for EEG emotion recognition. IEEE J. Biomed. Health Inform. 2021, 26, 5321–5331. 

11. Deng, J.; Zhang, Z.; Eyben, F.; Schuller, B. Autoencoder-based unsupervised domain adaptation for speech emotion recognition. 

IEEE Signal Process. Lett. 2014, 21, 1068–1072. 

12. Huang, Z.; Xue, W.; Mao, Q.; Zhan, Y. Unsupervised domain adaptation for speech emotion recognition using PCANet. Mul-

timed. Tools Appl. 2017, 76, 6785–6799. 

13. Zong, Y.; Zheng, W.; Zhang, T.; Huang, X. Cross-corpus speech emotion recognition based on domain-adaptive least-squares 

regression. IEEE Signal Process. Lett. 2016, 23, 585–589. 

14. Liu, N.; Zong, Y.; Zhang, B.; Liu, L.; Chen, J.; Zhao, G.; Zhu, J. Unsupervised cross-corpus speech emotion recognition using 

domain-adaptive subspace learning. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 5144–5148. 

15. Song, P. Transfer linear subspace learning for cross-corpus speech emotion recognition. IEEE Trans. Affect. Comput. 2019, 10, 

265–275. 

16. Luo, H.; Han, J. Nonnegative matrix factorization based transfer subspace learning for cross-corpus speech emotion recognition. 

IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 2047–2060. 

17. Liu, J.; Zheng, W.; Zong, Y.; Lu, C.; Tang, C. Cross-corpus speech emotion recognition based on deep domain-adaptive convo-

lutional neural network. IEICE Trans. Inf. Syst. 2020, 103, 459–463. 

18. Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.; Chen, J.; Bian, J.; Xiong, H.; He, Q. Deep subdomain adaptation network for image classi-

fication. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1713–1722. 

19. Burkhardt, F.; Paeschke, A.; Rolfes, M.; Sendlmeier, W.F.; Weiss, B. A-corpus of German emotional speech. In Proceedings of 

the Eurospeech, 9th European Conference on Speech Communication and Technology, Lisbon, Portugal, 4–8 September 2005; 

Volume 5, pp. 1517–1520. 

20. Martin, O.; Kotsia, I.; Macq, B.; Pitas, I. The eNTERFACE'05 audio-visual emotion-corpus. In Proceedings of the 22nd Interna-

tional Conference on Data Engineering Workshops, Atlanta, GA, USA, 3–7 April 2006; IEEE: Piscataway, NJ, USA, 2006; p. 8. 

21. Tao, J.; Liu, F.; Zhang, M.; Jia, H. Design of speech corpus for mandarin text to speech. In Proceedings of the Blizzard Challenge 

2008 Workshop, Brisbane Australia, 20 September 2008. 

22. Zhang, W.; Song, P. Transfer sparse discriminant subspace learning for cross-corpus speech emotion recognition. IEEE/ACM 

Trans. Audio Speech Lang. Process. 2019, 28, 307–318. 

23. Eyben, F.; Wöllmer, M.; Schuller, B. Opensmile: The munich versatile and fast open-source audio feature extractor. In Proceed-

ings of the 18th ACM International Conference on Multimedia, Firenze Italy, 25–29 October 2010; pp. 1459–1462. 

24. Latif, S.; Rana, R.; Younis, S.; Qadir, J.; Epps, J. Transfer learning for improving speech emotion classification accuracy. arXiv, 

2018 preprint arXiv:1801.06353. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


